Update app.py
Browse files
app.py
CHANGED
@@ -57,8 +57,8 @@ def detect_anomalies(data_input, sensitivity=3.0):
|
|
57 |
# Reshape to 3D format (batch, sequence, features)
|
58 |
values_3d = values.reshape(1, -1, 1)
|
59 |
|
60 |
-
# Get reconstruction
|
61 |
-
reconstructed = model.reconstruct(X=values_3d)
|
62 |
|
63 |
# Calculate reconstruction error (MAE)
|
64 |
errors = np.abs(values - reconstructed[0,:,0])
|
@@ -83,26 +83,25 @@ def detect_anomalies(data_input, sensitivity=3.0):
|
|
83 |
ax.grid(True)
|
84 |
plt.tight_layout()
|
85 |
|
86 |
-
#
|
87 |
-
|
88 |
-
"data_points": len(df),
|
89 |
-
"anomalies_detected": int(df['is_anomaly'].sum()),
|
90 |
-
"detection_threshold": float(threshold),
|
91 |
-
"max_anomaly_score": float(np.max(errors)),
|
92 |
-
"average_value": float(np.mean(values))
|
93 |
-
}
|
94 |
|
95 |
return (
|
96 |
fig,
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
99 |
)
|
100 |
|
101 |
except Exception as e:
|
102 |
logger.error(f"Detection error: {str(e)}")
|
103 |
return (
|
104 |
None,
|
105 |
-
|
106 |
None
|
107 |
)
|
108 |
|
@@ -124,8 +123,10 @@ DEFAULT_DATA = """timestamp,value
|
|
124 |
|
125 |
# Gradio Interface
|
126 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
127 |
-
gr.Markdown("""
|
128 |
-
|
|
|
|
|
129 |
|
130 |
with gr.Row():
|
131 |
with gr.Column():
|
@@ -133,28 +134,23 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
133 |
label="Paste CSV Data",
|
134 |
value=DEFAULT_DATA,
|
135 |
lines=10,
|
136 |
-
|
137 |
-
placeholder="timestamp,value\n2025-..."
|
138 |
)
|
139 |
sensitivity = gr.Slider(
|
140 |
1.0, 5.0, value=3.0, step=0.1,
|
141 |
label="Detection Sensitivity (z-score)"
|
142 |
)
|
143 |
-
|
144 |
|
145 |
with gr.Column():
|
146 |
plot = gr.Plot(label="Results")
|
147 |
stats = gr.JSON(label="Detection Statistics")
|
148 |
-
|
149 |
-
label="Processed Results",
|
150 |
-
headers=["timestamp", "value", "anomaly_score", "is_anomaly"],
|
151 |
-
max_rows=10
|
152 |
-
)
|
153 |
|
154 |
-
|
155 |
detect_anomalies,
|
156 |
inputs=[data_input, sensitivity],
|
157 |
-
outputs=[plot, stats,
|
158 |
)
|
159 |
|
160 |
if __name__ == "__main__":
|
|
|
57 |
# Reshape to 3D format (batch, sequence, features)
|
58 |
values_3d = values.reshape(1, -1, 1)
|
59 |
|
60 |
+
# Get reconstruction - using explicit parameter name
|
61 |
+
reconstructed = model.reconstruct(X=values_3d)
|
62 |
|
63 |
# Calculate reconstruction error (MAE)
|
64 |
errors = np.abs(values - reconstructed[0,:,0])
|
|
|
83 |
ax.grid(True)
|
84 |
plt.tight_layout()
|
85 |
|
86 |
+
# Limit DataFrame display size
|
87 |
+
display_df = df[['timestamp', 'value', 'anomaly_score', 'is_anomaly']].head(20)
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
return (
|
90 |
fig,
|
91 |
+
{"statistics": {
|
92 |
+
"data_points": len(df),
|
93 |
+
"anomalies_detected": int(df['is_anomaly'].sum()),
|
94 |
+
"detection_threshold": float(threshold),
|
95 |
+
"max_anomaly_score": float(np.max(errors))
|
96 |
+
}},
|
97 |
+
display_df.to_dict('records')
|
98 |
)
|
99 |
|
100 |
except Exception as e:
|
101 |
logger.error(f"Detection error: {str(e)}")
|
102 |
return (
|
103 |
None,
|
104 |
+
{"error": str(e)},
|
105 |
None
|
106 |
)
|
107 |
|
|
|
123 |
|
124 |
# Gradio Interface
|
125 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
126 |
+
gr.Markdown("""
|
127 |
+
# π Equipment Anomaly Detection
|
128 |
+
Detect unusual patterns in sensor data using MOMENT-1-large model
|
129 |
+
""")
|
130 |
|
131 |
with gr.Row():
|
132 |
with gr.Column():
|
|
|
134 |
label="Paste CSV Data",
|
135 |
value=DEFAULT_DATA,
|
136 |
lines=10,
|
137 |
+
placeholder="timestamp,value\n2025-01-01, 100\n2025-01-02, 105..."
|
|
|
138 |
)
|
139 |
sensitivity = gr.Slider(
|
140 |
1.0, 5.0, value=3.0, step=0.1,
|
141 |
label="Detection Sensitivity (z-score)"
|
142 |
)
|
143 |
+
analyze_btn = gr.Button("Analyze", variant="primary")
|
144 |
|
145 |
with gr.Column():
|
146 |
plot = gr.Plot(label="Results")
|
147 |
stats = gr.JSON(label="Detection Statistics")
|
148 |
+
results = gr.JSON(label="Top 20 Records")
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
analyze_btn.click(
|
151 |
detect_anomalies,
|
152 |
inputs=[data_input, sensitivity],
|
153 |
+
outputs=[plot, stats, results]
|
154 |
)
|
155 |
|
156 |
if __name__ == "__main__":
|