Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,135 +1,105 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
import pandas as pd
|
|
|
|
| 4 |
from momentfm import MOMENTPipeline
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
from io import StringIO
|
| 7 |
|
| 8 |
-
# Initialize
|
| 9 |
model = MOMENTPipeline.from_pretrained(
|
| 10 |
"AutonLab/MOMENT-1-large",
|
| 11 |
model_kwargs={"task_name": "reconstruction"},
|
| 12 |
)
|
| 13 |
model.init()
|
| 14 |
|
| 15 |
-
def detect_anomalies(data_input, threshold=0.
|
| 16 |
-
"""
|
| 17 |
-
Process time-series data and detect anomalies using MOMENT model
|
| 18 |
-
"""
|
| 19 |
try:
|
| 20 |
-
#
|
| 21 |
if isinstance(data_input, str):
|
| 22 |
-
|
| 23 |
-
try:
|
| 24 |
-
df = pd.read_csv(StringIO(data_input))
|
| 25 |
-
except:
|
| 26 |
-
# Try to read as JSON
|
| 27 |
-
try:
|
| 28 |
-
df = pd.read_json(StringIO(data_input))
|
| 29 |
-
except:
|
| 30 |
-
return "Error: Could not parse input data. Please provide valid CSV or JSON."
|
| 31 |
-
elif isinstance(data_input, dict):
|
| 32 |
-
df = pd.DataFrame(data_input)
|
| 33 |
else:
|
| 34 |
-
return "Error:
|
| 35 |
-
|
| 36 |
-
#
|
| 37 |
if 'timestamp' not in df.columns or 'value' not in df.columns:
|
| 38 |
-
return "Error:
|
| 39 |
-
|
| 40 |
-
# Convert timestamp
|
| 41 |
df['timestamp'] = pd.to_datetime(df['timestamp'])
|
| 42 |
df = df.sort_values('timestamp')
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
# Get reconstruction from the model
|
| 48 |
-
reconstruction = model.reconstruct(time_series)
|
| 49 |
|
| 50 |
-
#
|
| 51 |
-
|
|
|
|
| 52 |
|
| 53 |
-
#
|
| 54 |
-
|
| 55 |
-
df['
|
|
|
|
| 56 |
|
| 57 |
# Create plot
|
| 58 |
-
fig, ax = plt.subplots(figsize=(
|
| 59 |
-
ax.plot(df['timestamp'], df['value'], label='
|
| 60 |
ax.scatter(
|
| 61 |
-
df[df['is_anomaly']
|
| 62 |
-
df[df['is_anomaly']
|
| 63 |
-
color='red',
|
| 64 |
-
label='Anomaly'
|
| 65 |
)
|
| 66 |
-
ax.set_title('
|
| 67 |
-
ax.set_xlabel('Timestamp')
|
| 68 |
-
ax.set_ylabel('Value')
|
| 69 |
ax.legend()
|
| 70 |
-
ax.grid(True)
|
| 71 |
|
| 72 |
# Prepare results
|
| 73 |
-
anomalies = df[df['is_anomaly']]
|
| 74 |
stats = {
|
| 75 |
"total_points": len(df),
|
| 76 |
-
"anomalies_detected":
|
| 77 |
-
"
|
| 78 |
-
"
|
| 79 |
-
"threshold_used": threshold
|
| 80 |
}
|
| 81 |
|
| 82 |
-
return fig, stats, df.to_dict(
|
| 83 |
-
|
| 84 |
except Exception as e:
|
| 85 |
-
return f"Error
|
| 86 |
|
| 87 |
-
#
|
| 88 |
-
with gr.Blocks(
|
| 89 |
-
gr.Markdown("
|
| 90 |
-
gr.Markdown("""
|
| 91 |
-
**Detect anomalies in equipment sensor data using the MOMENT-1-large model**
|
| 92 |
-
- Upload CSV/JSON data with 'timestamp' and 'value' columns
|
| 93 |
-
- Adjust the sensitivity threshold as needed
|
| 94 |
-
- Get visual and statistical results
|
| 95 |
-
""")
|
| 96 |
|
| 97 |
with gr.Row():
|
| 98 |
with gr.Column():
|
| 99 |
-
|
| 100 |
-
label="Paste
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
)
|
| 112 |
-
|
| 113 |
-
|
|
|
|
| 114 |
with gr.Column():
|
| 115 |
-
plot_output = gr.Plot(
|
| 116 |
-
stats_output = gr.JSON(label="
|
| 117 |
-
data_output = gr.JSON(label="
|
| 118 |
-
|
| 119 |
-
# Handle file upload
|
| 120 |
-
def process_file(file):
|
| 121 |
-
if file:
|
| 122 |
-
with open(file.name, 'r') as f:
|
| 123 |
-
return f.read()
|
| 124 |
-
return ""
|
| 125 |
-
|
| 126 |
-
file_upload.change(process_file, inputs=file_upload, outputs=input_data)
|
| 127 |
|
| 128 |
submit_btn.click(
|
| 129 |
detect_anomalies,
|
| 130 |
-
inputs=[
|
| 131 |
outputs=[plot_output, stats_output, data_output]
|
| 132 |
)
|
| 133 |
|
| 134 |
-
|
| 135 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
from momentfm import MOMENTPipeline
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
from io import StringIO
|
| 7 |
|
| 8 |
+
# Initialize model
|
| 9 |
model = MOMENTPipeline.from_pretrained(
|
| 10 |
"AutonLab/MOMENT-1-large",
|
| 11 |
model_kwargs={"task_name": "reconstruction"},
|
| 12 |
)
|
| 13 |
model.init()
|
| 14 |
|
| 15 |
+
def detect_anomalies(data_input, threshold=0.1):
|
|
|
|
|
|
|
|
|
|
| 16 |
try:
|
| 17 |
+
# Read data
|
| 18 |
if isinstance(data_input, str):
|
| 19 |
+
df = pd.read_csv(StringIO(data_input))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
else:
|
| 21 |
+
return "Error: Please provide CSV data"
|
| 22 |
+
|
| 23 |
+
# Validate columns
|
| 24 |
if 'timestamp' not in df.columns or 'value' not in df.columns:
|
| 25 |
+
return "Error: CSV must contain 'timestamp' and 'value' columns", None, None
|
| 26 |
+
|
| 27 |
+
# Convert timestamp and sort
|
| 28 |
df['timestamp'] = pd.to_datetime(df['timestamp'])
|
| 29 |
df = df.sort_values('timestamp')
|
| 30 |
|
| 31 |
+
# Get values as numpy array
|
| 32 |
+
values = df['value'].values.astype(float)
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
# Detect anomalies
|
| 35 |
+
reconstruction = model.reconstruct(values)
|
| 36 |
+
errors = np.abs(values - reconstruction)
|
| 37 |
|
| 38 |
+
# Apply threshold (using relative error)
|
| 39 |
+
threshold_value = threshold * np.max(errors)
|
| 40 |
+
df['anomaly_score'] = errors
|
| 41 |
+
df['is_anomaly'] = errors > threshold_value
|
| 42 |
|
| 43 |
# Create plot
|
| 44 |
+
fig, ax = plt.subplots(figsize=(10, 4))
|
| 45 |
+
ax.plot(df['timestamp'], df['value'], label='Value', color='blue')
|
| 46 |
ax.scatter(
|
| 47 |
+
df.loc[df['is_anomaly'], 'timestamp'],
|
| 48 |
+
df.loc[df['is_anomaly'], 'value'],
|
| 49 |
+
color='red', label='Anomaly'
|
|
|
|
| 50 |
)
|
| 51 |
+
ax.set_title('Sensor Data with Anomalies')
|
|
|
|
|
|
|
| 52 |
ax.legend()
|
|
|
|
| 53 |
|
| 54 |
# Prepare results
|
|
|
|
| 55 |
stats = {
|
| 56 |
"total_points": len(df),
|
| 57 |
+
"anomalies_detected": sum(df['is_anomaly']),
|
| 58 |
+
"max_anomaly_score": float(np.max(errors)),
|
| 59 |
+
"threshold_used": float(threshold_value)
|
|
|
|
| 60 |
}
|
| 61 |
|
| 62 |
+
return fig, stats, df.to_dict('records')
|
| 63 |
+
|
| 64 |
except Exception as e:
|
| 65 |
+
return f"Error: {str(e)}", None, None
|
| 66 |
|
| 67 |
+
# Gradio interface
|
| 68 |
+
with gr.Blocks() as demo:
|
| 69 |
+
gr.Markdown("## 🛠️ Equipment Anomaly Detection")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
with gr.Row():
|
| 72 |
with gr.Column():
|
| 73 |
+
data_input = gr.Textbox(
|
| 74 |
+
label="Paste CSV data (timestamp,value)",
|
| 75 |
+
value="""timestamp,value
|
| 76 |
+
2025-04-01 00:00:00,100
|
| 77 |
+
2025-04-01 01:00:00,102
|
| 78 |
+
2025-04-01 02:00:00,98
|
| 79 |
+
2025-04-01 03:00:00,105
|
| 80 |
+
2025-04-01 04:00:00,103
|
| 81 |
+
2025-04-01 05:00:00,107
|
| 82 |
+
2025-04-01 06:00:00,200
|
| 83 |
+
2025-04-01 07:00:00,108
|
| 84 |
+
2025-04-01 08:00:00,110
|
| 85 |
+
2025-04-01 09:00:00,98
|
| 86 |
+
2025-04-01 10:00:00,99
|
| 87 |
+
2025-04-01 11:00:00,102
|
| 88 |
+
2025-04-01 12:00:00,101""",
|
| 89 |
+
lines=10
|
| 90 |
)
|
| 91 |
+
threshold = gr.Slider(0.01, 0.5, value=0.1, label="Anomaly Threshold")
|
| 92 |
+
submit_btn = gr.Button("Detect Anomalies")
|
| 93 |
+
|
| 94 |
with gr.Column():
|
| 95 |
+
plot_output = gr.Plot()
|
| 96 |
+
stats_output = gr.JSON(label="Statistics")
|
| 97 |
+
data_output = gr.JSON(label="Detailed Results")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
submit_btn.click(
|
| 100 |
detect_anomalies,
|
| 101 |
+
inputs=[data_input, threshold],
|
| 102 |
outputs=[plot_output, stats_output, data_output]
|
| 103 |
)
|
| 104 |
|
| 105 |
+
demo.launch()
|
|
|