Spaces:
Running
on
Zero
Running
on
Zero
| # This code is adapted from https://github.com/THUDM/CogVideo/blob/ff423aa169978fb2f636f761e348631fa3178b03/cogvideo_pipeline.py | |
| from __future__ import annotations | |
| import argparse | |
| import logging | |
| import os | |
| import pathlib | |
| import shutil | |
| import subprocess | |
| import sys | |
| import tempfile | |
| import time | |
| import zipfile | |
| from typing import Any | |
| if os.getenv('SYSTEM') == 'spaces': | |
| subprocess.run('pip install icetk==0.0.4'.split()) | |
| subprocess.run('pip install SwissArmyTransformer==0.2.9'.split()) | |
| subprocess.run( | |
| 'pip install git+https://github.com/Sleepychord/Image-Local-Attention@43fee31' | |
| .split()) | |
| #subprocess.run('git clone https://github.com/NVIDIA/apex'.split()) | |
| #subprocess.run('git checkout 1403c21'.split(), cwd='apex') | |
| #with open('patch.apex') as f: | |
| # subprocess.run('patch -p1'.split(), cwd='apex', stdin=f) | |
| #subprocess.run( | |
| # 'pip install -v --disable-pip-version-check --no-cache-dir --global-option --cpp_ext --global-option --cuda_ext ./' | |
| # .split(), | |
| # cwd='apex') | |
| #subprocess.run('rm -rf apex'.split()) | |
| with open('patch') as f: | |
| subprocess.run('patch -p1'.split(), cwd='CogVideo', stdin=f) | |
| from huggingface_hub import hf_hub_download | |
| def download_and_extract_icetk_models() -> None: | |
| icetk_model_dir = pathlib.Path('/home/user/.icetk_models') | |
| icetk_model_dir.mkdir() | |
| path = hf_hub_download('THUDM/icetk', | |
| 'models.zip', | |
| use_auth_token=os.getenv('HF_TOKEN')) | |
| with zipfile.ZipFile(path) as f: | |
| f.extractall(path=icetk_model_dir.as_posix()) | |
| def download_and_extract_cogvideo_models(name: str) -> None: | |
| path = hf_hub_download('THUDM/CogVideo', | |
| name, | |
| use_auth_token=os.getenv('HF_TOKEN')) | |
| with zipfile.ZipFile(path) as f: | |
| f.extractall('pretrained') | |
| os.remove(path) | |
| def download_and_extract_cogview2_models(name: str) -> None: | |
| path = hf_hub_download('THUDM/CogView2', name) | |
| with zipfile.ZipFile(path) as f: | |
| f.extractall() | |
| shutil.move('/home/user/app/sharefs/cogview-new/cogview2-dsr', | |
| 'pretrained') | |
| shutil.rmtree('/home/user/app/sharefs/') | |
| os.remove(path) | |
| download_and_extract_icetk_models() | |
| download_and_extract_cogvideo_models('cogvideo-stage1.zip') | |
| #download_and_extract_cogvideo_models('cogvideo-stage2.zip') | |
| #download_and_extract_cogview2_models('cogview2-dsr.zip') | |
| os.environ['SAT_HOME'] = '/home/user/app/pretrained' | |
| import gradio as gr | |
| import imageio.v2 as iio | |
| import numpy as np | |
| import torch | |
| from icetk import IceTokenizer | |
| from SwissArmyTransformer import get_args | |
| from SwissArmyTransformer.arguments import set_random_seed | |
| from SwissArmyTransformer.generation.sampling_strategies import BaseStrategy | |
| from SwissArmyTransformer.resources import auto_create | |
| app_dir = pathlib.Path(__file__).parent | |
| submodule_dir = app_dir / 'CogVideo' | |
| sys.path.insert(0, submodule_dir.as_posix()) | |
| from coglm_strategy import CoglmStrategy | |
| from models.cogvideo_cache_model import CogVideoCacheModel | |
| from sr_pipeline import DirectSuperResolution | |
| formatter = logging.Formatter( | |
| '[%(asctime)s] %(name)s %(levelname)s: %(message)s', | |
| datefmt='%Y-%m-%d %H:%M:%S') | |
| stream_handler = logging.StreamHandler(stream=sys.stdout) | |
| stream_handler.setLevel(logging.INFO) | |
| stream_handler.setFormatter(formatter) | |
| logger = logging.getLogger(__name__) | |
| logger.setLevel(logging.INFO) | |
| logger.propagate = False | |
| logger.addHandler(stream_handler) | |
| ICETK_MODEL_DIR = app_dir / 'icetk_models' | |
| def get_masks_and_position_ids_stage1(data, textlen, framelen): | |
| # Extract batch size and sequence length. | |
| tokens = data | |
| seq_length = len(data[0]) | |
| # Attention mask (lower triangular). | |
| attention_mask = torch.ones((1, textlen + framelen, textlen + framelen), | |
| device=data.device) | |
| attention_mask[:, :textlen, textlen:] = 0 | |
| attention_mask[:, textlen:, textlen:].tril_() | |
| attention_mask.unsqueeze_(1) | |
| # Unaligned version | |
| position_ids = torch.zeros(seq_length, | |
| dtype=torch.long, | |
| device=data.device) | |
| torch.arange(textlen, | |
| out=position_ids[:textlen], | |
| dtype=torch.long, | |
| device=data.device) | |
| torch.arange(512, | |
| 512 + seq_length - textlen, | |
| out=position_ids[textlen:], | |
| dtype=torch.long, | |
| device=data.device) | |
| position_ids = position_ids.unsqueeze(0) | |
| return tokens, attention_mask, position_ids | |
| def get_masks_and_position_ids_stage2(data, textlen, framelen): | |
| # Extract batch size and sequence length. | |
| tokens = data | |
| seq_length = len(data[0]) | |
| # Attention mask (lower triangular). | |
| attention_mask = torch.ones((1, textlen + framelen, textlen + framelen), | |
| device=data.device) | |
| attention_mask[:, :textlen, textlen:] = 0 | |
| attention_mask[:, textlen:, textlen:].tril_() | |
| attention_mask.unsqueeze_(1) | |
| # Unaligned version | |
| position_ids = torch.zeros(seq_length, | |
| dtype=torch.long, | |
| device=data.device) | |
| torch.arange(textlen, | |
| out=position_ids[:textlen], | |
| dtype=torch.long, | |
| device=data.device) | |
| frame_num = (seq_length - textlen) // framelen | |
| assert frame_num == 5 | |
| torch.arange(512, | |
| 512 + framelen, | |
| out=position_ids[textlen:textlen + framelen], | |
| dtype=torch.long, | |
| device=data.device) | |
| torch.arange(512 + framelen * 2, | |
| 512 + framelen * 3, | |
| out=position_ids[textlen + framelen:textlen + framelen * 2], | |
| dtype=torch.long, | |
| device=data.device) | |
| torch.arange(512 + framelen * (frame_num - 1), | |
| 512 + framelen * frame_num, | |
| out=position_ids[textlen + framelen * 2:textlen + | |
| framelen * 3], | |
| dtype=torch.long, | |
| device=data.device) | |
| torch.arange(512 + framelen * 1, | |
| 512 + framelen * 2, | |
| out=position_ids[textlen + framelen * 3:textlen + | |
| framelen * 4], | |
| dtype=torch.long, | |
| device=data.device) | |
| torch.arange(512 + framelen * 3, | |
| 512 + framelen * 4, | |
| out=position_ids[textlen + framelen * 4:textlen + | |
| framelen * 5], | |
| dtype=torch.long, | |
| device=data.device) | |
| position_ids = position_ids.unsqueeze(0) | |
| return tokens, attention_mask, position_ids | |
| def my_update_mems(hiddens, mems_buffers, mems_indexs, | |
| limited_spatial_channel_mem, text_len, frame_len): | |
| if hiddens is None: | |
| return None, mems_indexs | |
| mem_num = len(hiddens) | |
| ret_mem = [] | |
| with torch.no_grad(): | |
| for id in range(mem_num): | |
| if hiddens[id][0] is None: | |
| ret_mem.append(None) | |
| else: | |
| if id == 0 and limited_spatial_channel_mem and mems_indexs[ | |
| id] + hiddens[0][0].shape[1] >= text_len + frame_len: | |
| if mems_indexs[id] == 0: | |
| for layer, hidden in enumerate(hiddens[id]): | |
| mems_buffers[id][ | |
| layer, :, :text_len] = hidden.expand( | |
| mems_buffers[id].shape[1], -1, | |
| -1)[:, :text_len] | |
| new_mem_len_part2 = (mems_indexs[id] + | |
| hiddens[0][0].shape[1] - | |
| text_len) % frame_len | |
| if new_mem_len_part2 > 0: | |
| for layer, hidden in enumerate(hiddens[id]): | |
| mems_buffers[id][ | |
| layer, :, text_len:text_len + | |
| new_mem_len_part2] = hidden.expand( | |
| mems_buffers[id].shape[1], -1, | |
| -1)[:, -new_mem_len_part2:] | |
| mems_indexs[id] = text_len + new_mem_len_part2 | |
| else: | |
| for layer, hidden in enumerate(hiddens[id]): | |
| mems_buffers[id][layer, :, | |
| mems_indexs[id]:mems_indexs[id] + | |
| hidden.shape[1]] = hidden.expand( | |
| mems_buffers[id].shape[1], -1, -1) | |
| mems_indexs[id] += hidden.shape[1] | |
| ret_mem.append(mems_buffers[id][:, :, :mems_indexs[id]]) | |
| return ret_mem, mems_indexs | |
| def calc_next_tokens_frame_begin_id(text_len, frame_len, total_len): | |
| # The fisrt token's position id of the frame that the next token belongs to; | |
| if total_len < text_len: | |
| return None | |
| return (total_len - text_len) // frame_len * frame_len + text_len | |
| def my_filling_sequence( | |
| model, | |
| tokenizer, | |
| args, | |
| seq, | |
| batch_size, | |
| get_masks_and_position_ids, | |
| text_len, | |
| frame_len, | |
| strategy=BaseStrategy(), | |
| strategy2=BaseStrategy(), | |
| mems=None, | |
| log_text_attention_weights=0, # default to 0: no artificial change | |
| mode_stage1=True, | |
| enforce_no_swin=False, | |
| guider_seq=None, | |
| guider_text_len=0, | |
| guidance_alpha=1, | |
| limited_spatial_channel_mem=False, # 空间通道的存储限制在本帧内 | |
| **kw_args): | |
| ''' | |
| seq: [2, 3, 5, ..., -1(to be generated), -1, ...] | |
| mems: [num_layers, batch_size, len_mems(index), mem_hidden_size] | |
| cache, should be first mems.shape[1] parts of context_tokens. | |
| mems are the first-level citizens here, but we don't assume what is memorized. | |
| input mems are used when multi-phase generation. | |
| ''' | |
| if guider_seq is not None: | |
| logger.debug('Using Guidance In Inference') | |
| if limited_spatial_channel_mem: | |
| logger.debug("Limit spatial-channel's mem to current frame") | |
| assert len(seq.shape) == 2 | |
| # building the initial tokens, attention_mask, and position_ids | |
| actual_context_length = 0 | |
| while seq[-1][ | |
| actual_context_length] >= 0: # the last seq has least given tokens | |
| actual_context_length += 1 # [0, context_length-1] are given | |
| assert actual_context_length > 0 | |
| current_frame_num = (actual_context_length - text_len) // frame_len | |
| assert current_frame_num >= 0 | |
| context_length = text_len + current_frame_num * frame_len | |
| tokens, attention_mask, position_ids = get_masks_and_position_ids( | |
| seq, text_len, frame_len) | |
| tokens = tokens[..., :context_length] | |
| input_tokens = tokens.clone() | |
| if guider_seq is not None: | |
| guider_index_delta = text_len - guider_text_len | |
| guider_tokens, guider_attention_mask, guider_position_ids = get_masks_and_position_ids( | |
| guider_seq, guider_text_len, frame_len) | |
| guider_tokens = guider_tokens[..., :context_length - | |
| guider_index_delta] | |
| guider_input_tokens = guider_tokens.clone() | |
| for fid in range(current_frame_num): | |
| input_tokens[:, text_len + 400 * fid] = tokenizer['<start_of_image>'] | |
| if guider_seq is not None: | |
| guider_input_tokens[:, guider_text_len + | |
| 400 * fid] = tokenizer['<start_of_image>'] | |
| attention_mask = attention_mask.type_as(next( | |
| model.parameters())) # if fp16 | |
| # initialize generation | |
| counter = context_length - 1 # Last fixed index is ``counter'' | |
| index = 0 # Next forward starting index, also the length of cache. | |
| mems_buffers_on_GPU = False | |
| mems_indexs = [0, 0] | |
| mems_len = [(400 + 74) if limited_spatial_channel_mem else 5 * 400 + 74, | |
| 5 * 400 + 74] | |
| mems_buffers = [ | |
| torch.zeros(args.num_layers, | |
| batch_size, | |
| mem_len, | |
| args.hidden_size * 2, | |
| dtype=next(model.parameters()).dtype) | |
| for mem_len in mems_len | |
| ] | |
| if guider_seq is not None: | |
| guider_attention_mask = guider_attention_mask.type_as( | |
| next(model.parameters())) # if fp16 | |
| guider_mems_buffers = [ | |
| torch.zeros(args.num_layers, | |
| batch_size, | |
| mem_len, | |
| args.hidden_size * 2, | |
| dtype=next(model.parameters()).dtype) | |
| for mem_len in mems_len | |
| ] | |
| guider_mems_indexs = [0, 0] | |
| guider_mems = None | |
| torch.cuda.empty_cache() | |
| # step-by-step generation | |
| while counter < len(seq[0]) - 1: | |
| # we have generated counter+1 tokens | |
| # Now, we want to generate seq[counter + 1], | |
| # token[:, index: counter+1] needs forwarding. | |
| if index == 0: | |
| group_size = 2 if (input_tokens.shape[0] == batch_size | |
| and not mode_stage1) else batch_size | |
| logits_all = None | |
| for batch_idx in range(0, input_tokens.shape[0], group_size): | |
| logits, *output_per_layers = model( | |
| input_tokens[batch_idx:batch_idx + group_size, index:], | |
| position_ids[..., index:counter + 1], | |
| attention_mask, # TODO memlen | |
| mems=mems, | |
| text_len=text_len, | |
| frame_len=frame_len, | |
| counter=counter, | |
| log_text_attention_weights=log_text_attention_weights, | |
| enforce_no_swin=enforce_no_swin, | |
| **kw_args) | |
| logits_all = torch.cat( | |
| (logits_all, | |
| logits), dim=0) if logits_all is not None else logits | |
| mem_kv01 = [[o['mem_kv'][0] for o in output_per_layers], | |
| [o['mem_kv'][1] for o in output_per_layers]] | |
| next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id( | |
| text_len, frame_len, mem_kv01[0][0].shape[1]) | |
| for id, mem_kv in enumerate(mem_kv01): | |
| for layer, mem_kv_perlayer in enumerate(mem_kv): | |
| if limited_spatial_channel_mem and id == 0: | |
| mems_buffers[id][ | |
| layer, batch_idx:batch_idx + group_size, : | |
| text_len] = mem_kv_perlayer.expand( | |
| min(group_size, | |
| input_tokens.shape[0] - batch_idx), -1, | |
| -1)[:, :text_len] | |
| mems_buffers[id][layer, batch_idx:batch_idx+group_size, text_len:text_len+mem_kv_perlayer.shape[1]-next_tokens_frame_begin_id] =\ | |
| mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, next_tokens_frame_begin_id:] | |
| else: | |
| mems_buffers[id][ | |
| layer, batch_idx:batch_idx + | |
| group_size, :mem_kv_perlayer. | |
| shape[1]] = mem_kv_perlayer.expand( | |
| min(group_size, | |
| input_tokens.shape[0] - batch_idx), -1, | |
| -1) | |
| mems_indexs[0], mems_indexs[1] = mem_kv01[0][0].shape[ | |
| 1], mem_kv01[1][0].shape[1] | |
| if limited_spatial_channel_mem: | |
| mems_indexs[0] -= (next_tokens_frame_begin_id - text_len) | |
| mems = [ | |
| mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2) | |
| ] | |
| logits = logits_all | |
| # Guider | |
| if guider_seq is not None: | |
| guider_logits_all = None | |
| for batch_idx in range(0, guider_input_tokens.shape[0], | |
| group_size): | |
| guider_logits, *guider_output_per_layers = model( | |
| guider_input_tokens[batch_idx:batch_idx + group_size, | |
| max(index - | |
| guider_index_delta, 0):], | |
| guider_position_ids[ | |
| ..., | |
| max(index - guider_index_delta, 0):counter + 1 - | |
| guider_index_delta], | |
| guider_attention_mask, | |
| mems=guider_mems, | |
| text_len=guider_text_len, | |
| frame_len=frame_len, | |
| counter=counter - guider_index_delta, | |
| log_text_attention_weights=log_text_attention_weights, | |
| enforce_no_swin=enforce_no_swin, | |
| **kw_args) | |
| guider_logits_all = torch.cat( | |
| (guider_logits_all, guider_logits), dim=0 | |
| ) if guider_logits_all is not None else guider_logits | |
| guider_mem_kv01 = [[ | |
| o['mem_kv'][0] for o in guider_output_per_layers | |
| ], [o['mem_kv'][1] for o in guider_output_per_layers]] | |
| for id, guider_mem_kv in enumerate(guider_mem_kv01): | |
| for layer, guider_mem_kv_perlayer in enumerate( | |
| guider_mem_kv): | |
| if limited_spatial_channel_mem and id == 0: | |
| guider_mems_buffers[id][ | |
| layer, batch_idx:batch_idx + group_size, : | |
| guider_text_len] = guider_mem_kv_perlayer.expand( | |
| min(group_size, | |
| input_tokens.shape[0] - batch_idx), | |
| -1, -1)[:, :guider_text_len] | |
| guider_next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id( | |
| guider_text_len, frame_len, | |
| guider_mem_kv_perlayer.shape[1]) | |
| guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, guider_text_len:guider_text_len+guider_mem_kv_perlayer.shape[1]-guider_next_tokens_frame_begin_id] =\ | |
| guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, guider_next_tokens_frame_begin_id:] | |
| else: | |
| guider_mems_buffers[id][ | |
| layer, batch_idx:batch_idx + | |
| group_size, :guider_mem_kv_perlayer. | |
| shape[1]] = guider_mem_kv_perlayer.expand( | |
| min(group_size, | |
| input_tokens.shape[0] - batch_idx), | |
| -1, -1) | |
| guider_mems_indexs[0], guider_mems_indexs[ | |
| 1] = guider_mem_kv01[0][0].shape[1], guider_mem_kv01[ | |
| 1][0].shape[1] | |
| if limited_spatial_channel_mem: | |
| guider_mems_indexs[0] -= ( | |
| guider_next_tokens_frame_begin_id - | |
| guider_text_len) | |
| guider_mems = [ | |
| guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] | |
| for id in range(2) | |
| ] | |
| guider_logits = guider_logits_all | |
| else: | |
| if not mems_buffers_on_GPU: | |
| if not mode_stage1: | |
| torch.cuda.empty_cache() | |
| for idx, mem in enumerate(mems): | |
| mems[idx] = mem.to(next(model.parameters()).device) | |
| if guider_seq is not None: | |
| for idx, mem in enumerate(guider_mems): | |
| guider_mems[idx] = mem.to( | |
| next(model.parameters()).device) | |
| else: | |
| torch.cuda.empty_cache() | |
| for idx, mem_buffer in enumerate(mems_buffers): | |
| mems_buffers[idx] = mem_buffer.to( | |
| next(model.parameters()).device) | |
| mems = [ | |
| mems_buffers[id][:, :, :mems_indexs[id]] | |
| for id in range(2) | |
| ] | |
| if guider_seq is not None: | |
| for idx, guider_mem_buffer in enumerate( | |
| guider_mems_buffers): | |
| guider_mems_buffers[idx] = guider_mem_buffer.to( | |
| next(model.parameters()).device) | |
| guider_mems = [ | |
| guider_mems_buffers[id] | |
| [:, :, :guider_mems_indexs[id]] for id in range(2) | |
| ] | |
| mems_buffers_on_GPU = True | |
| logits, *output_per_layers = model( | |
| input_tokens[:, index:], | |
| position_ids[..., index:counter + 1], | |
| attention_mask, # TODO memlen | |
| mems=mems, | |
| text_len=text_len, | |
| frame_len=frame_len, | |
| counter=counter, | |
| log_text_attention_weights=log_text_attention_weights, | |
| enforce_no_swin=enforce_no_swin, | |
| limited_spatial_channel_mem=limited_spatial_channel_mem, | |
| **kw_args) | |
| mem_kv0, mem_kv1 = [o['mem_kv'][0] for o in output_per_layers | |
| ], [o['mem_kv'][1] for o in output_per_layers] | |
| if guider_seq is not None: | |
| guider_logits, *guider_output_per_layers = model( | |
| guider_input_tokens[:, | |
| max(index - guider_index_delta, 0):], | |
| guider_position_ids[..., | |
| max(index - | |
| guider_index_delta, 0):counter + | |
| 1 - guider_index_delta], | |
| guider_attention_mask, | |
| mems=guider_mems, | |
| text_len=guider_text_len, | |
| frame_len=frame_len, | |
| counter=counter - guider_index_delta, | |
| log_text_attention_weights=0, | |
| enforce_no_swin=enforce_no_swin, | |
| limited_spatial_channel_mem=limited_spatial_channel_mem, | |
| **kw_args) | |
| guider_mem_kv0, guider_mem_kv1 = [ | |
| o['mem_kv'][0] for o in guider_output_per_layers | |
| ], [o['mem_kv'][1] for o in guider_output_per_layers] | |
| if not mems_buffers_on_GPU: | |
| torch.cuda.empty_cache() | |
| for idx, mem_buffer in enumerate(mems_buffers): | |
| mems_buffers[idx] = mem_buffer.to( | |
| next(model.parameters()).device) | |
| if guider_seq is not None: | |
| for idx, guider_mem_buffer in enumerate( | |
| guider_mems_buffers): | |
| guider_mems_buffers[idx] = guider_mem_buffer.to( | |
| next(model.parameters()).device) | |
| mems_buffers_on_GPU = True | |
| mems, mems_indexs = my_update_mems([mem_kv0, mem_kv1], | |
| mems_buffers, mems_indexs, | |
| limited_spatial_channel_mem, | |
| text_len, frame_len) | |
| if guider_seq is not None: | |
| guider_mems, guider_mems_indexs = my_update_mems( | |
| [guider_mem_kv0, guider_mem_kv1], guider_mems_buffers, | |
| guider_mems_indexs, limited_spatial_channel_mem, | |
| guider_text_len, frame_len) | |
| counter += 1 | |
| index = counter | |
| logits = logits[:, -1].expand(batch_size, | |
| -1) # [batch size, vocab size] | |
| tokens = tokens.expand(batch_size, -1) | |
| if guider_seq is not None: | |
| guider_logits = guider_logits[:, -1].expand(batch_size, -1) | |
| guider_tokens = guider_tokens.expand(batch_size, -1) | |
| if seq[-1][counter].item() < 0: | |
| # sampling | |
| guided_logits = guider_logits + ( | |
| logits - guider_logits | |
| ) * guidance_alpha if guider_seq is not None else logits | |
| if mode_stage1 and counter < text_len + 400: | |
| tokens, mems = strategy.forward(guided_logits, tokens, mems) | |
| else: | |
| tokens, mems = strategy2.forward(guided_logits, tokens, mems) | |
| if guider_seq is not None: | |
| guider_tokens = torch.cat((guider_tokens, tokens[:, -1:]), | |
| dim=1) | |
| if seq[0][counter].item() >= 0: | |
| for si in range(seq.shape[0]): | |
| if seq[si][counter].item() >= 0: | |
| tokens[si, -1] = seq[si, counter] | |
| if guider_seq is not None: | |
| guider_tokens[si, | |
| -1] = guider_seq[si, counter - | |
| guider_index_delta] | |
| else: | |
| tokens = torch.cat( | |
| (tokens, seq[:, counter:counter + 1].clone().expand( | |
| tokens.shape[0], 1).to(device=tokens.device, | |
| dtype=tokens.dtype)), | |
| dim=1) | |
| if guider_seq is not None: | |
| guider_tokens = torch.cat( | |
| (guider_tokens, | |
| guider_seq[:, counter - guider_index_delta:counter + 1 - | |
| guider_index_delta].clone().expand( | |
| guider_tokens.shape[0], 1).to( | |
| device=guider_tokens.device, | |
| dtype=guider_tokens.dtype)), | |
| dim=1) | |
| input_tokens = tokens.clone() | |
| if guider_seq is not None: | |
| guider_input_tokens = guider_tokens.clone() | |
| if (index - text_len - 1) // 400 < (input_tokens.shape[-1] - text_len - | |
| 1) // 400: | |
| boi_idx = ((index - text_len - 1) // 400 + 1) * 400 + text_len | |
| while boi_idx < input_tokens.shape[-1]: | |
| input_tokens[:, boi_idx] = tokenizer['<start_of_image>'] | |
| if guider_seq is not None: | |
| guider_input_tokens[:, boi_idx - | |
| guider_index_delta] = tokenizer[ | |
| '<start_of_image>'] | |
| boi_idx += 400 | |
| if strategy.is_done: | |
| break | |
| return strategy.finalize(tokens, mems) | |
| class InferenceModel_Sequential(CogVideoCacheModel): | |
| def __init__(self, args, transformer=None, parallel_output=True): | |
| super().__init__(args, | |
| transformer=transformer, | |
| parallel_output=parallel_output, | |
| window_size=-1, | |
| cogvideo_stage=1) | |
| # TODO: check it | |
| def final_forward(self, logits, **kwargs): | |
| logits_parallel = logits | |
| logits_parallel = torch.nn.functional.linear( | |
| logits_parallel.float(), | |
| self.transformer.word_embeddings.weight[:20000].float()) | |
| return logits_parallel | |
| class InferenceModel_Interpolate(CogVideoCacheModel): | |
| def __init__(self, args, transformer=None, parallel_output=True): | |
| super().__init__(args, | |
| transformer=transformer, | |
| parallel_output=parallel_output, | |
| window_size=10, | |
| cogvideo_stage=2) | |
| # TODO: check it | |
| def final_forward(self, logits, **kwargs): | |
| logits_parallel = logits | |
| logits_parallel = torch.nn.functional.linear( | |
| logits_parallel.float(), | |
| self.transformer.word_embeddings.weight[:20000].float()) | |
| return logits_parallel | |
| def get_default_args() -> argparse.Namespace: | |
| known = argparse.Namespace(generate_frame_num=5, | |
| coglm_temperature2=0.89, | |
| use_guidance_stage1=True, | |
| use_guidance_stage2=False, | |
| guidance_alpha=3.0, | |
| stage_1=True, | |
| stage_2=False, | |
| both_stages=False, | |
| parallel_size=1, | |
| stage1_max_inference_batch_size=-1, | |
| multi_gpu=False, | |
| layout='64, 464, 2064', | |
| window_size=10, | |
| additional_seqlen=2000, | |
| cogvideo_stage=1) | |
| args_list = [ | |
| '--tokenizer-type', | |
| 'fake', | |
| '--mode', | |
| 'inference', | |
| '--distributed-backend', | |
| 'nccl', | |
| '--fp16', | |
| '--model-parallel-size', | |
| '1', | |
| '--temperature', | |
| '1.05', | |
| '--top_k', | |
| '12', | |
| '--sandwich-ln', | |
| '--seed', | |
| '1234', | |
| '--num-workers', | |
| '0', | |
| '--batch-size', | |
| '1', | |
| '--max-inference-batch-size', | |
| '8', | |
| ] | |
| args = get_args(args_list) | |
| args = argparse.Namespace(**vars(args), **vars(known)) | |
| args.layout = [int(x) for x in args.layout.split(',')] | |
| args.do_train = False | |
| return args | |
| class Model: | |
| def __init__(self, only_first_stage: bool = False): | |
| self.args = get_default_args() | |
| if only_first_stage: | |
| self.args.stage_1 = True | |
| self.args.both_stages = False | |
| else: | |
| self.args.stage_1 = False | |
| self.args.both_stages = True | |
| self.tokenizer = self.load_tokenizer() | |
| self.model_stage1, self.args = self.load_model_stage1() | |
| self.model_stage2, self.args = self.load_model_stage2() | |
| self.strategy_cogview2, self.strategy_cogvideo = self.load_strategies() | |
| self.dsr = self.load_dsr() | |
| self.device = torch.device(self.args.device) | |
| def load_tokenizer(self) -> IceTokenizer: | |
| logger.info('--- load_tokenizer ---') | |
| start = time.perf_counter() | |
| tokenizer = IceTokenizer(ICETK_MODEL_DIR.as_posix()) | |
| tokenizer.add_special_tokens( | |
| ['<start_of_image>', '<start_of_english>', '<start_of_chinese>']) | |
| elapsed = time.perf_counter() - start | |
| logger.info(f'--- done ({elapsed=:.3f}) ---') | |
| return tokenizer | |
| def load_model_stage1( | |
| self) -> tuple[CogVideoCacheModel, argparse.Namespace]: | |
| logger.info('--- load_model_stage1 ---') | |
| start = time.perf_counter() | |
| args = self.args | |
| model_stage1, args = InferenceModel_Sequential.from_pretrained( | |
| args, 'cogvideo-stage1') | |
| model_stage1.eval() | |
| if args.both_stages: | |
| model_stage1 = model_stage1.cpu() | |
| elapsed = time.perf_counter() - start | |
| logger.info(f'--- done ({elapsed=:.3f}) ---') | |
| return model_stage1, args | |
| def load_model_stage2( | |
| self) -> tuple[CogVideoCacheModel | None, argparse.Namespace]: | |
| logger.info('--- load_model_stage2 ---') | |
| start = time.perf_counter() | |
| args = self.args | |
| if args.both_stages: | |
| model_stage2, args = InferenceModel_Interpolate.from_pretrained( | |
| args, 'cogvideo-stage2') | |
| model_stage2.eval() | |
| if args.both_stages: | |
| model_stage2 = model_stage2.cpu() | |
| else: | |
| model_stage2 = None | |
| elapsed = time.perf_counter() - start | |
| logger.info(f'--- done ({elapsed=:.3f}) ---') | |
| return model_stage2, args | |
| def load_strategies(self) -> tuple[CoglmStrategy, CoglmStrategy]: | |
| logger.info('--- load_strategies ---') | |
| start = time.perf_counter() | |
| invalid_slices = [slice(self.tokenizer.num_image_tokens, None)] | |
| strategy_cogview2 = CoglmStrategy(invalid_slices, | |
| temperature=1.0, | |
| top_k=16) | |
| strategy_cogvideo = CoglmStrategy( | |
| invalid_slices, | |
| temperature=self.args.temperature, | |
| top_k=self.args.top_k, | |
| temperature2=self.args.coglm_temperature2) | |
| elapsed = time.perf_counter() - start | |
| logger.info(f'--- done ({elapsed=:.3f}) ---') | |
| return strategy_cogview2, strategy_cogvideo | |
| def load_dsr(self) -> DirectSuperResolution | None: | |
| logger.info('--- load_dsr ---') | |
| start = time.perf_counter() | |
| if self.args.both_stages: | |
| path = auto_create('cogview2-dsr', path=None) | |
| dsr = DirectSuperResolution(self.args, | |
| path, | |
| max_bz=12, | |
| onCUDA=False) | |
| else: | |
| dsr = None | |
| elapsed = time.perf_counter() - start | |
| logger.info(f'--- done ({elapsed=:.3f}) ---') | |
| return dsr | |
| def process_stage1(self, | |
| model, | |
| seq_text, | |
| duration, | |
| video_raw_text=None, | |
| video_guidance_text='视频', | |
| image_text_suffix='', | |
| batch_size=1, | |
| image_prompt=None): | |
| process_start_time = time.perf_counter() | |
| generate_frame_num = self.args.generate_frame_num | |
| tokenizer = self.tokenizer | |
| use_guide = self.args.use_guidance_stage1 | |
| if next(model.parameters()).device != self.device: | |
| move_start_time = time.perf_counter() | |
| logger.debug('moving stage 1 model to cuda') | |
| model = model.to(self.device) | |
| elapsed = time.perf_counter() - move_start_time | |
| logger.debug(f'moving in model1 takes time: {elapsed:.2f}') | |
| if video_raw_text is None: | |
| video_raw_text = seq_text | |
| mbz = self.args.stage1_max_inference_batch_size if self.args.stage1_max_inference_batch_size > 0 else self.args.max_inference_batch_size | |
| assert batch_size < mbz or batch_size % mbz == 0 | |
| frame_len = 400 | |
| # generate the first frame: | |
| enc_text = tokenizer.encode(seq_text + image_text_suffix) | |
| seq_1st = enc_text + [tokenizer['<start_of_image>']] + [-1] * 400 | |
| logger.info( | |
| f'[Generating First Frame with CogView2] Raw text: {tokenizer.decode(enc_text):s}' | |
| ) | |
| text_len_1st = len(seq_1st) - frame_len * 1 - 1 | |
| seq_1st = torch.tensor(seq_1st, dtype=torch.long, | |
| device=self.device).unsqueeze(0) | |
| if image_prompt is None: | |
| output_list_1st = [] | |
| for tim in range(max(batch_size // mbz, 1)): | |
| start_time = time.perf_counter() | |
| output_list_1st.append( | |
| my_filling_sequence( | |
| model, | |
| tokenizer, | |
| self.args, | |
| seq_1st.clone(), | |
| batch_size=min(batch_size, mbz), | |
| get_masks_and_position_ids= | |
| get_masks_and_position_ids_stage1, | |
| text_len=text_len_1st, | |
| frame_len=frame_len, | |
| strategy=self.strategy_cogview2, | |
| strategy2=self.strategy_cogvideo, | |
| log_text_attention_weights=1.4, | |
| enforce_no_swin=True, | |
| mode_stage1=True, | |
| )[0]) | |
| elapsed = time.perf_counter() - start_time | |
| logger.info(f'[First Frame] Elapsed: {elapsed:.2f}') | |
| output_tokens_1st = torch.cat(output_list_1st, dim=0) | |
| given_tokens = output_tokens_1st[:, text_len_1st + 1:text_len_1st + | |
| 401].unsqueeze( | |
| 1 | |
| ) # given_tokens.shape: [bs, frame_num, 400] | |
| else: | |
| given_tokens = tokenizer.encode(image_path=image_prompt, image_size=160).repeat(batch_size, 1).unsqueeze(1) | |
| # generate subsequent frames: | |
| total_frames = generate_frame_num | |
| enc_duration = tokenizer.encode(f'{float(duration)}秒') | |
| if use_guide: | |
| video_raw_text = video_raw_text + ' 视频' | |
| enc_text_video = tokenizer.encode(video_raw_text) | |
| seq = enc_duration + [tokenizer['<n>']] + enc_text_video + [ | |
| tokenizer['<start_of_image>'] | |
| ] + [-1] * 400 * generate_frame_num | |
| guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode( | |
| video_guidance_text) + [tokenizer['<start_of_image>'] | |
| ] + [-1] * 400 * generate_frame_num | |
| logger.info( | |
| f'[Stage1: Generating Subsequent Frames, Frame Rate {4/duration:.1f}] raw text: {tokenizer.decode(enc_text_video):s}' | |
| ) | |
| text_len = len(seq) - frame_len * generate_frame_num - 1 | |
| guider_text_len = len(guider_seq) - frame_len * generate_frame_num - 1 | |
| seq = torch.tensor(seq, dtype=torch.long, | |
| device=self.device).unsqueeze(0).repeat( | |
| batch_size, 1) | |
| guider_seq = torch.tensor(guider_seq, | |
| dtype=torch.long, | |
| device=self.device).unsqueeze(0).repeat( | |
| batch_size, 1) | |
| for given_frame_id in range(given_tokens.shape[1]): | |
| seq[:, text_len + 1 + given_frame_id * 400:text_len + 1 + | |
| (given_frame_id + 1) * 400] = given_tokens[:, given_frame_id] | |
| guider_seq[:, guider_text_len + 1 + | |
| given_frame_id * 400:guider_text_len + 1 + | |
| (given_frame_id + 1) * | |
| 400] = given_tokens[:, given_frame_id] | |
| output_list = [] | |
| if use_guide: | |
| video_log_text_attention_weights = 0 | |
| else: | |
| guider_seq = None | |
| video_log_text_attention_weights = 1.4 | |
| for tim in range(max(batch_size // mbz, 1)): | |
| input_seq = seq[:min(batch_size, mbz)].clone( | |
| ) if tim == 0 else seq[mbz * tim:mbz * (tim + 1)].clone() | |
| guider_seq2 = (guider_seq[:min(batch_size, mbz)].clone() | |
| if tim == 0 else guider_seq[mbz * tim:mbz * | |
| (tim + 1)].clone() | |
| ) if guider_seq is not None else None | |
| output_list.append( | |
| my_filling_sequence( | |
| model, | |
| tokenizer, | |
| self.args, | |
| input_seq, | |
| batch_size=min(batch_size, mbz), | |
| get_masks_and_position_ids= | |
| get_masks_and_position_ids_stage1, | |
| text_len=text_len, | |
| frame_len=frame_len, | |
| strategy=self.strategy_cogview2, | |
| strategy2=self.strategy_cogvideo, | |
| log_text_attention_weights=video_log_text_attention_weights, | |
| guider_seq=guider_seq2, | |
| guider_text_len=guider_text_len, | |
| guidance_alpha=self.args.guidance_alpha, | |
| limited_spatial_channel_mem=True, | |
| mode_stage1=True, | |
| )[0]) | |
| output_tokens = torch.cat(output_list, dim=0)[:, 1 + text_len:] | |
| if self.args.both_stages: | |
| move_start_time = time.perf_counter() | |
| logger.debug('moving stage 1 model to cpu') | |
| model = model.cpu() | |
| torch.cuda.empty_cache() | |
| elapsed = time.perf_counter() - move_start_time | |
| logger.debug(f'moving in model1 takes time: {elapsed:.2f}') | |
| # decoding | |
| res = [] | |
| for seq in output_tokens: | |
| decoded_imgs = [ | |
| self.postprocess( | |
| torch.nn.functional.interpolate(tokenizer.decode( | |
| image_ids=seq.tolist()[i * 400:(i + 1) * 400]), | |
| size=(480, 480))[0]) | |
| for i in range(total_frames) | |
| ] | |
| res.append(decoded_imgs) # only the last image (target) | |
| assert len(res) == batch_size | |
| tokens = output_tokens[:, :+total_frames * 400].reshape( | |
| -1, total_frames, 400).cpu() | |
| elapsed = time.perf_counter() - process_start_time | |
| logger.info(f'--- done ({elapsed=:.3f}) ---') | |
| return tokens, res[0] | |
| def process_stage2(self, | |
| model, | |
| seq_text, | |
| duration, | |
| parent_given_tokens, | |
| video_raw_text=None, | |
| video_guidance_text='视频', | |
| gpu_rank=0, | |
| gpu_parallel_size=1): | |
| process_start_time = time.perf_counter() | |
| generate_frame_num = self.args.generate_frame_num | |
| tokenizer = self.tokenizer | |
| use_guidance = self.args.use_guidance_stage2 | |
| stage2_start_time = time.perf_counter() | |
| if next(model.parameters()).device != self.device: | |
| move_start_time = time.perf_counter() | |
| logger.debug('moving stage-2 model to cuda') | |
| model = model.to(self.device) | |
| elapsed = time.perf_counter() - move_start_time | |
| logger.debug(f'moving in stage-2 model takes time: {elapsed:.2f}') | |
| try: | |
| sample_num_allgpu = parent_given_tokens.shape[0] | |
| sample_num = sample_num_allgpu // gpu_parallel_size | |
| assert sample_num * gpu_parallel_size == sample_num_allgpu | |
| parent_given_tokens = parent_given_tokens[gpu_rank * | |
| sample_num:(gpu_rank + | |
| 1) * | |
| sample_num] | |
| except: | |
| logger.critical('No frame_tokens found in interpolation, skip') | |
| return False, [] | |
| # CogVideo Stage2 Generation | |
| while duration >= 0.5: # TODO: You can change the boundary to change the frame rate | |
| parent_given_tokens_num = parent_given_tokens.shape[1] | |
| generate_batchsize_persample = (parent_given_tokens_num - 1) // 2 | |
| generate_batchsize_total = generate_batchsize_persample * sample_num | |
| total_frames = generate_frame_num | |
| frame_len = 400 | |
| enc_text = tokenizer.encode(seq_text) | |
| enc_duration = tokenizer.encode(str(float(duration)) + '秒') | |
| seq = enc_duration + [tokenizer['<n>']] + enc_text + [ | |
| tokenizer['<start_of_image>'] | |
| ] + [-1] * 400 * generate_frame_num | |
| text_len = len(seq) - frame_len * generate_frame_num - 1 | |
| logger.info( | |
| f'[Stage2: Generating Frames, Frame Rate {int(4/duration):d}] raw text: {tokenizer.decode(enc_text):s}' | |
| ) | |
| # generation | |
| seq = torch.tensor(seq, dtype=torch.long, | |
| device=self.device).unsqueeze(0).repeat( | |
| generate_batchsize_total, 1) | |
| for sample_i in range(sample_num): | |
| for i in range(generate_batchsize_persample): | |
| seq[sample_i * generate_batchsize_persample + | |
| i][text_len + 1:text_len + 1 + | |
| 400] = parent_given_tokens[sample_i][2 * i] | |
| seq[sample_i * generate_batchsize_persample + | |
| i][text_len + 1 + 400:text_len + 1 + | |
| 800] = parent_given_tokens[sample_i][2 * i + 1] | |
| seq[sample_i * generate_batchsize_persample + | |
| i][text_len + 1 + 800:text_len + 1 + | |
| 1200] = parent_given_tokens[sample_i][2 * i + 2] | |
| if use_guidance: | |
| guider_seq = enc_duration + [ | |
| tokenizer['<n>'] | |
| ] + tokenizer.encode(video_guidance_text) + [ | |
| tokenizer['<start_of_image>'] | |
| ] + [-1] * 400 * generate_frame_num | |
| guider_text_len = len( | |
| guider_seq) - frame_len * generate_frame_num - 1 | |
| guider_seq = torch.tensor( | |
| guider_seq, dtype=torch.long, | |
| device=self.device).unsqueeze(0).repeat( | |
| generate_batchsize_total, 1) | |
| for sample_i in range(sample_num): | |
| for i in range(generate_batchsize_persample): | |
| guider_seq[sample_i * generate_batchsize_persample + | |
| i][text_len + 1:text_len + 1 + | |
| 400] = parent_given_tokens[sample_i][2 * | |
| i] | |
| guider_seq[sample_i * generate_batchsize_persample + | |
| i][text_len + 1 + 400:text_len + 1 + | |
| 800] = parent_given_tokens[sample_i][2 * | |
| i + | |
| 1] | |
| guider_seq[sample_i * generate_batchsize_persample + | |
| i][text_len + 1 + 800:text_len + 1 + | |
| 1200] = parent_given_tokens[sample_i][2 * | |
| i + | |
| 2] | |
| video_log_text_attention_weights = 0 | |
| else: | |
| guider_seq = None | |
| guider_text_len = 0 | |
| video_log_text_attention_weights = 1.4 | |
| mbz = self.args.max_inference_batch_size | |
| assert generate_batchsize_total < mbz or generate_batchsize_total % mbz == 0 | |
| output_list = [] | |
| start_time = time.perf_counter() | |
| for tim in range(max(generate_batchsize_total // mbz, 1)): | |
| input_seq = seq[:min(generate_batchsize_total, mbz)].clone( | |
| ) if tim == 0 else seq[mbz * tim:mbz * (tim + 1)].clone() | |
| guider_seq2 = ( | |
| guider_seq[:min(generate_batchsize_total, mbz)].clone() | |
| if tim == 0 else guider_seq[mbz * tim:mbz * | |
| (tim + 1)].clone() | |
| ) if guider_seq is not None else None | |
| output_list.append( | |
| my_filling_sequence( | |
| model, | |
| tokenizer, | |
| self.args, | |
| input_seq, | |
| batch_size=min(generate_batchsize_total, mbz), | |
| get_masks_and_position_ids= | |
| get_masks_and_position_ids_stage2, | |
| text_len=text_len, | |
| frame_len=frame_len, | |
| strategy=self.strategy_cogview2, | |
| strategy2=self.strategy_cogvideo, | |
| log_text_attention_weights= | |
| video_log_text_attention_weights, | |
| mode_stage1=False, | |
| guider_seq=guider_seq2, | |
| guider_text_len=guider_text_len, | |
| guidance_alpha=self.args.guidance_alpha, | |
| limited_spatial_channel_mem=True, | |
| )[0]) | |
| elapsed = time.perf_counter() - start_time | |
| logger.info(f'Duration {duration:.2f}, Elapsed: {elapsed:.2f}\n') | |
| output_tokens = torch.cat(output_list, dim=0) | |
| output_tokens = output_tokens[:, text_len + 1:text_len + 1 + | |
| (total_frames) * 400].reshape( | |
| sample_num, -1, | |
| 400 * total_frames) | |
| output_tokens_merge = torch.cat( | |
| (output_tokens[:, :, :1 * 400], output_tokens[:, :, | |
| 400 * 3:4 * 400], | |
| output_tokens[:, :, 400 * 1:2 * 400], | |
| output_tokens[:, :, 400 * 4:(total_frames) * 400]), | |
| dim=2).reshape(sample_num, -1, 400) | |
| output_tokens_merge = torch.cat( | |
| (output_tokens_merge, output_tokens[:, -1:, 400 * 2:3 * 400]), | |
| dim=1) | |
| duration /= 2 | |
| parent_given_tokens = output_tokens_merge | |
| if self.args.both_stages: | |
| move_start_time = time.perf_counter() | |
| logger.debug('moving stage 2 model to cpu') | |
| model = model.cpu() | |
| torch.cuda.empty_cache() | |
| elapsed = time.perf_counter() - move_start_time | |
| logger.debug(f'moving out model2 takes time: {elapsed:.2f}') | |
| elapsed = time.perf_counter() - stage2_start_time | |
| logger.info(f'CogVideo Stage2 completed. Elapsed: {elapsed:.2f}\n') | |
| # direct super-resolution by CogView2 | |
| logger.info('[Direct super-resolution]') | |
| dsr_start_time = time.perf_counter() | |
| enc_text = tokenizer.encode(seq_text) | |
| frame_num_per_sample = parent_given_tokens.shape[1] | |
| parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400) | |
| text_seq = torch.tensor(enc_text, dtype=torch.long, | |
| device=self.device).unsqueeze(0).repeat( | |
| parent_given_tokens_2d.shape[0], 1) | |
| sred_tokens = self.dsr(text_seq, parent_given_tokens_2d) | |
| decoded_sr_videos = [] | |
| for sample_i in range(sample_num): | |
| decoded_sr_imgs = [] | |
| for frame_i in range(frame_num_per_sample): | |
| decoded_sr_img = tokenizer.decode( | |
| image_ids=sred_tokens[frame_i + sample_i * | |
| frame_num_per_sample][-3600:]) | |
| decoded_sr_imgs.append( | |
| self.postprocess( | |
| torch.nn.functional.interpolate(decoded_sr_img, | |
| size=(480, 480))[0])) | |
| decoded_sr_videos.append(decoded_sr_imgs) | |
| elapsed = time.perf_counter() - dsr_start_time | |
| logger.info( | |
| f'Direct super-resolution completed. Elapsed: {elapsed:.2f}') | |
| elapsed = time.perf_counter() - process_start_time | |
| logger.info(f'--- done ({elapsed=:.3f}) ---') | |
| return True, decoded_sr_videos[0] | |
| def postprocess(tensor: torch.Tensor) -> np.ndarray: | |
| return tensor.cpu().mul(255).add_(0.5).clamp_(0, 255).permute( | |
| 1, 2, 0).to(torch.uint8).numpy() | |
| def run(self, text: str, seed: int, | |
| only_first_stage: bool,image_prompt: None) -> list[np.ndarray]: | |
| logger.info('==================== run ====================') | |
| start = time.perf_counter() | |
| set_random_seed(seed) | |
| self.args.seed = seed | |
| if only_first_stage: | |
| self.args.stage_1 = True | |
| self.args.both_stages = False | |
| else: | |
| self.args.stage_1 = False | |
| self.args.both_stages = True | |
| parent_given_tokens, res = self.process_stage1( | |
| self.model_stage1, | |
| text, | |
| duration=4.0, | |
| video_raw_text=text, | |
| video_guidance_text='视频', | |
| image_text_suffix=' 高清摄影', | |
| batch_size=self.args.batch_size, | |
| image_prompt=image_prompt) | |
| if not only_first_stage: | |
| _, res = self.process_stage2( | |
| self.model_stage2, | |
| text, | |
| duration=2.0, | |
| parent_given_tokens=parent_given_tokens, | |
| video_raw_text=text + ' 视频', | |
| video_guidance_text='视频', | |
| gpu_rank=0, | |
| gpu_parallel_size=1) # TODO: 修改 | |
| elapsed = time.perf_counter() - start | |
| logger.info(f'Elapsed: {elapsed:.3f}') | |
| logger.info('==================== done ====================') | |
| return res | |
| class AppModel(Model): | |
| def __init__(self, only_first_stage: bool): | |
| super().__init__(only_first_stage) | |
| self.translator = gr.Interface.load( | |
| 'spaces/chinhon/translation_eng2ch') | |
| def to_video(self, frames: list[np.ndarray]) -> str: | |
| out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) | |
| if self.args.stage_1: | |
| fps = 4 | |
| else: | |
| fps = 8 | |
| writer = iio.get_writer(out_file.name, fps=fps) | |
| for frame in frames: | |
| writer.append_data(frame) | |
| writer.close() | |
| return out_file.name | |
| def run_with_translation( | |
| self, text: str, translate: bool, seed: int, | |
| only_first_stage: bool,image_prompt: None) -> tuple[str | None, str | None]: | |
| logger.info(f'{text=}, {translate=}, {seed=}, {only_first_stage=},{image_prompt=}') | |
| if translate: | |
| text = translated_text = self.translator(text) | |
| else: | |
| translated_text = None | |
| frames = self.run(text, seed, only_first_stage,image_prompt) | |
| video_path = self.to_video(frames) | |
| return translated_text, video_path | |