Add application file
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- elia/.gitattributes +34 -0
- elia/LICENSE +674 -0
- elia/README.md +222 -0
- elia/__pycache__/args.cpython-37.pyc +0 -0
- elia/__pycache__/args.cpython-38.pyc +0 -0
- elia/__pycache__/transforms.cpython-37.pyc +0 -0
- elia/__pycache__/transforms.cpython-38.pyc +0 -0
- elia/__pycache__/utils.cpython-37.pyc +0 -0
- elia/__pycache__/utils.cpython-38.pyc +0 -0
- elia/app.py +310 -0
- elia/args.py +74 -0
- elia/bert/__pycache__/activations.cpython-37.pyc +0 -0
- elia/bert/__pycache__/activations.cpython-38.pyc +0 -0
- elia/bert/__pycache__/configuration_bert.cpython-37.pyc +0 -0
- elia/bert/__pycache__/configuration_bert.cpython-38.pyc +0 -0
- elia/bert/__pycache__/configuration_utils.cpython-37.pyc +0 -0
- elia/bert/__pycache__/configuration_utils.cpython-38.pyc +0 -0
- elia/bert/__pycache__/file_utils.cpython-37.pyc +0 -0
- elia/bert/__pycache__/file_utils.cpython-38.pyc +0 -0
- elia/bert/__pycache__/generation_utils.cpython-37.pyc +0 -0
- elia/bert/__pycache__/generation_utils.cpython-38.pyc +0 -0
- elia/bert/__pycache__/modeling_bert.cpython-37.pyc +0 -0
- elia/bert/__pycache__/modeling_bert.cpython-38.pyc +0 -0
- elia/bert/__pycache__/modeling_utils.cpython-37.pyc +0 -0
- elia/bert/__pycache__/modeling_utils.cpython-38.pyc +0 -0
- elia/bert/__pycache__/multimodal_bert.cpython-37.pyc +0 -0
- elia/bert/__pycache__/multimodal_bert.cpython-38.pyc +0 -0
- elia/bert/__pycache__/tokenization_bert.cpython-37.pyc +0 -0
- elia/bert/__pycache__/tokenization_bert.cpython-38.pyc +0 -0
- elia/bert/__pycache__/tokenization_utils.cpython-37.pyc +0 -0
- elia/bert/__pycache__/tokenization_utils.cpython-38.pyc +0 -0
- elia/bert/__pycache__/tokenization_utils_base.cpython-37.pyc +0 -0
- elia/bert/__pycache__/tokenization_utils_base.cpython-38.pyc +0 -0
- elia/bert/activations.py +56 -0
- elia/bert/configuration_bert.py +143 -0
- elia/bert/configuration_utils.py +408 -0
- elia/bert/file_utils.py +808 -0
- elia/bert/generation_utils.py +993 -0
- elia/bert/modeling_bert.py +1569 -0
- elia/bert/modeling_utils.py +1268 -0
- elia/bert/multimodal_bert.py +277 -0
- elia/bert/tokenization_bert.py +545 -0
- elia/bert/tokenization_utils.py +723 -0
- elia/bert/tokenization_utils_base.py +0 -0
- elia/demo_inference.py +295 -0
- elia/requirements.txt +14 -0
- elia/test_elia.py +312 -0
- elia/test_lavt.py +139 -0
- elia/train_elia.py +812 -0
- elia/train_lavt.py +444 -0
elia/.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
elia/LICENSE
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 29 June 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works.
|
12 |
+
|
13 |
+
The licenses for most software and other practical works are designed
|
14 |
+
to take away your freedom to share and change the works. By contrast,
|
15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
16 |
+
share and change all versions of a program--to make sure it remains free
|
17 |
+
software for all its users. We, the Free Software Foundation, use the
|
18 |
+
GNU General Public License for most of our software; it applies also to
|
19 |
+
any other work released this way by its authors. You can apply it to
|
20 |
+
your programs, too.
|
21 |
+
|
22 |
+
When we speak of free software, we are referring to freedom, not
|
23 |
+
price. Our General Public Licenses are designed to make sure that you
|
24 |
+
have the freedom to distribute copies of free software (and charge for
|
25 |
+
them if you wish), that you receive source code or can get it if you
|
26 |
+
want it, that you can change the software or use pieces of it in new
|
27 |
+
free programs, and that you know you can do these things.
|
28 |
+
|
29 |
+
To protect your rights, we need to prevent others from denying you
|
30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
31 |
+
certain responsibilities if you distribute copies of the software, or if
|
32 |
+
you modify it: responsibilities to respect the freedom of others.
|
33 |
+
|
34 |
+
For example, if you distribute copies of such a program, whether
|
35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
36 |
+
freedoms that you received. You must make sure that they, too, receive
|
37 |
+
or can get the source code. And you must show them these terms so they
|
38 |
+
know their rights.
|
39 |
+
|
40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
43 |
+
|
44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
45 |
+
that there is no warranty for this free software. For both users' and
|
46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
47 |
+
changed, so that their problems will not be attributed erroneously to
|
48 |
+
authors of previous versions.
|
49 |
+
|
50 |
+
Some devices are designed to deny users access to install or run
|
51 |
+
modified versions of the software inside them, although the manufacturer
|
52 |
+
can do so. This is fundamentally incompatible with the aim of
|
53 |
+
protecting users' freedom to change the software. The systematic
|
54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
56 |
+
have designed this version of the GPL to prohibit the practice for those
|
57 |
+
products. If such problems arise substantially in other domains, we
|
58 |
+
stand ready to extend this provision to those domains in future versions
|
59 |
+
of the GPL, as needed to protect the freedom of users.
|
60 |
+
|
61 |
+
Finally, every program is threatened constantly by software patents.
|
62 |
+
States should not allow patents to restrict development and use of
|
63 |
+
software on general-purpose computers, but in those that do, we wish to
|
64 |
+
avoid the special danger that patents applied to a free program could
|
65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
66 |
+
patents cannot be used to render the program non-free.
|
67 |
+
|
68 |
+
The precise terms and conditions for copying, distribution and
|
69 |
+
modification follow.
|
70 |
+
|
71 |
+
TERMS AND CONDITIONS
|
72 |
+
|
73 |
+
0. Definitions.
|
74 |
+
|
75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
76 |
+
|
77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
78 |
+
works, such as semiconductor masks.
|
79 |
+
|
80 |
+
"The Program" refers to any copyrightable work licensed under this
|
81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
82 |
+
"recipients" may be individuals or organizations.
|
83 |
+
|
84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
85 |
+
in a fashion requiring copyright permission, other than the making of an
|
86 |
+
exact copy. The resulting work is called a "modified version" of the
|
87 |
+
earlier work or a work "based on" the earlier work.
|
88 |
+
|
89 |
+
A "covered work" means either the unmodified Program or a work based
|
90 |
+
on the Program.
|
91 |
+
|
92 |
+
To "propagate" a work means to do anything with it that, without
|
93 |
+
permission, would make you directly or secondarily liable for
|
94 |
+
infringement under applicable copyright law, except executing it on a
|
95 |
+
computer or modifying a private copy. Propagation includes copying,
|
96 |
+
distribution (with or without modification), making available to the
|
97 |
+
public, and in some countries other activities as well.
|
98 |
+
|
99 |
+
To "convey" a work means any kind of propagation that enables other
|
100 |
+
parties to make or receive copies. Mere interaction with a user through
|
101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
102 |
+
|
103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
104 |
+
to the extent that it includes a convenient and prominently visible
|
105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
106 |
+
tells the user that there is no warranty for the work (except to the
|
107 |
+
extent that warranties are provided), that licensees may convey the
|
108 |
+
work under this License, and how to view a copy of this License. If
|
109 |
+
the interface presents a list of user commands or options, such as a
|
110 |
+
menu, a prominent item in the list meets this criterion.
|
111 |
+
|
112 |
+
1. Source Code.
|
113 |
+
|
114 |
+
The "source code" for a work means the preferred form of the work
|
115 |
+
for making modifications to it. "Object code" means any non-source
|
116 |
+
form of a work.
|
117 |
+
|
118 |
+
A "Standard Interface" means an interface that either is an official
|
119 |
+
standard defined by a recognized standards body, or, in the case of
|
120 |
+
interfaces specified for a particular programming language, one that
|
121 |
+
is widely used among developers working in that language.
|
122 |
+
|
123 |
+
The "System Libraries" of an executable work include anything, other
|
124 |
+
than the work as a whole, that (a) is included in the normal form of
|
125 |
+
packaging a Major Component, but which is not part of that Major
|
126 |
+
Component, and (b) serves only to enable use of the work with that
|
127 |
+
Major Component, or to implement a Standard Interface for which an
|
128 |
+
implementation is available to the public in source code form. A
|
129 |
+
"Major Component", in this context, means a major essential component
|
130 |
+
(kernel, window system, and so on) of the specific operating system
|
131 |
+
(if any) on which the executable work runs, or a compiler used to
|
132 |
+
produce the work, or an object code interpreter used to run it.
|
133 |
+
|
134 |
+
The "Corresponding Source" for a work in object code form means all
|
135 |
+
the source code needed to generate, install, and (for an executable
|
136 |
+
work) run the object code and to modify the work, including scripts to
|
137 |
+
control those activities. However, it does not include the work's
|
138 |
+
System Libraries, or general-purpose tools or generally available free
|
139 |
+
programs which are used unmodified in performing those activities but
|
140 |
+
which are not part of the work. For example, Corresponding Source
|
141 |
+
includes interface definition files associated with source files for
|
142 |
+
the work, and the source code for shared libraries and dynamically
|
143 |
+
linked subprograms that the work is specifically designed to require,
|
144 |
+
such as by intimate data communication or control flow between those
|
145 |
+
subprograms and other parts of the work.
|
146 |
+
|
147 |
+
The Corresponding Source need not include anything that users
|
148 |
+
can regenerate automatically from other parts of the Corresponding
|
149 |
+
Source.
|
150 |
+
|
151 |
+
The Corresponding Source for a work in source code form is that
|
152 |
+
same work.
|
153 |
+
|
154 |
+
2. Basic Permissions.
|
155 |
+
|
156 |
+
All rights granted under this License are granted for the term of
|
157 |
+
copyright on the Program, and are irrevocable provided the stated
|
158 |
+
conditions are met. This License explicitly affirms your unlimited
|
159 |
+
permission to run the unmodified Program. The output from running a
|
160 |
+
covered work is covered by this License only if the output, given its
|
161 |
+
content, constitutes a covered work. This License acknowledges your
|
162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
163 |
+
|
164 |
+
You may make, run and propagate covered works that you do not
|
165 |
+
convey, without conditions so long as your license otherwise remains
|
166 |
+
in force. You may convey covered works to others for the sole purpose
|
167 |
+
of having them make modifications exclusively for you, or provide you
|
168 |
+
with facilities for running those works, provided that you comply with
|
169 |
+
the terms of this License in conveying all material for which you do
|
170 |
+
not control copyright. Those thus making or running the covered works
|
171 |
+
for you must do so exclusively on your behalf, under your direction
|
172 |
+
and control, on terms that prohibit them from making any copies of
|
173 |
+
your copyrighted material outside their relationship with you.
|
174 |
+
|
175 |
+
Conveying under any other circumstances is permitted solely under
|
176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
177 |
+
makes it unnecessary.
|
178 |
+
|
179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
180 |
+
|
181 |
+
No covered work shall be deemed part of an effective technological
|
182 |
+
measure under any applicable law fulfilling obligations under article
|
183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
184 |
+
similar laws prohibiting or restricting circumvention of such
|
185 |
+
measures.
|
186 |
+
|
187 |
+
When you convey a covered work, you waive any legal power to forbid
|
188 |
+
circumvention of technological measures to the extent such circumvention
|
189 |
+
is effected by exercising rights under this License with respect to
|
190 |
+
the covered work, and you disclaim any intention to limit operation or
|
191 |
+
modification of the work as a means of enforcing, against the work's
|
192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
193 |
+
technological measures.
|
194 |
+
|
195 |
+
4. Conveying Verbatim Copies.
|
196 |
+
|
197 |
+
You may convey verbatim copies of the Program's source code as you
|
198 |
+
receive it, in any medium, provided that you conspicuously and
|
199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
200 |
+
keep intact all notices stating that this License and any
|
201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
202 |
+
keep intact all notices of the absence of any warranty; and give all
|
203 |
+
recipients a copy of this License along with the Program.
|
204 |
+
|
205 |
+
You may charge any price or no price for each copy that you convey,
|
206 |
+
and you may offer support or warranty protection for a fee.
|
207 |
+
|
208 |
+
5. Conveying Modified Source Versions.
|
209 |
+
|
210 |
+
You may convey a work based on the Program, or the modifications to
|
211 |
+
produce it from the Program, in the form of source code under the
|
212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
213 |
+
|
214 |
+
a) The work must carry prominent notices stating that you modified
|
215 |
+
it, and giving a relevant date.
|
216 |
+
|
217 |
+
b) The work must carry prominent notices stating that it is
|
218 |
+
released under this License and any conditions added under section
|
219 |
+
7. This requirement modifies the requirement in section 4 to
|
220 |
+
"keep intact all notices".
|
221 |
+
|
222 |
+
c) You must license the entire work, as a whole, under this
|
223 |
+
License to anyone who comes into possession of a copy. This
|
224 |
+
License will therefore apply, along with any applicable section 7
|
225 |
+
additional terms, to the whole of the work, and all its parts,
|
226 |
+
regardless of how they are packaged. This License gives no
|
227 |
+
permission to license the work in any other way, but it does not
|
228 |
+
invalidate such permission if you have separately received it.
|
229 |
+
|
230 |
+
d) If the work has interactive user interfaces, each must display
|
231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
233 |
+
work need not make them do so.
|
234 |
+
|
235 |
+
A compilation of a covered work with other separate and independent
|
236 |
+
works, which are not by their nature extensions of the covered work,
|
237 |
+
and which are not combined with it such as to form a larger program,
|
238 |
+
in or on a volume of a storage or distribution medium, is called an
|
239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
240 |
+
used to limit the access or legal rights of the compilation's users
|
241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
242 |
+
in an aggregate does not cause this License to apply to the other
|
243 |
+
parts of the aggregate.
|
244 |
+
|
245 |
+
6. Conveying Non-Source Forms.
|
246 |
+
|
247 |
+
You may convey a covered work in object code form under the terms
|
248 |
+
of sections 4 and 5, provided that you also convey the
|
249 |
+
machine-readable Corresponding Source under the terms of this License,
|
250 |
+
in one of these ways:
|
251 |
+
|
252 |
+
a) Convey the object code in, or embodied in, a physical product
|
253 |
+
(including a physical distribution medium), accompanied by the
|
254 |
+
Corresponding Source fixed on a durable physical medium
|
255 |
+
customarily used for software interchange.
|
256 |
+
|
257 |
+
b) Convey the object code in, or embodied in, a physical product
|
258 |
+
(including a physical distribution medium), accompanied by a
|
259 |
+
written offer, valid for at least three years and valid for as
|
260 |
+
long as you offer spare parts or customer support for that product
|
261 |
+
model, to give anyone who possesses the object code either (1) a
|
262 |
+
copy of the Corresponding Source for all the software in the
|
263 |
+
product that is covered by this License, on a durable physical
|
264 |
+
medium customarily used for software interchange, for a price no
|
265 |
+
more than your reasonable cost of physically performing this
|
266 |
+
conveying of source, or (2) access to copy the
|
267 |
+
Corresponding Source from a network server at no charge.
|
268 |
+
|
269 |
+
c) Convey individual copies of the object code with a copy of the
|
270 |
+
written offer to provide the Corresponding Source. This
|
271 |
+
alternative is allowed only occasionally and noncommercially, and
|
272 |
+
only if you received the object code with such an offer, in accord
|
273 |
+
with subsection 6b.
|
274 |
+
|
275 |
+
d) Convey the object code by offering access from a designated
|
276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
277 |
+
Corresponding Source in the same way through the same place at no
|
278 |
+
further charge. You need not require recipients to copy the
|
279 |
+
Corresponding Source along with the object code. If the place to
|
280 |
+
copy the object code is a network server, the Corresponding Source
|
281 |
+
may be on a different server (operated by you or a third party)
|
282 |
+
that supports equivalent copying facilities, provided you maintain
|
283 |
+
clear directions next to the object code saying where to find the
|
284 |
+
Corresponding Source. Regardless of what server hosts the
|
285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
286 |
+
available for as long as needed to satisfy these requirements.
|
287 |
+
|
288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
289 |
+
you inform other peers where the object code and Corresponding
|
290 |
+
Source of the work are being offered to the general public at no
|
291 |
+
charge under subsection 6d.
|
292 |
+
|
293 |
+
A separable portion of the object code, whose source code is excluded
|
294 |
+
from the Corresponding Source as a System Library, need not be
|
295 |
+
included in conveying the object code work.
|
296 |
+
|
297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
298 |
+
tangible personal property which is normally used for personal, family,
|
299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
302 |
+
product received by a particular user, "normally used" refers to a
|
303 |
+
typical or common use of that class of product, regardless of the status
|
304 |
+
of the particular user or of the way in which the particular user
|
305 |
+
actually uses, or expects or is expected to use, the product. A product
|
306 |
+
is a consumer product regardless of whether the product has substantial
|
307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
308 |
+
the only significant mode of use of the product.
|
309 |
+
|
310 |
+
"Installation Information" for a User Product means any methods,
|
311 |
+
procedures, authorization keys, or other information required to install
|
312 |
+
and execute modified versions of a covered work in that User Product from
|
313 |
+
a modified version of its Corresponding Source. The information must
|
314 |
+
suffice to ensure that the continued functioning of the modified object
|
315 |
+
code is in no case prevented or interfered with solely because
|
316 |
+
modification has been made.
|
317 |
+
|
318 |
+
If you convey an object code work under this section in, or with, or
|
319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
320 |
+
part of a transaction in which the right of possession and use of the
|
321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
322 |
+
fixed term (regardless of how the transaction is characterized), the
|
323 |
+
Corresponding Source conveyed under this section must be accompanied
|
324 |
+
by the Installation Information. But this requirement does not apply
|
325 |
+
if neither you nor any third party retains the ability to install
|
326 |
+
modified object code on the User Product (for example, the work has
|
327 |
+
been installed in ROM).
|
328 |
+
|
329 |
+
The requirement to provide Installation Information does not include a
|
330 |
+
requirement to continue to provide support service, warranty, or updates
|
331 |
+
for a work that has been modified or installed by the recipient, or for
|
332 |
+
the User Product in which it has been modified or installed. Access to a
|
333 |
+
network may be denied when the modification itself materially and
|
334 |
+
adversely affects the operation of the network or violates the rules and
|
335 |
+
protocols for communication across the network.
|
336 |
+
|
337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
338 |
+
in accord with this section must be in a format that is publicly
|
339 |
+
documented (and with an implementation available to the public in
|
340 |
+
source code form), and must require no special password or key for
|
341 |
+
unpacking, reading or copying.
|
342 |
+
|
343 |
+
7. Additional Terms.
|
344 |
+
|
345 |
+
"Additional permissions" are terms that supplement the terms of this
|
346 |
+
License by making exceptions from one or more of its conditions.
|
347 |
+
Additional permissions that are applicable to the entire Program shall
|
348 |
+
be treated as though they were included in this License, to the extent
|
349 |
+
that they are valid under applicable law. If additional permissions
|
350 |
+
apply only to part of the Program, that part may be used separately
|
351 |
+
under those permissions, but the entire Program remains governed by
|
352 |
+
this License without regard to the additional permissions.
|
353 |
+
|
354 |
+
When you convey a copy of a covered work, you may at your option
|
355 |
+
remove any additional permissions from that copy, or from any part of
|
356 |
+
it. (Additional permissions may be written to require their own
|
357 |
+
removal in certain cases when you modify the work.) You may place
|
358 |
+
additional permissions on material, added by you to a covered work,
|
359 |
+
for which you have or can give appropriate copyright permission.
|
360 |
+
|
361 |
+
Notwithstanding any other provision of this License, for material you
|
362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
363 |
+
that material) supplement the terms of this License with terms:
|
364 |
+
|
365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
366 |
+
terms of sections 15 and 16 of this License; or
|
367 |
+
|
368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
369 |
+
author attributions in that material or in the Appropriate Legal
|
370 |
+
Notices displayed by works containing it; or
|
371 |
+
|
372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
373 |
+
requiring that modified versions of such material be marked in
|
374 |
+
reasonable ways as different from the original version; or
|
375 |
+
|
376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
377 |
+
authors of the material; or
|
378 |
+
|
379 |
+
e) Declining to grant rights under trademark law for use of some
|
380 |
+
trade names, trademarks, or service marks; or
|
381 |
+
|
382 |
+
f) Requiring indemnification of licensors and authors of that
|
383 |
+
material by anyone who conveys the material (or modified versions of
|
384 |
+
it) with contractual assumptions of liability to the recipient, for
|
385 |
+
any liability that these contractual assumptions directly impose on
|
386 |
+
those licensors and authors.
|
387 |
+
|
388 |
+
All other non-permissive additional terms are considered "further
|
389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
390 |
+
received it, or any part of it, contains a notice stating that it is
|
391 |
+
governed by this License along with a term that is a further
|
392 |
+
restriction, you may remove that term. If a license document contains
|
393 |
+
a further restriction but permits relicensing or conveying under this
|
394 |
+
License, you may add to a covered work material governed by the terms
|
395 |
+
of that license document, provided that the further restriction does
|
396 |
+
not survive such relicensing or conveying.
|
397 |
+
|
398 |
+
If you add terms to a covered work in accord with this section, you
|
399 |
+
must place, in the relevant source files, a statement of the
|
400 |
+
additional terms that apply to those files, or a notice indicating
|
401 |
+
where to find the applicable terms.
|
402 |
+
|
403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
404 |
+
form of a separately written license, or stated as exceptions;
|
405 |
+
the above requirements apply either way.
|
406 |
+
|
407 |
+
8. Termination.
|
408 |
+
|
409 |
+
You may not propagate or modify a covered work except as expressly
|
410 |
+
provided under this License. Any attempt otherwise to propagate or
|
411 |
+
modify it is void, and will automatically terminate your rights under
|
412 |
+
this License (including any patent licenses granted under the third
|
413 |
+
paragraph of section 11).
|
414 |
+
|
415 |
+
However, if you cease all violation of this License, then your
|
416 |
+
license from a particular copyright holder is reinstated (a)
|
417 |
+
provisionally, unless and until the copyright holder explicitly and
|
418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
419 |
+
holder fails to notify you of the violation by some reasonable means
|
420 |
+
prior to 60 days after the cessation.
|
421 |
+
|
422 |
+
Moreover, your license from a particular copyright holder is
|
423 |
+
reinstated permanently if the copyright holder notifies you of the
|
424 |
+
violation by some reasonable means, this is the first time you have
|
425 |
+
received notice of violation of this License (for any work) from that
|
426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
427 |
+
your receipt of the notice.
|
428 |
+
|
429 |
+
Termination of your rights under this section does not terminate the
|
430 |
+
licenses of parties who have received copies or rights from you under
|
431 |
+
this License. If your rights have been terminated and not permanently
|
432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
433 |
+
material under section 10.
|
434 |
+
|
435 |
+
9. Acceptance Not Required for Having Copies.
|
436 |
+
|
437 |
+
You are not required to accept this License in order to receive or
|
438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
440 |
+
to receive a copy likewise does not require acceptance. However,
|
441 |
+
nothing other than this License grants you permission to propagate or
|
442 |
+
modify any covered work. These actions infringe copyright if you do
|
443 |
+
not accept this License. Therefore, by modifying or propagating a
|
444 |
+
covered work, you indicate your acceptance of this License to do so.
|
445 |
+
|
446 |
+
10. Automatic Licensing of Downstream Recipients.
|
447 |
+
|
448 |
+
Each time you convey a covered work, the recipient automatically
|
449 |
+
receives a license from the original licensors, to run, modify and
|
450 |
+
propagate that work, subject to this License. You are not responsible
|
451 |
+
for enforcing compliance by third parties with this License.
|
452 |
+
|
453 |
+
An "entity transaction" is a transaction transferring control of an
|
454 |
+
organization, or substantially all assets of one, or subdividing an
|
455 |
+
organization, or merging organizations. If propagation of a covered
|
456 |
+
work results from an entity transaction, each party to that
|
457 |
+
transaction who receives a copy of the work also receives whatever
|
458 |
+
licenses to the work the party's predecessor in interest had or could
|
459 |
+
give under the previous paragraph, plus a right to possession of the
|
460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
461 |
+
the predecessor has it or can get it with reasonable efforts.
|
462 |
+
|
463 |
+
You may not impose any further restrictions on the exercise of the
|
464 |
+
rights granted or affirmed under this License. For example, you may
|
465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
466 |
+
rights granted under this License, and you may not initiate litigation
|
467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
468 |
+
any patent claim is infringed by making, using, selling, offering for
|
469 |
+
sale, or importing the Program or any portion of it.
|
470 |
+
|
471 |
+
11. Patents.
|
472 |
+
|
473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
474 |
+
License of the Program or a work on which the Program is based. The
|
475 |
+
work thus licensed is called the contributor's "contributor version".
|
476 |
+
|
477 |
+
A contributor's "essential patent claims" are all patent claims
|
478 |
+
owned or controlled by the contributor, whether already acquired or
|
479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
480 |
+
by this License, of making, using, or selling its contributor version,
|
481 |
+
but do not include claims that would be infringed only as a
|
482 |
+
consequence of further modification of the contributor version. For
|
483 |
+
purposes of this definition, "control" includes the right to grant
|
484 |
+
patent sublicenses in a manner consistent with the requirements of
|
485 |
+
this License.
|
486 |
+
|
487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
488 |
+
patent license under the contributor's essential patent claims, to
|
489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
490 |
+
propagate the contents of its contributor version.
|
491 |
+
|
492 |
+
In the following three paragraphs, a "patent license" is any express
|
493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
494 |
+
(such as an express permission to practice a patent or covenant not to
|
495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
496 |
+
party means to make such an agreement or commitment not to enforce a
|
497 |
+
patent against the party.
|
498 |
+
|
499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
500 |
+
and the Corresponding Source of the work is not available for anyone
|
501 |
+
to copy, free of charge and under the terms of this License, through a
|
502 |
+
publicly available network server or other readily accessible means,
|
503 |
+
then you must either (1) cause the Corresponding Source to be so
|
504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
506 |
+
consistent with the requirements of this License, to extend the patent
|
507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
508 |
+
actual knowledge that, but for the patent license, your conveying the
|
509 |
+
covered work in a country, or your recipient's use of the covered work
|
510 |
+
in a country, would infringe one or more identifiable patents in that
|
511 |
+
country that you have reason to believe are valid.
|
512 |
+
|
513 |
+
If, pursuant to or in connection with a single transaction or
|
514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
515 |
+
covered work, and grant a patent license to some of the parties
|
516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
517 |
+
or convey a specific copy of the covered work, then the patent license
|
518 |
+
you grant is automatically extended to all recipients of the covered
|
519 |
+
work and works based on it.
|
520 |
+
|
521 |
+
A patent license is "discriminatory" if it does not include within
|
522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
524 |
+
specifically granted under this License. You may not convey a covered
|
525 |
+
work if you are a party to an arrangement with a third party that is
|
526 |
+
in the business of distributing software, under which you make payment
|
527 |
+
to the third party based on the extent of your activity of conveying
|
528 |
+
the work, and under which the third party grants, to any of the
|
529 |
+
parties who would receive the covered work from you, a discriminatory
|
530 |
+
patent license (a) in connection with copies of the covered work
|
531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
532 |
+
for and in connection with specific products or compilations that
|
533 |
+
contain the covered work, unless you entered into that arrangement,
|
534 |
+
or that patent license was granted, prior to 28 March 2007.
|
535 |
+
|
536 |
+
Nothing in this License shall be construed as excluding or limiting
|
537 |
+
any implied license or other defenses to infringement that may
|
538 |
+
otherwise be available to you under applicable patent law.
|
539 |
+
|
540 |
+
12. No Surrender of Others' Freedom.
|
541 |
+
|
542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
543 |
+
otherwise) that contradict the conditions of this License, they do not
|
544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
546 |
+
License and any other pertinent obligations, then as a consequence you may
|
547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
548 |
+
to collect a royalty for further conveying from those to whom you convey
|
549 |
+
the Program, the only way you could satisfy both those terms and this
|
550 |
+
License would be to refrain entirely from conveying the Program.
|
551 |
+
|
552 |
+
13. Use with the GNU Affero General Public License.
|
553 |
+
|
554 |
+
Notwithstanding any other provision of this License, you have
|
555 |
+
permission to link or combine any covered work with a work licensed
|
556 |
+
under version 3 of the GNU Affero General Public License into a single
|
557 |
+
combined work, and to convey the resulting work. The terms of this
|
558 |
+
License will continue to apply to the part which is the covered work,
|
559 |
+
but the special requirements of the GNU Affero General Public License,
|
560 |
+
section 13, concerning interaction through a network will apply to the
|
561 |
+
combination as such.
|
562 |
+
|
563 |
+
14. Revised Versions of this License.
|
564 |
+
|
565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
566 |
+
the GNU General Public License from time to time. Such new versions will
|
567 |
+
be similar in spirit to the present version, but may differ in detail to
|
568 |
+
address new problems or concerns.
|
569 |
+
|
570 |
+
Each version is given a distinguishing version number. If the
|
571 |
+
Program specifies that a certain numbered version of the GNU General
|
572 |
+
Public License "or any later version" applies to it, you have the
|
573 |
+
option of following the terms and conditions either of that numbered
|
574 |
+
version or of any later version published by the Free Software
|
575 |
+
Foundation. If the Program does not specify a version number of the
|
576 |
+
GNU General Public License, you may choose any version ever published
|
577 |
+
by the Free Software Foundation.
|
578 |
+
|
579 |
+
If the Program specifies that a proxy can decide which future
|
580 |
+
versions of the GNU General Public License can be used, that proxy's
|
581 |
+
public statement of acceptance of a version permanently authorizes you
|
582 |
+
to choose that version for the Program.
|
583 |
+
|
584 |
+
Later license versions may give you additional or different
|
585 |
+
permissions. However, no additional obligations are imposed on any
|
586 |
+
author or copyright holder as a result of your choosing to follow a
|
587 |
+
later version.
|
588 |
+
|
589 |
+
15. Disclaimer of Warranty.
|
590 |
+
|
591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
+
|
600 |
+
16. Limitation of Liability.
|
601 |
+
|
602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
+
SUCH DAMAGES.
|
611 |
+
|
612 |
+
17. Interpretation of Sections 15 and 16.
|
613 |
+
|
614 |
+
If the disclaimer of warranty and limitation of liability provided
|
615 |
+
above cannot be given local legal effect according to their terms,
|
616 |
+
reviewing courts shall apply local law that most closely approximates
|
617 |
+
an absolute waiver of all civil liability in connection with the
|
618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
619 |
+
copy of the Program in return for a fee.
|
620 |
+
|
621 |
+
END OF TERMS AND CONDITIONS
|
622 |
+
|
623 |
+
How to Apply These Terms to Your New Programs
|
624 |
+
|
625 |
+
If you develop a new program, and you want it to be of the greatest
|
626 |
+
possible use to the public, the best way to achieve this is to make it
|
627 |
+
free software which everyone can redistribute and change under these terms.
|
628 |
+
|
629 |
+
To do so, attach the following notices to the program. It is safest
|
630 |
+
to attach them to the start of each source file to most effectively
|
631 |
+
state the exclusion of warranty; and each file should have at least
|
632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
633 |
+
|
634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
635 |
+
Copyright (C) <year> <name of author>
|
636 |
+
|
637 |
+
This program is free software: you can redistribute it and/or modify
|
638 |
+
it under the terms of the GNU General Public License as published by
|
639 |
+
the Free Software Foundation, either version 3 of the License, or
|
640 |
+
(at your option) any later version.
|
641 |
+
|
642 |
+
This program is distributed in the hope that it will be useful,
|
643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
+
GNU General Public License for more details.
|
646 |
+
|
647 |
+
You should have received a copy of the GNU General Public License
|
648 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
649 |
+
|
650 |
+
Also add information on how to contact you by electronic and paper mail.
|
651 |
+
|
652 |
+
If the program does terminal interaction, make it output a short
|
653 |
+
notice like this when it starts in an interactive mode:
|
654 |
+
|
655 |
+
<program> Copyright (C) <year> <name of author>
|
656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
657 |
+
This is free software, and you are welcome to redistribute it
|
658 |
+
under certain conditions; type `show c' for details.
|
659 |
+
|
660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
661 |
+
parts of the General Public License. Of course, your program's commands
|
662 |
+
might be different; for a GUI interface, you would use an "about box".
|
663 |
+
|
664 |
+
You should also get your employer (if you work as a programmer) or school,
|
665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
667 |
+
<https://www.gnu.org/licenses/>.
|
668 |
+
|
669 |
+
The GNU General Public License does not permit incorporating your program
|
670 |
+
into proprietary programs. If your program is a subroutine library, you
|
671 |
+
may consider it more useful to permit linking proprietary applications with
|
672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
673 |
+
Public License instead of this License. But first, please read
|
674 |
+
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
elia/README.md
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LAVT: Language-Aware Vision Transformer for Referring Image Segmentation
|
2 |
+
Welcome to the official repository for the method presented in
|
3 |
+
"LAVT: Language-Aware Vision Transformer for Referring Image Segmentation."
|
4 |
+
|
5 |
+
|
6 |
+
![Pipeline Image](pipeline.jpg)
|
7 |
+
|
8 |
+
Code in this repository is written using [PyTorch](https://pytorch.org/) and is organized in the following way (assuming the working directory is the root directory of this repository):
|
9 |
+
* `./lib` contains files implementing the main network.
|
10 |
+
* Inside `./lib`, `_utils.py` defines the highest-level model, which incorporates the backbone network
|
11 |
+
defined in `backbone.py` and the simple mask decoder defined in `mask_predictor.py`.
|
12 |
+
`segmentation.py` provides the model interface and initialization functions.
|
13 |
+
* `./bert` contains files migrated from [Hugging Face Transformers v3.0.2](https://huggingface.co/transformers/v3.0.2/quicktour.html),
|
14 |
+
which implement the BERT language model.
|
15 |
+
We used Transformers v3.0.2 during development but it had a bug that would appear when using `DistributedDataParallel`.
|
16 |
+
Therefore we maintain a copy of the relevant source files in this repository.
|
17 |
+
This way, the bug is fixed and code in this repository is self-contained.
|
18 |
+
* `./train.py` is invoked to train the model.
|
19 |
+
* `./test.py` is invoked to run inference on the evaluation subsets after training.
|
20 |
+
* `./refer` contains data pre-processing code and is also where data should be placed, including the images and all annotations.
|
21 |
+
It is cloned from [refer](https://github.com/lichengunc/refer).
|
22 |
+
* `./data/dataset_refer_bert.py` is where the dataset class is defined.
|
23 |
+
* `./utils.py` defines functions that track training statistics and setup
|
24 |
+
functions for `DistributedDataParallel`.
|
25 |
+
|
26 |
+
|
27 |
+
## Updates
|
28 |
+
**June 21<sup>st</sup>, 2022**. Uploaded the training logs and trained
|
29 |
+
model weights of lavt_one.
|
30 |
+
|
31 |
+
**June 9<sup>th</sup>, 2022**.
|
32 |
+
Added a more efficient implementation of LAVT.
|
33 |
+
* To train this new model, specify `--model` as `lavt_one`
|
34 |
+
(and `lavt` is still valid for specifying the old model).
|
35 |
+
The rest of the configuration stays unchanged.
|
36 |
+
* The difference between this version and the previous one
|
37 |
+
is that the language model has been moved inside the overall model,
|
38 |
+
so that `DistributedDataParallel` needs to be applied only once.
|
39 |
+
Applying it twice (on the standalone language model and the main branch)
|
40 |
+
as done in the old implementation led to low GPU utility,
|
41 |
+
which prevented scaling up training speed with more GPUs.
|
42 |
+
We recommend training this model on 8 GPUs
|
43 |
+
(and same as before with batch size 32).
|
44 |
+
|
45 |
+
## Setting Up
|
46 |
+
### Preliminaries
|
47 |
+
The code has been verified to work with PyTorch v1.7.1 and Python 3.7.
|
48 |
+
1. Clone this repository.
|
49 |
+
2. Change directory to root of this repository.
|
50 |
+
### Package Dependencies
|
51 |
+
1. Create a new Conda environment with Python 3.7 then activate it:
|
52 |
+
```shell
|
53 |
+
conda create -n lavt python==3.7
|
54 |
+
conda activate lavt
|
55 |
+
```
|
56 |
+
|
57 |
+
2. Install PyTorch v1.7.1 with a CUDA version that works on your cluster/machine (CUDA 10.2 is used in this example):
|
58 |
+
```shell
|
59 |
+
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.2 -c pytorch
|
60 |
+
```
|
61 |
+
|
62 |
+
3. Install the packages in `requirements.txt` via `pip`:
|
63 |
+
```shell
|
64 |
+
pip install -r requirements.txt
|
65 |
+
```
|
66 |
+
|
67 |
+
### Datasets
|
68 |
+
1. Follow instructions in the `./refer` directory to set up subdirectories
|
69 |
+
and download annotations.
|
70 |
+
This directory is a git clone (minus two data files that we do not need)
|
71 |
+
from the [refer](https://github.com/lichengunc/refer) public API.
|
72 |
+
|
73 |
+
2. Download images from [COCO](https://cocodataset.org/#download).
|
74 |
+
Please use the first downloading link *2014 Train images [83K/13GB]*, and extract
|
75 |
+
the downloaded `train_2014.zip` file to `./refer/data/images/mscoco/images`.
|
76 |
+
|
77 |
+
### The Initialization Weights for Training
|
78 |
+
1. Create the `./pretrained_weights` directory where we will be storing the weights.
|
79 |
+
```shell
|
80 |
+
mkdir ./pretrained_weights
|
81 |
+
```
|
82 |
+
2. Download [pre-trained classification weights of
|
83 |
+
the Swin Transformer](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth),
|
84 |
+
and put the `pth` file in `./pretrained_weights`.
|
85 |
+
These weights are needed for training to initialize the model.
|
86 |
+
|
87 |
+
### Trained Weights of LAVT for Testing
|
88 |
+
1. Create the `./checkpoints` directory where we will be storing the weights.
|
89 |
+
```shell
|
90 |
+
mkdir ./checkpoints
|
91 |
+
```
|
92 |
+
2. Download LAVT model weights (which are stored on Google Drive) using links below and put them in `./checkpoints`.
|
93 |
+
|
94 |
+
| [RefCOCO](https://drive.google.com/file/d/13D-OeEOijV8KTC3BkFP-gOJymc6DLwVT/view?usp=sharing) | [RefCOCO+](https://drive.google.com/file/d/1B8Q44ZWsc8Pva2xD_M-KFh7-LgzeH2-2/view?usp=sharing) | [G-Ref (UMD)](https://drive.google.com/file/d/1BjUnPVpALurkGl7RXXvQiAHhA-gQYKvK/view?usp=sharing) | [G-Ref (Google)](https://drive.google.com/file/d/1weiw5UjbPfo3tCBPfB8tu6xFXCUG16yS/view?usp=sharing) |
|
95 |
+
|---|---|---|---|
|
96 |
+
|
97 |
+
3. Model weights and training logs of the new lavt_one implementation are below.
|
98 |
+
|
99 |
+
| RefCOCO | RefCOCO+ | G-Ref (UMD) | G-Ref (Google) |
|
100 |
+
|:-----:|:-----:|:-----:|:-----:|
|
101 |
+
|[log](https://drive.google.com/file/d/1YIojIHqe3bxxsWOltifa2U9jH67hPHLM/view?usp=sharing) | [weights](https://drive.google.com/file/d/1xFMEXr6AGU97Ypj1yr8oo00uObbeIQvJ/view?usp=sharing)|[log](https://drive.google.com/file/d/1Z34T4gEnWlvcSUQya7txOuM0zdLK7MRT/view?usp=sharing) | [weights](https://drive.google.com/file/d/1HS8ZnGaiPJr-OmoUn4-4LVnVtD_zHY6w/view?usp=sharing)|[log](https://drive.google.com/file/d/14VAgahngOV8NA6noLZCqDoqaUrlW14v8/view?usp=sharing) | [weights](https://drive.google.com/file/d/14g8NzgZn6HzC6tP_bsQuWmh5LnOcovsE/view?usp=sharing)|[log](https://drive.google.com/file/d/1JBXfmlwemWSvs92Rky0TlHcVuuLpt4Da/view?usp=sharing) | [weights](https://drive.google.com/file/d/1IJeahFVLgKxu_BVmWacZs3oUzgTCeWcz/view?usp=sharing)|
|
102 |
+
|
103 |
+
* The Prec@K, overall IoU and mean IoU numbers in the training logs will differ
|
104 |
+
from the final results obtained by running `test.py`,
|
105 |
+
because only one out of multiple annotated expressions is
|
106 |
+
randomly selected and evaluated for each object during training.
|
107 |
+
But these numbers give a good idea about the test performance.
|
108 |
+
The two should be fairly close.
|
109 |
+
|
110 |
+
|
111 |
+
## Training
|
112 |
+
We use `DistributedDataParallel` from PyTorch.
|
113 |
+
The released `lavt` weights were trained using 4 x 32G V100 cards (max mem on each card was about 26G).
|
114 |
+
The released `lavt_one` weights were trained using 8 x 32G V100 cards (max mem on each card was about 13G).
|
115 |
+
Using more cards was to accelerate training.
|
116 |
+
To run on 4 GPUs (with IDs 0, 1, 2, and 3) on a single node:
|
117 |
+
```shell
|
118 |
+
mkdir ./models
|
119 |
+
|
120 |
+
mkdir ./models/refcoco
|
121 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12345 train.py --model lavt --dataset refcoco --model_id refcoco --batch-size 8 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/refcoco/output
|
122 |
+
|
123 |
+
mkdir ./models/refcoco+
|
124 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12345 train.py --model lavt --dataset refcoco+ --model_id refcoco+ --batch-size 8 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/refcoco+/output
|
125 |
+
|
126 |
+
mkdir ./models/gref_umd
|
127 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12345 train.py --model lavt --dataset refcocog --splitBy umd --model_id gref_umd --batch-size 8 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/gref_umd/output
|
128 |
+
|
129 |
+
mkdir ./models/gref_google
|
130 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12345 train.py --model lavt --dataset refcocog --splitBy google --model_id gref_google --batch-size 8 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/gref_google/output
|
131 |
+
```
|
132 |
+
* *--model* is a pre-defined model name. Options include `lavt` and `lavt_one`. See [Updates](#updates).
|
133 |
+
* *--dataset* is the dataset name. One can choose from `refcoco`, `refcoco+`, and `refcocog`.
|
134 |
+
* *--splitBy* needs to be specified if and only if the dataset is G-Ref (which is also called RefCOCOg).
|
135 |
+
`umd` identifies the UMD partition and `google` identifies the Google partition.
|
136 |
+
* *--model_id* is the model name one should define oneself (*e.g.*, customize it to contain training/model configurations, dataset information, experiment IDs, *etc*.).
|
137 |
+
It is used in two ways: Training log will be saved as `./models/[args.model_id]/output` and the best checkpoint will be saved as `./checkpoints/model_best_[args.model_id].pth`.
|
138 |
+
* *--swin_type* specifies the version of the Swin Transformer.
|
139 |
+
One can choose from `tiny`, `small`, `base`, and `large`. The default is `base`.
|
140 |
+
* *--pretrained_swin_weights* specifies the path to pre-trained Swin Transformer weights used for model initialization.
|
141 |
+
* Note that currently we need to manually create the `./models/[args.model_id]` directory via `mkdir` before running `train.py`.
|
142 |
+
This is because we use `tee` to redirect `stdout` and `stderr` to `./models/[args.model_id]/output` for logging.
|
143 |
+
This is a nuisance and should be resolved in the future, *i.e.*, using a proper logger or a bash script for initiating training.
|
144 |
+
|
145 |
+
## Testing
|
146 |
+
For RefCOCO/RefCOCO+, run one of
|
147 |
+
```shell
|
148 |
+
python test.py --model lavt --swin_type base --dataset refcoco --split val --resume ./checkpoints/refcoco.pth --workers 4 --ddp_trained_weights --window12 --img_size 480
|
149 |
+
python test.py --model lavt --swin_type base --dataset refcoco+ --split val --resume ./checkpoints/refcoco+.pth --workers 4 --ddp_trained_weights --window12 --img_size 480
|
150 |
+
```
|
151 |
+
* *--split* is the subset to evaluate, and one can choose from `val`, `testA`, and `testB`.
|
152 |
+
* *--resume* is the path to the weights of a trained model.
|
153 |
+
|
154 |
+
For G-Ref (UMD)/G-Ref (Google), run one of
|
155 |
+
```shell
|
156 |
+
python test.py --model lavt --swin_type base --dataset refcocog --splitBy umd --split val --resume ./checkpoints/gref_umd.pth --workers 4 --ddp_trained_weights --window12 --img_size 480
|
157 |
+
python test.py --model lavt --swin_type base --dataset refcocog --splitBy google --split val --resume ./checkpoints/gref_google.pth --workers 4 --ddp_trained_weights --window12 --img_size 480
|
158 |
+
```
|
159 |
+
* *--splitBy* specifies the partition to evaluate.
|
160 |
+
One can choose from `umd` or `google`.
|
161 |
+
* *--split* is the subset (according to the specified partition) to evaluate, and one can choose from `val` and `test` for the UMD partition, and only `val` for the Google partition..
|
162 |
+
* *--resume* is the path to the weights of a trained model.
|
163 |
+
|
164 |
+
## Results
|
165 |
+
The complete test results of the released LAVT models are summarized as follows:
|
166 |
+
|
167 |
+
| Dataset | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | Overall IoU | Mean IoU |
|
168 |
+
|:---------------:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----------:|:--------:|
|
169 |
+
| RefCOCO val | 84.46 | 80.90 | 75.28 | 64.71 | 34.30 | 72.73 | 74.46 |
|
170 |
+
| RefCOCO test A | 88.07 | 85.17 | 79.90 | 68.52 | 35.69 | 75.82 | 76.89 |
|
171 |
+
| RefCOCO test B | 79.12 | 74.94 | 69.17 | 59.37 | 34.45 | 68.79 | 70.94 |
|
172 |
+
| RefCOCO+ val | 74.44 | 70.91 | 65.58 | 56.34 | 30.23 | 62.14 | 65.81 |
|
173 |
+
| RefCOCO+ test A | 80.68 | 77.96 | 72.90 | 62.21 | 32.36 | 68.38 | 70.97 |
|
174 |
+
| RefCOCO+ test B | 65.66 | 61.85 | 55.94 | 47.56 | 27.24 | 55.10 | 59.23 |
|
175 |
+
| G-Ref val (UMD) | 70.81 | 65.28 | 58.60 | 47.49 | 22.73 | 61.24 | 63.34 |
|
176 |
+
| G-Ref test (UMD)| 71.54 | 66.38 | 59.00 | 48.21 | 23.10 | 62.09 | 63.62 |
|
177 |
+
|G-Ref val (Goog.)| 71.16 | 67.21 | 61.76 | 51.98 | 27.30 | 60.50 | 63.66 |
|
178 |
+
|
179 |
+
We have validated LAVT on RefCOCO with multiple runs.
|
180 |
+
The overall IoU on the val set generally lies in the range of 72.73±0.5%.
|
181 |
+
|
182 |
+
|
183 |
+
## Demo: Try LAVT on Your Own Image-text Pairs!
|
184 |
+
One can run inference on a custom image-text pair
|
185 |
+
and visualize the result by running the script `./demo_inference.py`.
|
186 |
+
Choose your photos and expessions and have fun.
|
187 |
+
|
188 |
+
|
189 |
+
## Citing LAVT
|
190 |
+
```
|
191 |
+
@inproceedings{yang2022lavt,
|
192 |
+
title={LAVT: Language-Aware Vision Transformer for Referring Image Segmentation},
|
193 |
+
author={Yang, Zhao and Wang, Jiaqi and Tang, Yansong and Chen, Kai and Zhao, Hengshuang and Torr, Philip HS},
|
194 |
+
booktitle={CVPR},
|
195 |
+
year={2022}
|
196 |
+
}
|
197 |
+
```
|
198 |
+
|
199 |
+
|
200 |
+
## Contributing
|
201 |
+
We appreciate all contributions.
|
202 |
+
It helps the project if you could
|
203 |
+
- report issues you are facing,
|
204 |
+
- give a :+1: on issues reported by others that are relevant to you,
|
205 |
+
- answer issues reported by others for which you have found solutions,
|
206 |
+
- and implement helpful new features or improve the code otherwise with pull requests.
|
207 |
+
|
208 |
+
## Acknowledgements
|
209 |
+
Code in this repository is built upon several public repositories.
|
210 |
+
Specifically,
|
211 |
+
* data pre-processing leverages the [refer](https://github.com/lichengunc/refer) repository,
|
212 |
+
* the backbone model is implemented based on code from [Swin Transformer for Semantic Segmentation](https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation),
|
213 |
+
* the training and testing pipelines are adapted from [RefVOS](https://github.com/miriambellver/refvos),
|
214 |
+
* and implementation of the BERT model (files in the bert directory) is from [Hugging Face Transformers v3.0.2](https://github.com/huggingface/transformers/tree/v3.0.2)
|
215 |
+
(we migrated over the relevant code to fix a bug and simplify the installation process).
|
216 |
+
|
217 |
+
Some of these repositories in turn adapt code from [OpenMMLab](https://github.com/open-mmlab) and [TorchVision](https://github.com/pytorch/vision).
|
218 |
+
We'd like to thank the authors/organizations of these repositories for open sourcing their projects.
|
219 |
+
|
220 |
+
|
221 |
+
## License
|
222 |
+
GNU GPLv3
|
elia/__pycache__/args.cpython-37.pyc
ADDED
Binary file (3.67 kB). View file
|
|
elia/__pycache__/args.cpython-38.pyc
ADDED
Binary file (3.71 kB). View file
|
|
elia/__pycache__/transforms.cpython-37.pyc
ADDED
Binary file (5.02 kB). View file
|
|
elia/__pycache__/transforms.cpython-38.pyc
ADDED
Binary file (4.99 kB). View file
|
|
elia/__pycache__/utils.cpython-37.pyc
ADDED
Binary file (7.12 kB). View file
|
|
elia/__pycache__/utils.cpython-38.pyc
ADDED
Binary file (7.23 kB). View file
|
|
elia/app.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
image_path = './image001.png'
|
4 |
+
sentence = 'spoon on the dish'
|
5 |
+
weights = './checkpoints/model_best_refcoco_0508.pth'
|
6 |
+
device = 'cpu'
|
7 |
+
|
8 |
+
# pre-process the input image
|
9 |
+
from PIL import Image
|
10 |
+
import torchvision.transforms as T
|
11 |
+
import numpy as np
|
12 |
+
import datetime
|
13 |
+
import os
|
14 |
+
import time
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.utils.data
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from bert.multimodal_bert import MultiModalBert
|
21 |
+
import torchvision
|
22 |
+
|
23 |
+
from lib import multimodal_segmentation_ppm
|
24 |
+
#import transforms as T
|
25 |
+
import utils
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
from PIL import Image
|
29 |
+
import torch.nn.functional as F
|
30 |
+
|
31 |
+
from modeling.MaskFormerModel import MaskFormerHead
|
32 |
+
from addict import Dict
|
33 |
+
#from bert.modeling_bert import BertLMPredictionHead, BertEncoder
|
34 |
+
import cv2
|
35 |
+
import textwrap
|
36 |
+
|
37 |
+
class WrapperModel(nn.Module):
|
38 |
+
def __init__(self, image_model, language_model, classifier) :
|
39 |
+
super(WrapperModel, self).__init__()
|
40 |
+
self.image_model = image_model
|
41 |
+
self.language_model = language_model
|
42 |
+
self.classifier = classifier
|
43 |
+
|
44 |
+
config = Dict({
|
45 |
+
"architectures": [
|
46 |
+
"BertForMaskedLM"
|
47 |
+
],
|
48 |
+
"attention_probs_dropout_prob": 0.1,
|
49 |
+
"gradient_checkpointing": False,
|
50 |
+
"hidden_act": "gelu",
|
51 |
+
"hidden_dropout_prob": 0.1,
|
52 |
+
"hidden_size": 512,
|
53 |
+
"initializer_range": 0.02,
|
54 |
+
"intermediate_size": 3072,
|
55 |
+
"layer_norm_eps": 1e-12,
|
56 |
+
#"max_position_embeddings": 16+20,
|
57 |
+
"model_type": "bert",
|
58 |
+
"num_attention_heads": 8,
|
59 |
+
"num_hidden_layers": 8,
|
60 |
+
"pad_token_id": 0,
|
61 |
+
"position_embedding_type": "absolute",
|
62 |
+
"transformers_version": "4.6.0.dev0",
|
63 |
+
"type_vocab_size": 2,
|
64 |
+
"use_cache": True,
|
65 |
+
"vocab_size": 30522
|
66 |
+
})
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
def _get_binary_mask(self, target):
|
71 |
+
# 返回每类的binary mask
|
72 |
+
y, x = target.size()
|
73 |
+
target_onehot = torch.zeros(self.num_classes + 1, y, x)
|
74 |
+
target_onehot = target_onehot.scatter(dim=0, index=target.unsqueeze(0), value=1)
|
75 |
+
return target_onehot[1:]
|
76 |
+
|
77 |
+
def semantic_inference(self, mask_cls, mask_pred):
|
78 |
+
mask_cls = F.softmax(mask_cls, dim=1)[...,1:]
|
79 |
+
mask_pred = mask_pred.sigmoid()
|
80 |
+
semseg = torch.einsum("bqc,bqhw->bchw", mask_cls, mask_pred)
|
81 |
+
return semseg
|
82 |
+
|
83 |
+
def forward(self, image, sentences, attentions):
|
84 |
+
print(image.sum(), sentences.sum(), attentions.sum())
|
85 |
+
input_shape = image.shape[-2:]
|
86 |
+
l_mask = attentions.unsqueeze(dim=-1)
|
87 |
+
|
88 |
+
i0, Wh, Ww = self.image_model.forward_stem(image)
|
89 |
+
l0, extended_attention_mask = self.language_model.forward_stem(sentences, attentions)
|
90 |
+
|
91 |
+
i1 = self.image_model.forward_stage1(i0, Wh, Ww)
|
92 |
+
l1 = self.language_model.forward_stage1(l0, extended_attention_mask)
|
93 |
+
i1_residual, H, W, i1_temp, Wh, Ww = self.image_model.forward_pwam1(i1, Wh, Ww, l1, l_mask)
|
94 |
+
l1_residual, l1 = self.language_model.forward_pwam1(i1, l1, extended_attention_mask)
|
95 |
+
i1 = i1_temp
|
96 |
+
|
97 |
+
i2 = self.image_model.forward_stage2(i1, Wh, Ww)
|
98 |
+
l2 = self.language_model.forward_stage2(l1, extended_attention_mask)
|
99 |
+
i2_residual, H, W, i2_temp, Wh, Ww = self.image_model.forward_pwam2(i2, Wh, Ww, l2, l_mask)
|
100 |
+
l2_residual, l2 = self.language_model.forward_pwam2(i2, l2, extended_attention_mask)
|
101 |
+
i2 = i2_temp
|
102 |
+
|
103 |
+
i3 = self.image_model.forward_stage3(i2, Wh, Ww)
|
104 |
+
l3 = self.language_model.forward_stage3(l2, extended_attention_mask)
|
105 |
+
i3_residual, H, W, i3_temp, Wh, Ww = self.image_model.forward_pwam3(i3, Wh, Ww, l3, l_mask)
|
106 |
+
l3_residual, l3 = self.language_model.forward_pwam3(i3, l3, extended_attention_mask)
|
107 |
+
i3 = i3_temp
|
108 |
+
|
109 |
+
i4 = self.image_model.forward_stage4(i3, Wh, Ww)
|
110 |
+
l4 = self.language_model.forward_stage4(l3, extended_attention_mask)
|
111 |
+
i4_residual, H, W, i4_temp, Wh, Ww = self.image_model.forward_pwam4(i4, Wh, Ww, l4, l_mask)
|
112 |
+
l4_residual, l4 = self.language_model.forward_pwam4(i4, l4, extended_attention_mask)
|
113 |
+
i4 = i4_temp
|
114 |
+
|
115 |
+
#i1_residual, i2_residual, i3_residual, i4_residual = features
|
116 |
+
#x = self.classifier(i4_residual, i3_residual, i2_residual, i1_residual)
|
117 |
+
#x = F.interpolate(x, size=input_shape, mode='bilinear', align_corners=True)
|
118 |
+
outputs = {}
|
119 |
+
outputs['s1'] = i1_residual
|
120 |
+
outputs['s2'] = i2_residual
|
121 |
+
outputs['s3'] = i3_residual
|
122 |
+
outputs['s4'] = i4_residual
|
123 |
+
|
124 |
+
predictions = self.classifier(outputs)
|
125 |
+
return predictions
|
126 |
+
|
127 |
+
#img = Image.open(image_path).convert("RGB")
|
128 |
+
|
129 |
+
# pre-process the raw sentence
|
130 |
+
from bert.tokenization_bert import BertTokenizer
|
131 |
+
import torch
|
132 |
+
|
133 |
+
# initialize model and load weights
|
134 |
+
#from bert.modeling_bert import BertModel
|
135 |
+
#from lib import segmentation
|
136 |
+
|
137 |
+
# construct a mini args class; like from a config file
|
138 |
+
|
139 |
+
|
140 |
+
class args:
|
141 |
+
swin_type = 'base'
|
142 |
+
window12 = True
|
143 |
+
mha = ''
|
144 |
+
fusion_drop = 0.0
|
145 |
+
|
146 |
+
|
147 |
+
#single_model = segmentation.__dict__['lavt'](pretrained='', args=args)
|
148 |
+
single_model = multimodal_segmentation_ppm.__dict__['lavt'](pretrained='',args=args)
|
149 |
+
single_model.to(device)
|
150 |
+
model_class = MultiModalBert
|
151 |
+
single_bert_model = model_class.from_pretrained('bert-base-uncased', embed_dim=single_model.backbone.embed_dim)
|
152 |
+
single_bert_model.pooler = None
|
153 |
+
|
154 |
+
input_shape = dict()
|
155 |
+
input_shape['s1'] = Dict({'channel': 128, 'stride': 4})
|
156 |
+
input_shape['s2'] = Dict({'channel': 256, 'stride': 8})
|
157 |
+
input_shape['s3'] = Dict({'channel': 512, 'stride': 16})
|
158 |
+
input_shape['s4'] = Dict({'channel': 1024, 'stride': 32})
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
cfg = Dict()
|
163 |
+
cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE = 4
|
164 |
+
cfg.MODEL.MASK_FORMER.DROPOUT = 0.0
|
165 |
+
cfg.MODEL.MASK_FORMER.NHEADS = 8
|
166 |
+
cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 4
|
167 |
+
cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM = 256
|
168 |
+
cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
|
169 |
+
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["s1", "s2", "s3", "s4"]
|
170 |
+
|
171 |
+
cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 1
|
172 |
+
cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256
|
173 |
+
cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = 1
|
174 |
+
cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = 2048
|
175 |
+
cfg.MODEL.MASK_FORMER.DEC_LAYERS = 10
|
176 |
+
cfg.MODEL.MASK_FORMER.PRE_NORM = False
|
177 |
+
|
178 |
+
|
179 |
+
maskformer_head = MaskFormerHead(cfg, input_shape)
|
180 |
+
|
181 |
+
|
182 |
+
model = WrapperModel(single_model.backbone, single_bert_model, maskformer_head)
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
checkpoint = torch.load(weights, map_location='cpu')
|
187 |
+
|
188 |
+
model.load_state_dict(checkpoint['model'], strict=False)
|
189 |
+
model.to(device)
|
190 |
+
model.eval()
|
191 |
+
#single_bert_model.load_state_dict(checkpoint['bert_model'])
|
192 |
+
#single_model.load_state_dict(checkpoint['model'])
|
193 |
+
#model = single_model.to(device)
|
194 |
+
#bert_model = single_bert_model.to(device)
|
195 |
+
|
196 |
+
|
197 |
+
# inference
|
198 |
+
#import torch.nn.functional as F
|
199 |
+
#last_hidden_states = bert_model(padded_sent_toks, attention_mask=attention_mask)[0]
|
200 |
+
#embedding = last_hidden_states.permute(0, 2, 1)
|
201 |
+
#output = model(img, embedding, l_mask=attention_mask.unsqueeze(-1))
|
202 |
+
#output = output.argmax(1, keepdim=True) # (1, 1, 480, 480)
|
203 |
+
#output = F.interpolate(output.float(), (original_h, original_w)) # 'nearest'; resize to the original image size
|
204 |
+
#output = output.squeeze() # (orig_h, orig_w)
|
205 |
+
#output = output.cpu().data.numpy() # (orig_h, orig_w)
|
206 |
+
|
207 |
+
#output = pred_masks[0]
|
208 |
+
|
209 |
+
#output = output.cpu()
|
210 |
+
|
211 |
+
|
212 |
+
|
213 |
+
#print(output.shape)
|
214 |
+
#output_mask = output.argmax(1).data.numpy()
|
215 |
+
#output = (output > 0.5).data.cpu().numpy()
|
216 |
+
|
217 |
+
|
218 |
+
# show/save results
|
219 |
+
def overlay_davis(image, mask, colors=[[0, 0, 0], [255, 0, 0]], cscale=1, alpha=0.4):
|
220 |
+
from scipy.ndimage.morphology import binary_dilation
|
221 |
+
|
222 |
+
colors = np.reshape(colors, (-1, 3))
|
223 |
+
colors = np.atleast_2d(colors) * cscale
|
224 |
+
|
225 |
+
im_overlay = image.copy()
|
226 |
+
object_ids = np.unique(mask)
|
227 |
+
|
228 |
+
for object_id in object_ids[1:]:
|
229 |
+
# Overlay color on binary mask
|
230 |
+
foreground = image*alpha + np.ones(image.shape)*(1-alpha) * np.array(colors[object_id])
|
231 |
+
binary_mask = mask == object_id
|
232 |
+
|
233 |
+
# Compose image
|
234 |
+
im_overlay[binary_mask] = foreground[binary_mask]
|
235 |
+
|
236 |
+
# countours = skimage.morphology.binary.binary_dilation(binary_mask) - binary_mask
|
237 |
+
countours = binary_dilation(binary_mask) ^ binary_mask
|
238 |
+
# countours = cv2.dilate(binary_mask, cv2.getStructuringElement(cv2.MORPH_CROSS,(3,3))) - binary_mask
|
239 |
+
im_overlay[countours, :] = 0
|
240 |
+
|
241 |
+
return im_overlay.astype(image.dtype)
|
242 |
+
|
243 |
+
|
244 |
+
def run_model(img, sentence):
|
245 |
+
|
246 |
+
#img = Image.open(image_path).convert("RGB")
|
247 |
+
img = Image.fromarray(img)
|
248 |
+
img = img.convert("RGB")
|
249 |
+
#print(img.shape)
|
250 |
+
img_ndarray = np.array(img) # (orig_h, orig_w, 3); for visualization
|
251 |
+
original_w, original_h = img.size # PIL .size returns width first and height second
|
252 |
+
|
253 |
+
image_transforms = T.Compose(
|
254 |
+
[
|
255 |
+
T.Resize((480, 480)),
|
256 |
+
T.ToTensor(),
|
257 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
258 |
+
]
|
259 |
+
)
|
260 |
+
|
261 |
+
img = image_transforms(img).unsqueeze(0) # (1, 3, 480, 480)
|
262 |
+
img = img.to(device) # for inference (input)
|
263 |
+
|
264 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
265 |
+
sentence_tokenized = tokenizer.encode(text=sentence, add_special_tokens=True)
|
266 |
+
sentence_tokenized = sentence_tokenized[:20] # if the sentence is longer than 20, then this truncates it to 20 words
|
267 |
+
# pad the tokenized sentence
|
268 |
+
padded_sent_toks = [0] * 20
|
269 |
+
padded_sent_toks[:len(sentence_tokenized)] = sentence_tokenized
|
270 |
+
# create a sentence token mask: 1 for real words; 0 for padded tokens
|
271 |
+
attention_mask = [0] * 20
|
272 |
+
attention_mask[:len(sentence_tokenized)] = [1]*len(sentence_tokenized)
|
273 |
+
# convert lists to tensors
|
274 |
+
padded_sent_toks = torch.tensor(padded_sent_toks).unsqueeze(0) # (1, 20)
|
275 |
+
attention_mask = torch.tensor(attention_mask).unsqueeze(0) # (1, 20)
|
276 |
+
padded_sent_toks = padded_sent_toks.to(device) # for inference (input)
|
277 |
+
attention_mask = attention_mask.to(device) # for inference (input)
|
278 |
+
|
279 |
+
output = model(img, padded_sent_toks, attention_mask)[0]
|
280 |
+
#print(output[0].keys())
|
281 |
+
#print(output[1].shape)
|
282 |
+
mask_cls_results = output["pred_logits"]
|
283 |
+
mask_pred_results = output["pred_masks"]
|
284 |
+
|
285 |
+
target_shape = img_ndarray.shape[:2]
|
286 |
+
#print(target_shape, mask_pred_results.shape)
|
287 |
+
mask_pred_results = F.interpolate(mask_pred_results, size=(480,480), mode='bilinear', align_corners=True)
|
288 |
+
|
289 |
+
pred_masks = model.semantic_inference(mask_cls_results, mask_pred_results)
|
290 |
+
|
291 |
+
output = torch.nn.functional.interpolate(pred_masks, target_shape)
|
292 |
+
output = (output > 0.5).data.cpu().numpy()
|
293 |
+
|
294 |
+
output = output.astype(np.uint8) # (orig_h, orig_w), np.uint8
|
295 |
+
# Overlay the mask on the image
|
296 |
+
print(img_ndarray.shape, output.shape)
|
297 |
+
visualization = overlay_davis(img_ndarray, output[0][0]) # red
|
298 |
+
visualization = Image.fromarray(visualization)
|
299 |
+
# show the visualization
|
300 |
+
#visualization.show()
|
301 |
+
# Save the visualization
|
302 |
+
#visualization.save('./demo/spoon_on_the_dish.jpg')
|
303 |
+
return visualization
|
304 |
+
|
305 |
+
|
306 |
+
|
307 |
+
|
308 |
+
demo = gr.Interface(run_model, inputs=[gr.Image(), "text"], outputs=["image"])
|
309 |
+
demo.launch()
|
310 |
+
|
elia/args.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
|
4 |
+
def get_parser():
|
5 |
+
parser = argparse.ArgumentParser(description='LAVT training and testing')
|
6 |
+
parser.add_argument('--amsgrad', action='store_true',
|
7 |
+
help='if true, set amsgrad to True in an Adam or AdamW optimizer.')
|
8 |
+
parser.add_argument('-b', '--batch-size', default=8, type=int)
|
9 |
+
parser.add_argument('--bert_tokenizer', default='bert-base-uncased', help='BERT tokenizer')
|
10 |
+
parser.add_argument('--ck_bert', default='bert-base-uncased', help='pre-trained BERT weights')
|
11 |
+
parser.add_argument('--dataset', default='refcoco', help='refcoco, refcoco+, or refcocog')
|
12 |
+
parser.add_argument('--ddp_trained_weights', action='store_true',
|
13 |
+
help='Only needs specified when testing,'
|
14 |
+
'whether the weights to be loaded are from a DDP-trained model')
|
15 |
+
parser.add_argument('--device', default='cuda:0', help='device') # only used when testing on a single machine
|
16 |
+
parser.add_argument('--epochs', default=40, type=int, metavar='N', help='number of total epochs to run')
|
17 |
+
parser.add_argument('--fusion_drop', default=0.0, type=float, help='dropout rate for PWAMs')
|
18 |
+
parser.add_argument('--img_size', default=480, type=int, help='input image size')
|
19 |
+
parser.add_argument("--local_rank", type=int, help='local rank for DistributedDataParallel')
|
20 |
+
parser.add_argument('--lr', default=0.00005, type=float, help='the initial learning rate')
|
21 |
+
parser.add_argument('--mha', default='', help='If specified, should be in the format of a-b-c-d, e.g., 4-4-4-4,'
|
22 |
+
'where a, b, c, and d refer to the numbers of heads in stage-1,'
|
23 |
+
'stage-2, stage-3, and stage-4 PWAMs')
|
24 |
+
parser.add_argument('--model', default='lavt', help='model: lavt, lavt_one')
|
25 |
+
parser.add_argument('--model_id', default='lavt', help='name to identify the model')
|
26 |
+
parser.add_argument('--output-dir', default='./checkpoints/', help='path where to save checkpoint weights')
|
27 |
+
parser.add_argument('--pin_mem', action='store_true',
|
28 |
+
help='If true, pin memory when using the data loader.')
|
29 |
+
parser.add_argument('--pretrained_swin_weights', default='',
|
30 |
+
help='path to pre-trained Swin backbone weights')
|
31 |
+
parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
|
32 |
+
parser.add_argument('--refer_data_root', default='./refer/data/', help='REFER dataset root directory')
|
33 |
+
parser.add_argument('--resume', default='auto', help='resume from checkpoint')
|
34 |
+
parser.add_argument('--split', default='test', help='only used when testing')
|
35 |
+
parser.add_argument('--splitBy', default='unc', help='change to umd or google when the dataset is G-Ref (RefCOCOg)')
|
36 |
+
parser.add_argument('--swin_type', default='base',
|
37 |
+
help='tiny, small, base, or large variants of the Swin Transformer')
|
38 |
+
parser.add_argument('--wd', '--weight-decay', default=1e-2, type=float, metavar='W', help='weight decay',
|
39 |
+
dest='weight_decay')
|
40 |
+
parser.add_argument('--window12', action='store_true',
|
41 |
+
help='only needs specified when testing,'
|
42 |
+
'when training, window size is inferred from pre-trained weights file name'
|
43 |
+
'(containing \'window12\'). Initialize Swin with window size 12 instead of the default 7.')
|
44 |
+
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N', help='number of data loading workers')
|
45 |
+
parser.add_argument('--seed', default=0, type=int)
|
46 |
+
parser.add_argument('--max_ckpt', default=2, type=int)
|
47 |
+
parser.add_argument('--num_object_queries', default=1, type=int)
|
48 |
+
parser.add_argument('--no_object_weight', default=0.0, type=float)
|
49 |
+
parser.add_argument('--class_weight', default=2.0, type=float)
|
50 |
+
parser.add_argument('--dice_weight', default=2.0, type=float)
|
51 |
+
parser.add_argument('--mask_weight', default=2.0, type=float)
|
52 |
+
parser.add_argument('--train_num_points', default=12544, type=int)
|
53 |
+
parser.add_argument('--dim_feedforward', default=2048, type=int)
|
54 |
+
parser.add_argument('--dec_layers', default=10, type=int)
|
55 |
+
parser.add_argument('--transformer_enc_layers', default=4, type=int)
|
56 |
+
|
57 |
+
parser.add_argument('--plic_pos_weight', default=0.5, type=float)
|
58 |
+
parser.add_argument('--plic_neg_weight', default=0.5, type=float)
|
59 |
+
parser.add_argument('--plic_lang_weight', default=0.5, type=float)
|
60 |
+
parser.add_argument('--plic_pos_alpha', default=0.0, type=float)
|
61 |
+
parser.add_argument('--plic_neg_alpha', default=0.0, type=float)
|
62 |
+
parser.add_argument('--plic_lang_alpha', default=0.0, type=float)
|
63 |
+
parser.add_argument('--plic_pos_temp', default=0.2, type=float)
|
64 |
+
parser.add_argument('--plic_neg_temp', default=0.2, type=float)
|
65 |
+
parser.add_argument('--plic_lang_temp', default=0.2, type=float)
|
66 |
+
parser.add_argument('--smlm_weight', default=1.0, type=float)
|
67 |
+
parser.add_argument('--vis_dir', default='./vis_dir')
|
68 |
+
|
69 |
+
return parser
|
70 |
+
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
parser = get_parser()
|
74 |
+
args_dict = parser.parse_args()
|
elia/bert/__pycache__/activations.cpython-37.pyc
ADDED
Binary file (1.94 kB). View file
|
|
elia/bert/__pycache__/activations.cpython-38.pyc
ADDED
Binary file (1.94 kB). View file
|
|
elia/bert/__pycache__/configuration_bert.cpython-37.pyc
ADDED
Binary file (7.86 kB). View file
|
|
elia/bert/__pycache__/configuration_bert.cpython-38.pyc
ADDED
Binary file (7.87 kB). View file
|
|
elia/bert/__pycache__/configuration_utils.cpython-37.pyc
ADDED
Binary file (16.2 kB). View file
|
|
elia/bert/__pycache__/configuration_utils.cpython-38.pyc
ADDED
Binary file (16.3 kB). View file
|
|
elia/bert/__pycache__/file_utils.cpython-37.pyc
ADDED
Binary file (24.4 kB). View file
|
|
elia/bert/__pycache__/file_utils.cpython-38.pyc
ADDED
Binary file (24.5 kB). View file
|
|
elia/bert/__pycache__/generation_utils.cpython-37.pyc
ADDED
Binary file (27.9 kB). View file
|
|
elia/bert/__pycache__/generation_utils.cpython-38.pyc
ADDED
Binary file (28.2 kB). View file
|
|
elia/bert/__pycache__/modeling_bert.cpython-37.pyc
ADDED
Binary file (56.4 kB). View file
|
|
elia/bert/__pycache__/modeling_bert.cpython-38.pyc
ADDED
Binary file (55.3 kB). View file
|
|
elia/bert/__pycache__/modeling_utils.cpython-37.pyc
ADDED
Binary file (48 kB). View file
|
|
elia/bert/__pycache__/modeling_utils.cpython-38.pyc
ADDED
Binary file (48 kB). View file
|
|
elia/bert/__pycache__/multimodal_bert.cpython-37.pyc
ADDED
Binary file (6.23 kB). View file
|
|
elia/bert/__pycache__/multimodal_bert.cpython-38.pyc
ADDED
Binary file (6.04 kB). View file
|
|
elia/bert/__pycache__/tokenization_bert.cpython-37.pyc
ADDED
Binary file (19.1 kB). View file
|
|
elia/bert/__pycache__/tokenization_bert.cpython-38.pyc
ADDED
Binary file (19.3 kB). View file
|
|
elia/bert/__pycache__/tokenization_utils.cpython-37.pyc
ADDED
Binary file (24.7 kB). View file
|
|
elia/bert/__pycache__/tokenization_utils.cpython-38.pyc
ADDED
Binary file (24.9 kB). View file
|
|
elia/bert/__pycache__/tokenization_utils_base.cpython-37.pyc
ADDED
Binary file (81.7 kB). View file
|
|
elia/bert/__pycache__/tokenization_utils_base.cpython-38.pyc
ADDED
Binary file (82.4 kB). View file
|
|
elia/bert/activations.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
logger = logging.getLogger(__name__)
|
9 |
+
|
10 |
+
|
11 |
+
def swish(x):
|
12 |
+
return x * torch.sigmoid(x)
|
13 |
+
|
14 |
+
|
15 |
+
def _gelu_python(x):
|
16 |
+
""" Original Implementation of the gelu activation function in Google Bert repo when initially created.
|
17 |
+
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
|
18 |
+
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
19 |
+
This is now written in C in torch.nn.functional
|
20 |
+
Also see https://arxiv.org/abs/1606.08415
|
21 |
+
"""
|
22 |
+
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
23 |
+
|
24 |
+
|
25 |
+
def gelu_new(x):
|
26 |
+
""" Implementation of the gelu activation function currently in Google Bert repo (identical to OpenAI GPT).
|
27 |
+
Also see https://arxiv.org/abs/1606.08415
|
28 |
+
"""
|
29 |
+
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
|
30 |
+
|
31 |
+
|
32 |
+
if torch.__version__ < "1.4.0":
|
33 |
+
gelu = _gelu_python
|
34 |
+
else:
|
35 |
+
gelu = F.gelu
|
36 |
+
|
37 |
+
|
38 |
+
def gelu_fast(x):
|
39 |
+
return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 * (1.0 + 0.044715 * x * x)))
|
40 |
+
|
41 |
+
|
42 |
+
ACT2FN = {
|
43 |
+
"relu": F.relu,
|
44 |
+
"swish": swish,
|
45 |
+
"gelu": gelu,
|
46 |
+
"tanh": torch.tanh,
|
47 |
+
"gelu_new": gelu_new,
|
48 |
+
"gelu_fast": gelu_fast,
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
def get_activation(activation_string):
|
53 |
+
if activation_string in ACT2FN:
|
54 |
+
return ACT2FN[activation_string]
|
55 |
+
else:
|
56 |
+
raise KeyError("function {} not found in ACT2FN mapping {}".format(activation_string, list(ACT2FN.keys())))
|
elia/bert/configuration_bert.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" BERT model configuration """
|
17 |
+
|
18 |
+
|
19 |
+
import logging
|
20 |
+
|
21 |
+
from .configuration_utils import PretrainedConfig
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.getLogger(__name__)
|
25 |
+
|
26 |
+
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
27 |
+
"bert-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
|
28 |
+
"bert-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
|
29 |
+
"bert-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
|
30 |
+
"bert-large-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
|
31 |
+
"bert-base-multilingual-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
|
32 |
+
"bert-base-multilingual-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
|
33 |
+
"bert-base-chinese": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
|
34 |
+
"bert-base-german-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
|
35 |
+
"bert-large-uncased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
|
36 |
+
"bert-large-cased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
|
37 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
|
38 |
+
"bert-large-cased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
|
39 |
+
"bert-base-cased-finetuned-mrpc": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
|
40 |
+
"bert-base-german-dbmdz-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-config.json",
|
41 |
+
"bert-base-german-dbmdz-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-config.json",
|
42 |
+
"cl-tohoku/bert-base-japanese": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese/config.json",
|
43 |
+
"cl-tohoku/bert-base-japanese-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-whole-word-masking/config.json",
|
44 |
+
"cl-tohoku/bert-base-japanese-char": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-char/config.json",
|
45 |
+
"cl-tohoku/bert-base-japanese-char-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-char-whole-word-masking/config.json",
|
46 |
+
"TurkuNLP/bert-base-finnish-cased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-cased-v1/config.json",
|
47 |
+
"TurkuNLP/bert-base-finnish-uncased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-uncased-v1/config.json",
|
48 |
+
"wietsedv/bert-base-dutch-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/wietsedv/bert-base-dutch-cased/config.json",
|
49 |
+
# See all BERT models at https://huggingface.co/models?filter=bert
|
50 |
+
}
|
51 |
+
|
52 |
+
|
53 |
+
class BertConfig(PretrainedConfig):
|
54 |
+
r"""
|
55 |
+
This is the configuration class to store the configuration of a :class:`~transformers.BertModel`.
|
56 |
+
It is used to instantiate an BERT model according to the specified arguments, defining the model
|
57 |
+
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
|
58 |
+
the BERT `bert-base-uncased <https://huggingface.co/bert-base-uncased>`__ architecture.
|
59 |
+
|
60 |
+
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used
|
61 |
+
to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig`
|
62 |
+
for more information.
|
63 |
+
|
64 |
+
|
65 |
+
Args:
|
66 |
+
vocab_size (:obj:`int`, optional, defaults to 30522):
|
67 |
+
Vocabulary size of the BERT model. Defines the different tokens that
|
68 |
+
can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.BertModel`.
|
69 |
+
hidden_size (:obj:`int`, optional, defaults to 768):
|
70 |
+
Dimensionality of the encoder layers and the pooler layer.
|
71 |
+
num_hidden_layers (:obj:`int`, optional, defaults to 12):
|
72 |
+
Number of hidden layers in the Transformer encoder.
|
73 |
+
num_attention_heads (:obj:`int`, optional, defaults to 12):
|
74 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
75 |
+
intermediate_size (:obj:`int`, optional, defaults to 3072):
|
76 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
77 |
+
hidden_act (:obj:`str` or :obj:`function`, optional, defaults to "gelu"):
|
78 |
+
The non-linear activation function (function or string) in the encoder and pooler.
|
79 |
+
If string, "gelu", "relu", "swish" and "gelu_new" are supported.
|
80 |
+
hidden_dropout_prob (:obj:`float`, optional, defaults to 0.1):
|
81 |
+
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
|
82 |
+
attention_probs_dropout_prob (:obj:`float`, optional, defaults to 0.1):
|
83 |
+
The dropout ratio for the attention probabilities.
|
84 |
+
max_position_embeddings (:obj:`int`, optional, defaults to 512):
|
85 |
+
The maximum sequence length that this model might ever be used with.
|
86 |
+
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
87 |
+
type_vocab_size (:obj:`int`, optional, defaults to 2):
|
88 |
+
The vocabulary size of the `token_type_ids` passed into :class:`~transformers.BertModel`.
|
89 |
+
initializer_range (:obj:`float`, optional, defaults to 0.02):
|
90 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
91 |
+
layer_norm_eps (:obj:`float`, optional, defaults to 1e-12):
|
92 |
+
The epsilon used by the layer normalization layers.
|
93 |
+
gradient_checkpointing (:obj:`bool`, optional, defaults to False):
|
94 |
+
If True, use gradient checkpointing to save memory at the expense of slower backward pass.
|
95 |
+
|
96 |
+
Example::
|
97 |
+
|
98 |
+
>>> from transformers import BertModel, BertConfig
|
99 |
+
|
100 |
+
>>> # Initializing a BERT bert-base-uncased style configuration
|
101 |
+
>>> configuration = BertConfig()
|
102 |
+
|
103 |
+
>>> # Initializing a model from the bert-base-uncased style configuration
|
104 |
+
>>> model = BertModel(configuration)
|
105 |
+
|
106 |
+
>>> # Accessing the model configuration
|
107 |
+
>>> configuration = model.config
|
108 |
+
"""
|
109 |
+
model_type = "bert"
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vocab_size=30522,
|
114 |
+
hidden_size=768,
|
115 |
+
num_hidden_layers=12,
|
116 |
+
num_attention_heads=12,
|
117 |
+
intermediate_size=3072,
|
118 |
+
hidden_act="gelu",
|
119 |
+
hidden_dropout_prob=0.1,
|
120 |
+
attention_probs_dropout_prob=0.1,
|
121 |
+
max_position_embeddings=512,
|
122 |
+
type_vocab_size=2,
|
123 |
+
initializer_range=0.02,
|
124 |
+
layer_norm_eps=1e-12,
|
125 |
+
pad_token_id=0,
|
126 |
+
gradient_checkpointing=False,
|
127 |
+
**kwargs
|
128 |
+
):
|
129 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
130 |
+
|
131 |
+
self.vocab_size = vocab_size
|
132 |
+
self.hidden_size = hidden_size
|
133 |
+
self.num_hidden_layers = num_hidden_layers
|
134 |
+
self.num_attention_heads = num_attention_heads
|
135 |
+
self.hidden_act = hidden_act
|
136 |
+
self.intermediate_size = intermediate_size
|
137 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
138 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
139 |
+
self.max_position_embeddings = max_position_embeddings
|
140 |
+
self.type_vocab_size = type_vocab_size
|
141 |
+
self.initializer_range = initializer_range
|
142 |
+
self.layer_norm_eps = layer_norm_eps
|
143 |
+
self.gradient_checkpointing = gradient_checkpointing
|
elia/bert/configuration_utils.py
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" Configuration base class and utilities."""
|
17 |
+
|
18 |
+
|
19 |
+
import copy
|
20 |
+
import json
|
21 |
+
import logging
|
22 |
+
import os
|
23 |
+
from typing import Dict, Tuple
|
24 |
+
|
25 |
+
from .file_utils import CONFIG_NAME, cached_path, hf_bucket_url, is_remote_url
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
class PretrainedConfig(object):
|
32 |
+
r""" Base class for all configuration classes.
|
33 |
+
Handles a few parameters common to all models' configurations as well as methods for loading/downloading/saving configurations.
|
34 |
+
|
35 |
+
Note:
|
36 |
+
A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to initialize a model does **not** load the model weights.
|
37 |
+
It only affects the model's configuration.
|
38 |
+
|
39 |
+
Class attributes (overridden by derived classes):
|
40 |
+
- ``model_type``: a string that identifies the model type, that we serialize into the JSON file, and that we use to recreate the correct object in :class:`~transformers.AutoConfig`.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
finetuning_task (:obj:`string` or :obj:`None`, `optional`, defaults to :obj:`None`):
|
44 |
+
Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow or PyTorch) checkpoint.
|
45 |
+
num_labels (:obj:`int`, `optional`, defaults to `2`):
|
46 |
+
Number of classes to use when the model is a classification model (sequences/tokens)
|
47 |
+
output_hidden_states (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
48 |
+
Should the model returns all hidden-states.
|
49 |
+
output_attentions (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
50 |
+
Should the model returns all attentions.
|
51 |
+
torchscript (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
52 |
+
Is the model used with Torchscript (for PyTorch models).
|
53 |
+
"""
|
54 |
+
model_type: str = ""
|
55 |
+
|
56 |
+
def __init__(self, **kwargs):
|
57 |
+
# Attributes with defaults
|
58 |
+
self.output_hidden_states = kwargs.pop("output_hidden_states", False)
|
59 |
+
self.output_attentions = kwargs.pop("output_attentions", False)
|
60 |
+
self.use_cache = kwargs.pop("use_cache", True) # Not used by all models
|
61 |
+
self.torchscript = kwargs.pop("torchscript", False) # Only used by PyTorch models
|
62 |
+
self.use_bfloat16 = kwargs.pop("use_bfloat16", False)
|
63 |
+
self.pruned_heads = kwargs.pop("pruned_heads", {})
|
64 |
+
|
65 |
+
# Is decoder is used in encoder-decoder models to differentiate encoder from decoder
|
66 |
+
self.is_encoder_decoder = kwargs.pop("is_encoder_decoder", False)
|
67 |
+
self.is_decoder = kwargs.pop("is_decoder", False)
|
68 |
+
|
69 |
+
# Parameters for sequence generation
|
70 |
+
self.max_length = kwargs.pop("max_length", 20)
|
71 |
+
self.min_length = kwargs.pop("min_length", 0)
|
72 |
+
self.do_sample = kwargs.pop("do_sample", False)
|
73 |
+
self.early_stopping = kwargs.pop("early_stopping", False)
|
74 |
+
self.num_beams = kwargs.pop("num_beams", 1)
|
75 |
+
self.temperature = kwargs.pop("temperature", 1.0)
|
76 |
+
self.top_k = kwargs.pop("top_k", 50)
|
77 |
+
self.top_p = kwargs.pop("top_p", 1.0)
|
78 |
+
self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0)
|
79 |
+
self.length_penalty = kwargs.pop("length_penalty", 1.0)
|
80 |
+
self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0)
|
81 |
+
self.bad_words_ids = kwargs.pop("bad_words_ids", None)
|
82 |
+
self.num_return_sequences = kwargs.pop("num_return_sequences", 1)
|
83 |
+
|
84 |
+
# Fine-tuning task arguments
|
85 |
+
self.architectures = kwargs.pop("architectures", None)
|
86 |
+
self.finetuning_task = kwargs.pop("finetuning_task", None)
|
87 |
+
self.id2label = kwargs.pop("id2label", None)
|
88 |
+
self.label2id = kwargs.pop("label2id", None)
|
89 |
+
if self.id2label is not None:
|
90 |
+
kwargs.pop("num_labels", None)
|
91 |
+
self.id2label = dict((int(key), value) for key, value in self.id2label.items())
|
92 |
+
# Keys are always strings in JSON so convert ids to int here.
|
93 |
+
else:
|
94 |
+
self.num_labels = kwargs.pop("num_labels", 2)
|
95 |
+
|
96 |
+
# Tokenizer arguments TODO: eventually tokenizer and models should share the same config
|
97 |
+
self.prefix = kwargs.pop("prefix", None)
|
98 |
+
self.bos_token_id = kwargs.pop("bos_token_id", None)
|
99 |
+
self.pad_token_id = kwargs.pop("pad_token_id", None)
|
100 |
+
self.eos_token_id = kwargs.pop("eos_token_id", None)
|
101 |
+
self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None)
|
102 |
+
|
103 |
+
# task specific arguments
|
104 |
+
self.task_specific_params = kwargs.pop("task_specific_params", None)
|
105 |
+
|
106 |
+
# TPU arguments
|
107 |
+
self.xla_device = kwargs.pop("xla_device", None)
|
108 |
+
|
109 |
+
# Additional attributes without default values
|
110 |
+
for key, value in kwargs.items():
|
111 |
+
try:
|
112 |
+
setattr(self, key, value)
|
113 |
+
except AttributeError as err:
|
114 |
+
logger.error("Can't set {} with value {} for {}".format(key, value, self))
|
115 |
+
raise err
|
116 |
+
|
117 |
+
@property
|
118 |
+
def num_labels(self):
|
119 |
+
return len(self.id2label)
|
120 |
+
|
121 |
+
@num_labels.setter
|
122 |
+
def num_labels(self, num_labels):
|
123 |
+
self.id2label = {i: "LABEL_{}".format(i) for i in range(num_labels)}
|
124 |
+
self.label2id = dict(zip(self.id2label.values(), self.id2label.keys()))
|
125 |
+
|
126 |
+
def save_pretrained(self, save_directory):
|
127 |
+
"""
|
128 |
+
Save a configuration object to the directory `save_directory`, so that it
|
129 |
+
can be re-loaded using the :func:`~transformers.PretrainedConfig.from_pretrained` class method.
|
130 |
+
|
131 |
+
Args:
|
132 |
+
save_directory (:obj:`string`):
|
133 |
+
Directory where the configuration JSON file will be saved.
|
134 |
+
"""
|
135 |
+
if os.path.isfile(save_directory):
|
136 |
+
raise AssertionError("Provided path ({}) should be a directory, not a file".format(save_directory))
|
137 |
+
os.makedirs(save_directory, exist_ok=True)
|
138 |
+
# If we save using the predefined names, we can load using `from_pretrained`
|
139 |
+
output_config_file = os.path.join(save_directory, CONFIG_NAME)
|
140 |
+
|
141 |
+
self.to_json_file(output_config_file, use_diff=True)
|
142 |
+
logger.info("Configuration saved in {}".format(output_config_file))
|
143 |
+
|
144 |
+
@classmethod
|
145 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs) -> "PretrainedConfig":
|
146 |
+
r"""
|
147 |
+
|
148 |
+
Instantiate a :class:`~transformers.PretrainedConfig` (or a derived class) from a pre-trained model configuration.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
pretrained_model_name_or_path (:obj:`string`):
|
152 |
+
either:
|
153 |
+
- a string with the `shortcut name` of a pre-trained model configuration to load from cache or
|
154 |
+
download, e.g.: ``bert-base-uncased``.
|
155 |
+
- a string with the `identifier name` of a pre-trained model configuration that was user-uploaded to
|
156 |
+
our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
157 |
+
- a path to a `directory` containing a configuration file saved using the
|
158 |
+
:func:`~transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``.
|
159 |
+
- a path or url to a saved configuration JSON `file`, e.g.:
|
160 |
+
``./my_model_directory/configuration.json``.
|
161 |
+
cache_dir (:obj:`string`, `optional`):
|
162 |
+
Path to a directory in which a downloaded pre-trained model
|
163 |
+
configuration should be cached if the standard cache should not be used.
|
164 |
+
kwargs (:obj:`Dict[str, any]`, `optional`):
|
165 |
+
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
|
166 |
+
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is
|
167 |
+
controlled by the `return_unused_kwargs` keyword parameter.
|
168 |
+
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
169 |
+
Force to (re-)download the model weights and configuration files and override the cached versions if they exist.
|
170 |
+
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
171 |
+
Do not delete incompletely recieved file. Attempt to resume the download if such a file exists.
|
172 |
+
proxies (:obj:`Dict`, `optional`):
|
173 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g.:
|
174 |
+
:obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.`
|
175 |
+
The proxies are used on each request.
|
176 |
+
return_unused_kwargs: (`optional`) bool:
|
177 |
+
If False, then this function returns just the final configuration object.
|
178 |
+
If True, then this functions returns a :obj:`Tuple(config, unused_kwargs)` where `unused_kwargs` is a
|
179 |
+
dictionary consisting of the key/value pairs whose keys are not configuration attributes: ie the part
|
180 |
+
of kwargs which has not been used to update `config` and is otherwise ignored.
|
181 |
+
|
182 |
+
Returns:
|
183 |
+
:class:`PretrainedConfig`: An instance of a configuration object
|
184 |
+
|
185 |
+
Examples::
|
186 |
+
|
187 |
+
# We can't instantiate directly the base class `PretrainedConfig` so let's show the examples on a
|
188 |
+
# derived class: BertConfig
|
189 |
+
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
|
190 |
+
config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
|
191 |
+
config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
|
192 |
+
config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
|
193 |
+
assert config.output_attention == True
|
194 |
+
config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True,
|
195 |
+
foo=False, return_unused_kwargs=True)
|
196 |
+
assert config.output_attention == True
|
197 |
+
assert unused_kwargs == {'foo': False}
|
198 |
+
|
199 |
+
"""
|
200 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
201 |
+
return cls.from_dict(config_dict, **kwargs)
|
202 |
+
|
203 |
+
@classmethod
|
204 |
+
def get_config_dict(cls, pretrained_model_name_or_path: str, **kwargs) -> Tuple[Dict, Dict]:
|
205 |
+
"""
|
206 |
+
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used
|
207 |
+
for instantiating a Config using `from_dict`.
|
208 |
+
|
209 |
+
Parameters:
|
210 |
+
pretrained_model_name_or_path (:obj:`string`):
|
211 |
+
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
:obj:`Tuple[Dict, Dict]`: The dictionary that will be used to instantiate the configuration object.
|
215 |
+
|
216 |
+
"""
|
217 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
218 |
+
force_download = kwargs.pop("force_download", False)
|
219 |
+
resume_download = kwargs.pop("resume_download", False)
|
220 |
+
proxies = kwargs.pop("proxies", None)
|
221 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
222 |
+
|
223 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
224 |
+
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
|
225 |
+
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
|
226 |
+
config_file = pretrained_model_name_or_path
|
227 |
+
else:
|
228 |
+
config_file = hf_bucket_url(pretrained_model_name_or_path, filename=CONFIG_NAME, use_cdn=False)
|
229 |
+
|
230 |
+
try:
|
231 |
+
# Load from URL or cache if already cached
|
232 |
+
resolved_config_file = cached_path(
|
233 |
+
config_file,
|
234 |
+
cache_dir=cache_dir,
|
235 |
+
force_download=force_download,
|
236 |
+
proxies=proxies,
|
237 |
+
resume_download=resume_download,
|
238 |
+
local_files_only=local_files_only,
|
239 |
+
)
|
240 |
+
# Load config dict
|
241 |
+
if resolved_config_file is None:
|
242 |
+
raise EnvironmentError
|
243 |
+
config_dict = cls._dict_from_json_file(resolved_config_file)
|
244 |
+
|
245 |
+
except EnvironmentError:
|
246 |
+
msg = (
|
247 |
+
f"Can't load config for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
|
248 |
+
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
|
249 |
+
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a {CONFIG_NAME} file\n\n"
|
250 |
+
)
|
251 |
+
raise EnvironmentError(msg)
|
252 |
+
|
253 |
+
except json.JSONDecodeError:
|
254 |
+
msg = (
|
255 |
+
"Couldn't reach server at '{}' to download configuration file or "
|
256 |
+
"configuration file is not a valid JSON file. "
|
257 |
+
"Please check network or file content here: {}.".format(config_file, resolved_config_file)
|
258 |
+
)
|
259 |
+
raise EnvironmentError(msg)
|
260 |
+
|
261 |
+
if resolved_config_file == config_file:
|
262 |
+
logger.info("loading configuration file {}".format(config_file))
|
263 |
+
else:
|
264 |
+
logger.info("loading configuration file {} from cache at {}".format(config_file, resolved_config_file))
|
265 |
+
|
266 |
+
return config_dict, kwargs
|
267 |
+
|
268 |
+
@classmethod
|
269 |
+
def from_dict(cls, config_dict: Dict, **kwargs) -> "PretrainedConfig":
|
270 |
+
"""
|
271 |
+
Constructs a `Config` from a Python dictionary of parameters.
|
272 |
+
|
273 |
+
Args:
|
274 |
+
config_dict (:obj:`Dict[str, any]`):
|
275 |
+
Dictionary that will be used to instantiate the configuration object. Such a dictionary can be retrieved
|
276 |
+
from a pre-trained checkpoint by leveraging the :func:`~transformers.PretrainedConfig.get_config_dict`
|
277 |
+
method.
|
278 |
+
kwargs (:obj:`Dict[str, any]`):
|
279 |
+
Additional parameters from which to initialize the configuration object.
|
280 |
+
|
281 |
+
Returns:
|
282 |
+
:class:`PretrainedConfig`: An instance of a configuration object
|
283 |
+
"""
|
284 |
+
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
|
285 |
+
|
286 |
+
config = cls(**config_dict)
|
287 |
+
|
288 |
+
if hasattr(config, "pruned_heads"):
|
289 |
+
config.pruned_heads = dict((int(key), value) for key, value in config.pruned_heads.items())
|
290 |
+
|
291 |
+
# Update config with kwargs if needed
|
292 |
+
to_remove = []
|
293 |
+
for key, value in kwargs.items():
|
294 |
+
if hasattr(config, key):
|
295 |
+
setattr(config, key, value)
|
296 |
+
to_remove.append(key)
|
297 |
+
for key in to_remove:
|
298 |
+
kwargs.pop(key, None)
|
299 |
+
|
300 |
+
logger.info("Model config %s", str(config))
|
301 |
+
if return_unused_kwargs:
|
302 |
+
return config, kwargs
|
303 |
+
else:
|
304 |
+
return config
|
305 |
+
|
306 |
+
@classmethod
|
307 |
+
def from_json_file(cls, json_file: str) -> "PretrainedConfig":
|
308 |
+
"""
|
309 |
+
Constructs a `Config` from the path to a json file of parameters.
|
310 |
+
|
311 |
+
Args:
|
312 |
+
json_file (:obj:`string`):
|
313 |
+
Path to the JSON file containing the parameters.
|
314 |
+
|
315 |
+
Returns:
|
316 |
+
:class:`PretrainedConfig`: An instance of a configuration object
|
317 |
+
|
318 |
+
"""
|
319 |
+
config_dict = cls._dict_from_json_file(json_file)
|
320 |
+
return cls(**config_dict)
|
321 |
+
|
322 |
+
@classmethod
|
323 |
+
def _dict_from_json_file(cls, json_file: str):
|
324 |
+
with open(json_file, "r", encoding="utf-8") as reader:
|
325 |
+
text = reader.read()
|
326 |
+
return json.loads(text)
|
327 |
+
|
328 |
+
def __eq__(self, other):
|
329 |
+
return self.__dict__ == other.__dict__
|
330 |
+
|
331 |
+
def __repr__(self):
|
332 |
+
return "{} {}".format(self.__class__.__name__, self.to_json_string())
|
333 |
+
|
334 |
+
def to_diff_dict(self):
|
335 |
+
"""
|
336 |
+
Removes all attributes from config which correspond to the default
|
337 |
+
config attributes for better readability and serializes to a Python
|
338 |
+
dictionary.
|
339 |
+
|
340 |
+
Returns:
|
341 |
+
:obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
342 |
+
"""
|
343 |
+
config_dict = self.to_dict()
|
344 |
+
|
345 |
+
# get the default config dict
|
346 |
+
default_config_dict = PretrainedConfig().to_dict()
|
347 |
+
|
348 |
+
serializable_config_dict = {}
|
349 |
+
|
350 |
+
# only serialize values that differ from the default config
|
351 |
+
for key, value in config_dict.items():
|
352 |
+
if key not in default_config_dict or value != default_config_dict[key]:
|
353 |
+
serializable_config_dict[key] = value
|
354 |
+
|
355 |
+
return serializable_config_dict
|
356 |
+
|
357 |
+
def to_dict(self):
|
358 |
+
"""
|
359 |
+
Serializes this instance to a Python dictionary.
|
360 |
+
|
361 |
+
Returns:
|
362 |
+
:obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
363 |
+
"""
|
364 |
+
output = copy.deepcopy(self.__dict__)
|
365 |
+
if hasattr(self.__class__, "model_type"):
|
366 |
+
output["model_type"] = self.__class__.model_type
|
367 |
+
return output
|
368 |
+
|
369 |
+
def to_json_string(self, use_diff=True):
|
370 |
+
"""
|
371 |
+
Serializes this instance to a JSON string.
|
372 |
+
|
373 |
+
Args:
|
374 |
+
use_diff (:obj:`bool`):
|
375 |
+
If set to True, only the difference between the config instance and the default PretrainedConfig() is serialized to JSON string.
|
376 |
+
|
377 |
+
Returns:
|
378 |
+
:obj:`string`: String containing all the attributes that make up this configuration instance in JSON format.
|
379 |
+
"""
|
380 |
+
if use_diff is True:
|
381 |
+
config_dict = self.to_diff_dict()
|
382 |
+
else:
|
383 |
+
config_dict = self.to_dict()
|
384 |
+
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
385 |
+
|
386 |
+
def to_json_file(self, json_file_path, use_diff=True):
|
387 |
+
"""
|
388 |
+
Save this instance to a json file.
|
389 |
+
|
390 |
+
Args:
|
391 |
+
json_file_path (:obj:`string`):
|
392 |
+
Path to the JSON file in which this configuration instance's parameters will be saved.
|
393 |
+
use_diff (:obj:`bool`):
|
394 |
+
If set to True, only the difference between the config instance and the default PretrainedConfig() is serialized to JSON file.
|
395 |
+
"""
|
396 |
+
with open(json_file_path, "w", encoding="utf-8") as writer:
|
397 |
+
writer.write(self.to_json_string(use_diff=use_diff))
|
398 |
+
|
399 |
+
def update(self, config_dict: Dict):
|
400 |
+
"""
|
401 |
+
Updates attributes of this class
|
402 |
+
with attributes from `config_dict`.
|
403 |
+
|
404 |
+
Args:
|
405 |
+
:obj:`Dict[str, any]`: Dictionary of attributes that shall be updated for this class.
|
406 |
+
"""
|
407 |
+
for key, value in config_dict.items():
|
408 |
+
setattr(self, key, value)
|
elia/bert/file_utils.py
ADDED
@@ -0,0 +1,808 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Utilities for working with the local dataset cache.
|
3 |
+
This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp
|
4 |
+
Copyright by the AllenNLP authors.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import fnmatch
|
8 |
+
import json
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import shutil
|
12 |
+
import sys
|
13 |
+
import tarfile
|
14 |
+
import tempfile
|
15 |
+
from contextlib import contextmanager
|
16 |
+
from functools import partial, wraps
|
17 |
+
from hashlib import sha256
|
18 |
+
from pathlib import Path
|
19 |
+
from typing import Dict, Optional, Union
|
20 |
+
from urllib.parse import urlparse
|
21 |
+
from zipfile import ZipFile, is_zipfile
|
22 |
+
|
23 |
+
import requests
|
24 |
+
from filelock import FileLock
|
25 |
+
from tqdm.auto import tqdm
|
26 |
+
|
27 |
+
#from . import __version__
|
28 |
+
__version__ = "3.0.2"
|
29 |
+
|
30 |
+
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
|
31 |
+
|
32 |
+
try:
|
33 |
+
USE_TF = os.environ.get("USE_TF", "AUTO").upper()
|
34 |
+
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
|
35 |
+
if USE_TORCH in ("1", "ON", "YES", "AUTO") and USE_TF not in ("1", "ON", "YES"):
|
36 |
+
import torch
|
37 |
+
|
38 |
+
_torch_available = True # pylint: disable=invalid-name
|
39 |
+
logger.info("PyTorch version {} available.".format(torch.__version__))
|
40 |
+
else:
|
41 |
+
logger.info("Disabling PyTorch because USE_TF is set")
|
42 |
+
_torch_available = False
|
43 |
+
except ImportError:
|
44 |
+
_torch_available = False # pylint: disable=invalid-name
|
45 |
+
|
46 |
+
try:
|
47 |
+
USE_TF = os.environ.get("USE_TF", "AUTO").upper()
|
48 |
+
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
|
49 |
+
|
50 |
+
if USE_TF in ("1", "ON", "YES", "AUTO") and USE_TORCH not in ("1", "ON", "YES"):
|
51 |
+
import tensorflow as tf
|
52 |
+
|
53 |
+
assert hasattr(tf, "__version__") and int(tf.__version__[0]) >= 2
|
54 |
+
_tf_available = True # pylint: disable=invalid-name
|
55 |
+
logger.info("TensorFlow version {} available.".format(tf.__version__))
|
56 |
+
else:
|
57 |
+
logger.info("Disabling Tensorflow because USE_TORCH is set")
|
58 |
+
_tf_available = False
|
59 |
+
except (ImportError, AssertionError):
|
60 |
+
_tf_available = False # pylint: disable=invalid-name
|
61 |
+
|
62 |
+
|
63 |
+
try:
|
64 |
+
from torch.hub import _get_torch_home
|
65 |
+
|
66 |
+
torch_cache_home = _get_torch_home()
|
67 |
+
except ImportError:
|
68 |
+
torch_cache_home = os.path.expanduser(
|
69 |
+
os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch"))
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
try:
|
74 |
+
import torch_xla.core.xla_model as xm # noqa: F401
|
75 |
+
|
76 |
+
if _torch_available:
|
77 |
+
_torch_tpu_available = True # pylint: disable=
|
78 |
+
else:
|
79 |
+
_torch_tpu_available = False
|
80 |
+
except ImportError:
|
81 |
+
_torch_tpu_available = False
|
82 |
+
|
83 |
+
|
84 |
+
try:
|
85 |
+
import psutil # noqa: F401
|
86 |
+
|
87 |
+
_psutil_available = True
|
88 |
+
|
89 |
+
except ImportError:
|
90 |
+
_psutil_available = False
|
91 |
+
|
92 |
+
|
93 |
+
try:
|
94 |
+
import py3nvml # noqa: F401
|
95 |
+
|
96 |
+
_py3nvml_available = True
|
97 |
+
|
98 |
+
except ImportError:
|
99 |
+
_py3nvml_available = False
|
100 |
+
|
101 |
+
|
102 |
+
try:
|
103 |
+
from apex import amp # noqa: F401
|
104 |
+
|
105 |
+
_has_apex = True
|
106 |
+
except ImportError:
|
107 |
+
_has_apex = False
|
108 |
+
|
109 |
+
default_cache_path = os.path.join(torch_cache_home, "transformers")
|
110 |
+
|
111 |
+
|
112 |
+
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
|
113 |
+
PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE)
|
114 |
+
TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE)
|
115 |
+
|
116 |
+
WEIGHTS_NAME = "pytorch_model.bin"
|
117 |
+
TF2_WEIGHTS_NAME = "tf_model.h5"
|
118 |
+
TF_WEIGHTS_NAME = "model.ckpt"
|
119 |
+
CONFIG_NAME = "config.json"
|
120 |
+
MODEL_CARD_NAME = "modelcard.json"
|
121 |
+
|
122 |
+
|
123 |
+
MULTIPLE_CHOICE_DUMMY_INPUTS = [[[0], [1]], [[0], [1]]]
|
124 |
+
DUMMY_INPUTS = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
|
125 |
+
DUMMY_MASK = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
|
126 |
+
|
127 |
+
S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert"
|
128 |
+
CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co"
|
129 |
+
|
130 |
+
|
131 |
+
def is_torch_available():
|
132 |
+
return _torch_available
|
133 |
+
|
134 |
+
|
135 |
+
def is_tf_available():
|
136 |
+
return _tf_available
|
137 |
+
|
138 |
+
|
139 |
+
def is_torch_tpu_available():
|
140 |
+
return _torch_tpu_available
|
141 |
+
|
142 |
+
|
143 |
+
def is_psutil_available():
|
144 |
+
return _psutil_available
|
145 |
+
|
146 |
+
|
147 |
+
def is_py3nvml_available():
|
148 |
+
return _py3nvml_available
|
149 |
+
|
150 |
+
|
151 |
+
def is_apex_available():
|
152 |
+
return _has_apex
|
153 |
+
|
154 |
+
|
155 |
+
def add_start_docstrings(*docstr):
|
156 |
+
def docstring_decorator(fn):
|
157 |
+
fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
|
158 |
+
return fn
|
159 |
+
|
160 |
+
return docstring_decorator
|
161 |
+
|
162 |
+
|
163 |
+
def add_start_docstrings_to_callable(*docstr):
|
164 |
+
def docstring_decorator(fn):
|
165 |
+
class_name = ":class:`~transformers.{}`".format(fn.__qualname__.split(".")[0])
|
166 |
+
intro = " The {} forward method, overrides the :func:`__call__` special method.".format(class_name)
|
167 |
+
note = r"""
|
168 |
+
|
169 |
+
.. note::
|
170 |
+
Although the recipe for forward pass needs to be defined within
|
171 |
+
this function, one should call the :class:`Module` instance afterwards
|
172 |
+
instead of this since the former takes care of running the
|
173 |
+
pre and post processing steps while the latter silently ignores them.
|
174 |
+
"""
|
175 |
+
fn.__doc__ = intro + note + "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
|
176 |
+
return fn
|
177 |
+
|
178 |
+
return docstring_decorator
|
179 |
+
|
180 |
+
|
181 |
+
def add_end_docstrings(*docstr):
|
182 |
+
def docstring_decorator(fn):
|
183 |
+
fn.__doc__ = fn.__doc__ + "".join(docstr)
|
184 |
+
return fn
|
185 |
+
|
186 |
+
return docstring_decorator
|
187 |
+
|
188 |
+
|
189 |
+
PT_TOKEN_CLASSIFICATION_SAMPLE = r"""
|
190 |
+
Example::
|
191 |
+
|
192 |
+
>>> from transformers import {tokenizer_class}, {model_class}
|
193 |
+
>>> import torch
|
194 |
+
|
195 |
+
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
|
196 |
+
>>> model = {model_class}.from_pretrained('{checkpoint}')
|
197 |
+
|
198 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
199 |
+
>>> labels = torch.tensor([1] * inputs["input_ids"].size(1)).unsqueeze(0) # Batch size 1
|
200 |
+
|
201 |
+
>>> outputs = model(**inputs, labels=labels)
|
202 |
+
>>> loss, scores = outputs[:2]
|
203 |
+
"""
|
204 |
+
|
205 |
+
PT_QUESTION_ANSWERING_SAMPLE = r"""
|
206 |
+
Example::
|
207 |
+
|
208 |
+
>>> from transformers import {tokenizer_class}, {model_class}
|
209 |
+
>>> import torch
|
210 |
+
|
211 |
+
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
|
212 |
+
>>> model = {model_class}.from_pretrained('{checkpoint}')
|
213 |
+
|
214 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
215 |
+
>>> start_positions = torch.tensor([1])
|
216 |
+
>>> end_positions = torch.tensor([3])
|
217 |
+
|
218 |
+
>>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
|
219 |
+
>>> loss, start_scores, end_scores = outputs[:3]
|
220 |
+
"""
|
221 |
+
|
222 |
+
PT_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
|
223 |
+
Example::
|
224 |
+
|
225 |
+
>>> from transformers import {tokenizer_class}, {model_class}
|
226 |
+
>>> import torch
|
227 |
+
|
228 |
+
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
|
229 |
+
>>> model = {model_class}.from_pretrained('{checkpoint}')
|
230 |
+
|
231 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
232 |
+
>>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
|
233 |
+
>>> outputs = model(**inputs, labels=labels)
|
234 |
+
>>> loss, logits = outputs[:2]
|
235 |
+
"""
|
236 |
+
|
237 |
+
PT_MASKED_LM_SAMPLE = r"""
|
238 |
+
Example::
|
239 |
+
|
240 |
+
>>> from transformers import {tokenizer_class}, {model_class}
|
241 |
+
>>> import torch
|
242 |
+
|
243 |
+
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
|
244 |
+
>>> model = {model_class}.from_pretrained('{checkpoint}')
|
245 |
+
|
246 |
+
>>> input_ids = tokenizer("Hello, my dog is cute", return_tensors="pt")["input_ids"]
|
247 |
+
|
248 |
+
>>> outputs = model(input_ids, labels=input_ids)
|
249 |
+
>>> loss, prediction_scores = outputs[:2]
|
250 |
+
"""
|
251 |
+
|
252 |
+
PT_BASE_MODEL_SAMPLE = r"""
|
253 |
+
Example::
|
254 |
+
|
255 |
+
>>> from transformers import {tokenizer_class}, {model_class}
|
256 |
+
>>> import torch
|
257 |
+
|
258 |
+
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
|
259 |
+
>>> model = {model_class}.from_pretrained('{checkpoint}')
|
260 |
+
|
261 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
262 |
+
>>> outputs = model(**inputs)
|
263 |
+
|
264 |
+
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
265 |
+
"""
|
266 |
+
|
267 |
+
PT_MULTIPLE_CHOICE_SAMPLE = r"""
|
268 |
+
Example::
|
269 |
+
|
270 |
+
>>> from transformers import {tokenizer_class}, {model_class}
|
271 |
+
>>> import torch
|
272 |
+
|
273 |
+
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
|
274 |
+
>>> model = {model_class}.from_pretrained('{checkpoint}')
|
275 |
+
|
276 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
277 |
+
>>> choice0 = "It is eaten with a fork and a knife."
|
278 |
+
>>> choice1 = "It is eaten while held in the hand."
|
279 |
+
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
|
280 |
+
|
281 |
+
>>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True)
|
282 |
+
>>> outputs = model(**{{k: v.unsqueeze(0) for k,v in encoding.items()}}, labels=labels) # batch size is 1
|
283 |
+
|
284 |
+
>>> # the linear classifier still needs to be trained
|
285 |
+
>>> loss, logits = outputs[:2]
|
286 |
+
"""
|
287 |
+
|
288 |
+
PT_CAUSAL_LM_SAMPLE = r"""
|
289 |
+
Example::
|
290 |
+
|
291 |
+
>>> import torch
|
292 |
+
>>> from transformers import {tokenizer_class}, {model_class}
|
293 |
+
|
294 |
+
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
|
295 |
+
>>> model = {model_class}.from_pretrained('{checkpoint}')
|
296 |
+
|
297 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
298 |
+
>>> outputs = model(**inputs, labels=inputs["input_ids"])
|
299 |
+
>>> loss, logits = outputs[:2]
|
300 |
+
"""
|
301 |
+
|
302 |
+
TF_TOKEN_CLASSIFICATION_SAMPLE = r"""
|
303 |
+
Example::
|
304 |
+
|
305 |
+
>>> from transformers import {tokenizer_class}, {model_class}
|
306 |
+
>>> import tensorflow as tf
|
307 |
+
|
308 |
+
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
|
309 |
+
>>> model = {model_class}.from_pretrained('{checkpoint}')
|
310 |
+
|
311 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
|
312 |
+
>>> input_ids = inputs["input_ids"]
|
313 |
+
>>> inputs["labels"] = tf.reshape(tf.constant([1] * tf.size(input_ids).numpy()), (-1, tf.size(input_ids))) # Batch size 1
|
314 |
+
|
315 |
+
>>> outputs = model(inputs)
|
316 |
+
>>> loss, scores = outputs[:2]
|
317 |
+
"""
|
318 |
+
|
319 |
+
TF_QUESTION_ANSWERING_SAMPLE = r"""
|
320 |
+
Example::
|
321 |
+
|
322 |
+
>>> from transformers import {tokenizer_class}, {model_class}
|
323 |
+
>>> import tensorflow as tf
|
324 |
+
|
325 |
+
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
|
326 |
+
>>> model = {model_class}.from_pretrained('{checkpoint}')
|
327 |
+
|
328 |
+
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
329 |
+
>>> input_dict = tokenizer(question, text, return_tensors='tf')
|
330 |
+
>>> start_scores, end_scores = model(input_dict)
|
331 |
+
|
332 |
+
>>> all_tokens = tokenizer.convert_ids_to_tokens(input_dict["input_ids"].numpy()[0])
|
333 |
+
>>> answer = ' '.join(all_tokens[tf.math.argmax(start_scores, 1)[0] : tf.math.argmax(end_scores, 1)[0]+1])
|
334 |
+
"""
|
335 |
+
|
336 |
+
TF_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
|
337 |
+
Example::
|
338 |
+
|
339 |
+
>>> from transformers import {tokenizer_class}, {model_class}
|
340 |
+
>>> import tensorflow as tf
|
341 |
+
|
342 |
+
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
|
343 |
+
>>> model = {model_class}.from_pretrained('{checkpoint}')
|
344 |
+
|
345 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
|
346 |
+
>>> inputs["labels"] = tf.reshape(tf.constant(1), (-1, 1)) # Batch size 1
|
347 |
+
|
348 |
+
>>> outputs = model(inputs)
|
349 |
+
>>> loss, logits = outputs[:2]
|
350 |
+
"""
|
351 |
+
|
352 |
+
TF_MASKED_LM_SAMPLE = r"""
|
353 |
+
Example::
|
354 |
+
>>> from transformers import {tokenizer_class}, {model_class}
|
355 |
+
>>> import tensorflow as tf
|
356 |
+
|
357 |
+
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
|
358 |
+
>>> model = {model_class}.from_pretrained('{checkpoint}')
|
359 |
+
|
360 |
+
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
361 |
+
|
362 |
+
>>> outputs = model(input_ids)
|
363 |
+
>>> prediction_scores = outputs[0]
|
364 |
+
"""
|
365 |
+
|
366 |
+
TF_BASE_MODEL_SAMPLE = r"""
|
367 |
+
Example::
|
368 |
+
|
369 |
+
>>> from transformers import {tokenizer_class}, {model_class}
|
370 |
+
>>> import tensorflow as tf
|
371 |
+
|
372 |
+
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
|
373 |
+
>>> model = {model_class}.from_pretrained('{checkpoint}')
|
374 |
+
|
375 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
|
376 |
+
>>> outputs = model(inputs)
|
377 |
+
|
378 |
+
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
379 |
+
"""
|
380 |
+
|
381 |
+
TF_MULTIPLE_CHOICE_SAMPLE = r"""
|
382 |
+
Example::
|
383 |
+
|
384 |
+
>>> from transformers import {tokenizer_class}, {model_class}
|
385 |
+
>>> import tensorflow as tf
|
386 |
+
|
387 |
+
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
|
388 |
+
>>> model = {model_class}.from_pretrained('{checkpoint}')
|
389 |
+
|
390 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
391 |
+
>>> choice0 = "It is eaten with a fork and a knife."
|
392 |
+
>>> choice1 = "It is eaten while held in the hand."
|
393 |
+
|
394 |
+
>>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='tf', padding=True)
|
395 |
+
>>> inputs = {{k: tf.expand_dims(v, 0) for k, v in encoding.items()}}
|
396 |
+
>>> outputs = model(inputs) # batch size is 1
|
397 |
+
|
398 |
+
>>> # the linear classifier still needs to be trained
|
399 |
+
>>> logits = outputs[0]
|
400 |
+
"""
|
401 |
+
|
402 |
+
TF_CAUSAL_LM_SAMPLE = r"""
|
403 |
+
Example::
|
404 |
+
|
405 |
+
>>> from transformers import {tokenizer_class}, {model_class}
|
406 |
+
>>> import tensorflow as tf
|
407 |
+
|
408 |
+
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
|
409 |
+
>>> model = {model_class}.from_pretrained('{checkpoint}')
|
410 |
+
|
411 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
|
412 |
+
>>> outputs = model(inputs)
|
413 |
+
>>> logits = outputs[0]
|
414 |
+
"""
|
415 |
+
|
416 |
+
|
417 |
+
def add_code_sample_docstrings(*docstr, tokenizer_class=None, checkpoint=None):
|
418 |
+
def docstring_decorator(fn):
|
419 |
+
model_class = fn.__qualname__.split(".")[0]
|
420 |
+
is_tf_class = model_class[:2] == "TF"
|
421 |
+
|
422 |
+
if "SequenceClassification" in model_class:
|
423 |
+
code_sample = TF_SEQUENCE_CLASSIFICATION_SAMPLE if is_tf_class else PT_SEQUENCE_CLASSIFICATION_SAMPLE
|
424 |
+
elif "QuestionAnswering" in model_class:
|
425 |
+
code_sample = TF_QUESTION_ANSWERING_SAMPLE if is_tf_class else PT_QUESTION_ANSWERING_SAMPLE
|
426 |
+
elif "TokenClassification" in model_class:
|
427 |
+
code_sample = TF_TOKEN_CLASSIFICATION_SAMPLE if is_tf_class else PT_TOKEN_CLASSIFICATION_SAMPLE
|
428 |
+
elif "MultipleChoice" in model_class:
|
429 |
+
code_sample = TF_MULTIPLE_CHOICE_SAMPLE if is_tf_class else PT_MULTIPLE_CHOICE_SAMPLE
|
430 |
+
elif "MaskedLM" in model_class:
|
431 |
+
code_sample = TF_MASKED_LM_SAMPLE if is_tf_class else PT_MASKED_LM_SAMPLE
|
432 |
+
elif "LMHead" in model_class:
|
433 |
+
code_sample = TF_CAUSAL_LM_SAMPLE if is_tf_class else PT_CAUSAL_LM_SAMPLE
|
434 |
+
elif "Model" in model_class:
|
435 |
+
code_sample = TF_BASE_MODEL_SAMPLE if is_tf_class else PT_BASE_MODEL_SAMPLE
|
436 |
+
else:
|
437 |
+
raise ValueError(f"Docstring can't be built for model {model_class}")
|
438 |
+
|
439 |
+
built_doc = code_sample.format(model_class=model_class, tokenizer_class=tokenizer_class, checkpoint=checkpoint)
|
440 |
+
fn.__doc__ = (fn.__doc__ or "") + "".join(docstr) + built_doc
|
441 |
+
return fn
|
442 |
+
|
443 |
+
return docstring_decorator
|
444 |
+
|
445 |
+
|
446 |
+
def is_remote_url(url_or_filename):
|
447 |
+
parsed = urlparse(url_or_filename)
|
448 |
+
return parsed.scheme in ("http", "https")
|
449 |
+
|
450 |
+
|
451 |
+
def hf_bucket_url(model_id: str, filename: str, use_cdn=True) -> str:
|
452 |
+
"""
|
453 |
+
Resolve a model identifier, and a file name, to a HF-hosted url
|
454 |
+
on either S3 or Cloudfront (a Content Delivery Network, or CDN).
|
455 |
+
|
456 |
+
Cloudfront is replicated over the globe so downloads are way faster
|
457 |
+
for the end user (and it also lowers our bandwidth costs). However, it
|
458 |
+
is more aggressively cached by default, so may not always reflect the
|
459 |
+
latest changes to the underlying file (default TTL is 24 hours).
|
460 |
+
|
461 |
+
In terms of client-side caching from this library, even though
|
462 |
+
Cloudfront relays the ETags from S3, using one or the other
|
463 |
+
(or switching from one to the other) will affect caching: cached files
|
464 |
+
are not shared between the two because the cached file's name contains
|
465 |
+
a hash of the url.
|
466 |
+
"""
|
467 |
+
endpoint = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
|
468 |
+
legacy_format = "/" not in model_id
|
469 |
+
if legacy_format:
|
470 |
+
return f"{endpoint}/{model_id}-{filename}"
|
471 |
+
else:
|
472 |
+
return f"{endpoint}/{model_id}/{filename}"
|
473 |
+
|
474 |
+
|
475 |
+
def url_to_filename(url, etag=None):
|
476 |
+
"""
|
477 |
+
Convert `url` into a hashed filename in a repeatable way.
|
478 |
+
If `etag` is specified, append its hash to the url's, delimited
|
479 |
+
by a period.
|
480 |
+
If the url ends with .h5 (Keras HDF5 weights) adds '.h5' to the name
|
481 |
+
so that TF 2.0 can identify it as a HDF5 file
|
482 |
+
(see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380)
|
483 |
+
"""
|
484 |
+
url_bytes = url.encode("utf-8")
|
485 |
+
url_hash = sha256(url_bytes)
|
486 |
+
filename = url_hash.hexdigest()
|
487 |
+
|
488 |
+
if etag:
|
489 |
+
etag_bytes = etag.encode("utf-8")
|
490 |
+
etag_hash = sha256(etag_bytes)
|
491 |
+
filename += "." + etag_hash.hexdigest()
|
492 |
+
|
493 |
+
if url.endswith(".h5"):
|
494 |
+
filename += ".h5"
|
495 |
+
|
496 |
+
return filename
|
497 |
+
|
498 |
+
|
499 |
+
def filename_to_url(filename, cache_dir=None):
|
500 |
+
"""
|
501 |
+
Return the url and etag (which may be ``None``) stored for `filename`.
|
502 |
+
Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist.
|
503 |
+
"""
|
504 |
+
if cache_dir is None:
|
505 |
+
cache_dir = TRANSFORMERS_CACHE
|
506 |
+
if isinstance(cache_dir, Path):
|
507 |
+
cache_dir = str(cache_dir)
|
508 |
+
|
509 |
+
cache_path = os.path.join(cache_dir, filename)
|
510 |
+
if not os.path.exists(cache_path):
|
511 |
+
raise EnvironmentError("file {} not found".format(cache_path))
|
512 |
+
|
513 |
+
meta_path = cache_path + ".json"
|
514 |
+
if not os.path.exists(meta_path):
|
515 |
+
raise EnvironmentError("file {} not found".format(meta_path))
|
516 |
+
|
517 |
+
with open(meta_path, encoding="utf-8") as meta_file:
|
518 |
+
metadata = json.load(meta_file)
|
519 |
+
url = metadata["url"]
|
520 |
+
etag = metadata["etag"]
|
521 |
+
|
522 |
+
return url, etag
|
523 |
+
|
524 |
+
|
525 |
+
def cached_path(
|
526 |
+
url_or_filename,
|
527 |
+
cache_dir=None,
|
528 |
+
force_download=False,
|
529 |
+
proxies=None,
|
530 |
+
resume_download=False,
|
531 |
+
user_agent: Union[Dict, str, None] = None,
|
532 |
+
extract_compressed_file=False,
|
533 |
+
force_extract=False,
|
534 |
+
local_files_only=False,
|
535 |
+
) -> Optional[str]:
|
536 |
+
"""
|
537 |
+
Given something that might be a URL (or might be a local path),
|
538 |
+
determine which. If it's a URL, download the file and cache it, and
|
539 |
+
return the path to the cached file. If it's already a local path,
|
540 |
+
make sure the file exists and then return the path.
|
541 |
+
Args:
|
542 |
+
cache_dir: specify a cache directory to save the file to (overwrite the default cache dir).
|
543 |
+
force_download: if True, re-dowload the file even if it's already cached in the cache dir.
|
544 |
+
resume_download: if True, resume the download if incompletly recieved file is found.
|
545 |
+
user_agent: Optional string or dict that will be appended to the user-agent on remote requests.
|
546 |
+
extract_compressed_file: if True and the path point to a zip or tar file, extract the compressed
|
547 |
+
file in a folder along the archive.
|
548 |
+
force_extract: if True when extract_compressed_file is True and the archive was already extracted,
|
549 |
+
re-extract the archive and overide the folder where it was extracted.
|
550 |
+
|
551 |
+
Return:
|
552 |
+
None in case of non-recoverable file (non-existent or inaccessible url + no cache on disk).
|
553 |
+
Local path (string) otherwise
|
554 |
+
"""
|
555 |
+
if cache_dir is None:
|
556 |
+
cache_dir = TRANSFORMERS_CACHE
|
557 |
+
if isinstance(url_or_filename, Path):
|
558 |
+
url_or_filename = str(url_or_filename)
|
559 |
+
if isinstance(cache_dir, Path):
|
560 |
+
cache_dir = str(cache_dir)
|
561 |
+
|
562 |
+
if is_remote_url(url_or_filename):
|
563 |
+
# URL, so get it from the cache (downloading if necessary)
|
564 |
+
output_path = get_from_cache(
|
565 |
+
url_or_filename,
|
566 |
+
cache_dir=cache_dir,
|
567 |
+
force_download=force_download,
|
568 |
+
proxies=proxies,
|
569 |
+
resume_download=resume_download,
|
570 |
+
user_agent=user_agent,
|
571 |
+
local_files_only=local_files_only,
|
572 |
+
)
|
573 |
+
elif os.path.exists(url_or_filename):
|
574 |
+
# File, and it exists.
|
575 |
+
output_path = url_or_filename
|
576 |
+
elif urlparse(url_or_filename).scheme == "":
|
577 |
+
# File, but it doesn't exist.
|
578 |
+
raise EnvironmentError("file {} not found".format(url_or_filename))
|
579 |
+
else:
|
580 |
+
# Something unknown
|
581 |
+
raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
|
582 |
+
|
583 |
+
if extract_compressed_file:
|
584 |
+
if not is_zipfile(output_path) and not tarfile.is_tarfile(output_path):
|
585 |
+
return output_path
|
586 |
+
|
587 |
+
# Path where we extract compressed archives
|
588 |
+
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
|
589 |
+
output_dir, output_file = os.path.split(output_path)
|
590 |
+
output_extract_dir_name = output_file.replace(".", "-") + "-extracted"
|
591 |
+
output_path_extracted = os.path.join(output_dir, output_extract_dir_name)
|
592 |
+
|
593 |
+
if os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not force_extract:
|
594 |
+
return output_path_extracted
|
595 |
+
|
596 |
+
# Prevent parallel extractions
|
597 |
+
lock_path = output_path + ".lock"
|
598 |
+
with FileLock(lock_path):
|
599 |
+
shutil.rmtree(output_path_extracted, ignore_errors=True)
|
600 |
+
os.makedirs(output_path_extracted)
|
601 |
+
if is_zipfile(output_path):
|
602 |
+
with ZipFile(output_path, "r") as zip_file:
|
603 |
+
zip_file.extractall(output_path_extracted)
|
604 |
+
zip_file.close()
|
605 |
+
elif tarfile.is_tarfile(output_path):
|
606 |
+
tar_file = tarfile.open(output_path)
|
607 |
+
tar_file.extractall(output_path_extracted)
|
608 |
+
tar_file.close()
|
609 |
+
else:
|
610 |
+
raise EnvironmentError("Archive format of {} could not be identified".format(output_path))
|
611 |
+
|
612 |
+
return output_path_extracted
|
613 |
+
|
614 |
+
return output_path
|
615 |
+
|
616 |
+
|
617 |
+
def http_get(url, temp_file, proxies=None, resume_size=0, user_agent: Union[Dict, str, None] = None):
|
618 |
+
ua = "transformers/{}; python/{}".format(__version__, sys.version.split()[0])
|
619 |
+
if is_torch_available():
|
620 |
+
ua += "; torch/{}".format(torch.__version__)
|
621 |
+
if is_tf_available():
|
622 |
+
ua += "; tensorflow/{}".format(tf.__version__)
|
623 |
+
if isinstance(user_agent, dict):
|
624 |
+
ua += "; " + "; ".join("{}/{}".format(k, v) for k, v in user_agent.items())
|
625 |
+
elif isinstance(user_agent, str):
|
626 |
+
ua += "; " + user_agent
|
627 |
+
headers = {"user-agent": ua}
|
628 |
+
if resume_size > 0:
|
629 |
+
headers["Range"] = "bytes=%d-" % (resume_size,)
|
630 |
+
response = requests.get(url, stream=True, proxies=proxies, headers=headers)
|
631 |
+
if response.status_code == 416: # Range not satisfiable
|
632 |
+
return
|
633 |
+
content_length = response.headers.get("Content-Length")
|
634 |
+
total = resume_size + int(content_length) if content_length is not None else None
|
635 |
+
progress = tqdm(
|
636 |
+
unit="B",
|
637 |
+
unit_scale=True,
|
638 |
+
total=total,
|
639 |
+
initial=resume_size,
|
640 |
+
desc="Downloading",
|
641 |
+
disable=bool(logger.getEffectiveLevel() == logging.NOTSET),
|
642 |
+
)
|
643 |
+
for chunk in response.iter_content(chunk_size=1024):
|
644 |
+
if chunk: # filter out keep-alive new chunks
|
645 |
+
progress.update(len(chunk))
|
646 |
+
temp_file.write(chunk)
|
647 |
+
progress.close()
|
648 |
+
|
649 |
+
|
650 |
+
def get_from_cache(
|
651 |
+
url,
|
652 |
+
cache_dir=None,
|
653 |
+
force_download=False,
|
654 |
+
proxies=None,
|
655 |
+
etag_timeout=10,
|
656 |
+
resume_download=False,
|
657 |
+
user_agent: Union[Dict, str, None] = None,
|
658 |
+
local_files_only=False,
|
659 |
+
) -> Optional[str]:
|
660 |
+
"""
|
661 |
+
Given a URL, look for the corresponding file in the local cache.
|
662 |
+
If it's not there, download it. Then return the path to the cached file.
|
663 |
+
|
664 |
+
Return:
|
665 |
+
None in case of non-recoverable file (non-existent or inaccessible url + no cache on disk).
|
666 |
+
Local path (string) otherwise
|
667 |
+
"""
|
668 |
+
if cache_dir is None:
|
669 |
+
cache_dir = TRANSFORMERS_CACHE
|
670 |
+
if isinstance(cache_dir, Path):
|
671 |
+
cache_dir = str(cache_dir)
|
672 |
+
|
673 |
+
os.makedirs(cache_dir, exist_ok=True)
|
674 |
+
|
675 |
+
etag = None
|
676 |
+
if not local_files_only:
|
677 |
+
try:
|
678 |
+
response = requests.head(url, allow_redirects=True, proxies=proxies, timeout=etag_timeout)
|
679 |
+
if response.status_code == 200:
|
680 |
+
etag = response.headers.get("ETag")
|
681 |
+
except (EnvironmentError, requests.exceptions.Timeout):
|
682 |
+
# etag is already None
|
683 |
+
pass
|
684 |
+
|
685 |
+
filename = url_to_filename(url, etag)
|
686 |
+
|
687 |
+
# get cache path to put the file
|
688 |
+
cache_path = os.path.join(cache_dir, filename)
|
689 |
+
|
690 |
+
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
|
691 |
+
# try to get the last downloaded one
|
692 |
+
if etag is None:
|
693 |
+
if os.path.exists(cache_path):
|
694 |
+
return cache_path
|
695 |
+
else:
|
696 |
+
matching_files = [
|
697 |
+
file
|
698 |
+
for file in fnmatch.filter(os.listdir(cache_dir), filename + ".*")
|
699 |
+
if not file.endswith(".json") and not file.endswith(".lock")
|
700 |
+
]
|
701 |
+
if len(matching_files) > 0:
|
702 |
+
return os.path.join(cache_dir, matching_files[-1])
|
703 |
+
else:
|
704 |
+
# If files cannot be found and local_files_only=True,
|
705 |
+
# the models might've been found if local_files_only=False
|
706 |
+
# Notify the user about that
|
707 |
+
if local_files_only:
|
708 |
+
raise ValueError(
|
709 |
+
"Cannot find the requested files in the cached path and outgoing traffic has been"
|
710 |
+
" disabled. To enable model look-ups and downloads online, set 'local_files_only'"
|
711 |
+
" to False."
|
712 |
+
)
|
713 |
+
return None
|
714 |
+
|
715 |
+
# From now on, etag is not None.
|
716 |
+
if os.path.exists(cache_path) and not force_download:
|
717 |
+
return cache_path
|
718 |
+
|
719 |
+
# Prevent parallel downloads of the same file with a lock.
|
720 |
+
lock_path = cache_path + ".lock"
|
721 |
+
with FileLock(lock_path):
|
722 |
+
|
723 |
+
# If the download just completed while the lock was activated.
|
724 |
+
if os.path.exists(cache_path) and not force_download:
|
725 |
+
# Even if returning early like here, the lock will be released.
|
726 |
+
return cache_path
|
727 |
+
|
728 |
+
if resume_download:
|
729 |
+
incomplete_path = cache_path + ".incomplete"
|
730 |
+
|
731 |
+
@contextmanager
|
732 |
+
def _resumable_file_manager():
|
733 |
+
with open(incomplete_path, "a+b") as f:
|
734 |
+
yield f
|
735 |
+
|
736 |
+
temp_file_manager = _resumable_file_manager
|
737 |
+
if os.path.exists(incomplete_path):
|
738 |
+
resume_size = os.stat(incomplete_path).st_size
|
739 |
+
else:
|
740 |
+
resume_size = 0
|
741 |
+
else:
|
742 |
+
temp_file_manager = partial(tempfile.NamedTemporaryFile, dir=cache_dir, delete=False)
|
743 |
+
resume_size = 0
|
744 |
+
|
745 |
+
# Download to temporary file, then copy to cache dir once finished.
|
746 |
+
# Otherwise you get corrupt cache entries if the download gets interrupted.
|
747 |
+
with temp_file_manager() as temp_file:
|
748 |
+
logger.info("%s not found in cache or force_download set to True, downloading to %s", url, temp_file.name)
|
749 |
+
|
750 |
+
http_get(url, temp_file, proxies=proxies, resume_size=resume_size, user_agent=user_agent)
|
751 |
+
|
752 |
+
logger.info("storing %s in cache at %s", url, cache_path)
|
753 |
+
os.replace(temp_file.name, cache_path)
|
754 |
+
|
755 |
+
logger.info("creating metadata file for %s", cache_path)
|
756 |
+
meta = {"url": url, "etag": etag}
|
757 |
+
meta_path = cache_path + ".json"
|
758 |
+
with open(meta_path, "w") as meta_file:
|
759 |
+
json.dump(meta, meta_file)
|
760 |
+
|
761 |
+
return cache_path
|
762 |
+
|
763 |
+
|
764 |
+
class cached_property(property):
|
765 |
+
"""
|
766 |
+
Descriptor that mimics @property but caches output in member variable.
|
767 |
+
|
768 |
+
From tensorflow_datasets
|
769 |
+
|
770 |
+
Built-in in functools from Python 3.8.
|
771 |
+
"""
|
772 |
+
|
773 |
+
def __get__(self, obj, objtype=None):
|
774 |
+
# See docs.python.org/3/howto/descriptor.html#properties
|
775 |
+
if obj is None:
|
776 |
+
return self
|
777 |
+
if self.fget is None:
|
778 |
+
raise AttributeError("unreadable attribute")
|
779 |
+
attr = "__cached_" + self.fget.__name__
|
780 |
+
cached = getattr(obj, attr, None)
|
781 |
+
if cached is None:
|
782 |
+
cached = self.fget(obj)
|
783 |
+
setattr(obj, attr, cached)
|
784 |
+
return cached
|
785 |
+
|
786 |
+
|
787 |
+
def torch_required(func):
|
788 |
+
# Chose a different decorator name than in tests so it's clear they are not the same.
|
789 |
+
@wraps(func)
|
790 |
+
def wrapper(*args, **kwargs):
|
791 |
+
if is_torch_available():
|
792 |
+
return func(*args, **kwargs)
|
793 |
+
else:
|
794 |
+
raise ImportError(f"Method `{func.__name__}` requires PyTorch.")
|
795 |
+
|
796 |
+
return wrapper
|
797 |
+
|
798 |
+
|
799 |
+
def tf_required(func):
|
800 |
+
# Chose a different decorator name than in tests so it's clear they are not the same.
|
801 |
+
@wraps(func)
|
802 |
+
def wrapper(*args, **kwargs):
|
803 |
+
if is_tf_available():
|
804 |
+
return func(*args, **kwargs)
|
805 |
+
else:
|
806 |
+
raise ImportError(f"Method `{func.__name__}` requires TF.")
|
807 |
+
|
808 |
+
return wrapper
|
elia/bert/generation_utils.py
ADDED
@@ -0,0 +1,993 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import logging
|
18 |
+
from typing import Iterable, Optional, Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import Tensor
|
22 |
+
from torch.nn import functional as F
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
class GenerationMixin:
|
29 |
+
"""
|
30 |
+
A class contraining all of the functions supporting generation, to be used as a mixin in PreTrainedModel.
|
31 |
+
"""
|
32 |
+
|
33 |
+
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
34 |
+
return {"input_ids": input_ids}
|
35 |
+
|
36 |
+
def adjust_logits_during_generation(self, logits, **kwargs):
|
37 |
+
return logits
|
38 |
+
|
39 |
+
def _use_cache(self, outputs, use_cache):
|
40 |
+
"""During generation, decide whether to pass the `past` variable to the next forward pass."""
|
41 |
+
if len(outputs) <= 1 or use_cache is False:
|
42 |
+
return False
|
43 |
+
if hasattr(self.config, "mem_len") and self.config.mem_len == 0:
|
44 |
+
return False
|
45 |
+
return True
|
46 |
+
|
47 |
+
def enforce_repetition_penalty_(self, lprobs, batch_size, num_beams, prev_output_tokens, repetition_penalty):
|
48 |
+
"""repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858). """
|
49 |
+
for i in range(batch_size * num_beams):
|
50 |
+
for previous_token in set(prev_output_tokens[i].tolist()):
|
51 |
+
# if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
|
52 |
+
if lprobs[i, previous_token] < 0:
|
53 |
+
lprobs[i, previous_token] *= repetition_penalty
|
54 |
+
else:
|
55 |
+
lprobs[i, previous_token] /= repetition_penalty
|
56 |
+
|
57 |
+
def postprocess_next_token_scores(
|
58 |
+
self,
|
59 |
+
scores,
|
60 |
+
input_ids,
|
61 |
+
no_repeat_ngram_size,
|
62 |
+
bad_words_ids,
|
63 |
+
cur_len,
|
64 |
+
min_length,
|
65 |
+
max_length,
|
66 |
+
eos_token_id,
|
67 |
+
repetition_penalty,
|
68 |
+
batch_size,
|
69 |
+
num_beams,
|
70 |
+
):
|
71 |
+
# repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858)
|
72 |
+
if repetition_penalty != 1.0:
|
73 |
+
self.enforce_repetition_penalty_(
|
74 |
+
scores, batch_size, num_beams, input_ids, repetition_penalty,
|
75 |
+
)
|
76 |
+
|
77 |
+
# set eos token prob to zero if min_length is not reached
|
78 |
+
if eos_token_id is not None and cur_len < min_length:
|
79 |
+
scores[:, eos_token_id] = -float("inf")
|
80 |
+
|
81 |
+
if no_repeat_ngram_size > 0:
|
82 |
+
# calculate a list of banned tokens to prevent repetitively generating the same ngrams
|
83 |
+
num_batch_hypotheses = batch_size * num_beams
|
84 |
+
# from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345
|
85 |
+
banned_batch_tokens = calc_banned_ngram_tokens(
|
86 |
+
input_ids, num_batch_hypotheses, no_repeat_ngram_size, cur_len
|
87 |
+
)
|
88 |
+
for i, banned_tokens in enumerate(banned_batch_tokens):
|
89 |
+
scores[i, banned_tokens] = -float("inf")
|
90 |
+
|
91 |
+
if bad_words_ids is not None:
|
92 |
+
# calculate a list of banned tokens according to bad words
|
93 |
+
banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids)
|
94 |
+
|
95 |
+
for i, banned_tokens in enumerate(banned_tokens):
|
96 |
+
scores[i, banned_tokens] = -float("inf")
|
97 |
+
|
98 |
+
return scores
|
99 |
+
|
100 |
+
@torch.no_grad()
|
101 |
+
def generate(
|
102 |
+
self,
|
103 |
+
input_ids: Optional[torch.LongTensor] = None,
|
104 |
+
max_length: Optional[int] = None,
|
105 |
+
min_length: Optional[int] = None,
|
106 |
+
do_sample: Optional[bool] = None,
|
107 |
+
early_stopping: Optional[bool] = None,
|
108 |
+
num_beams: Optional[int] = None,
|
109 |
+
temperature: Optional[float] = None,
|
110 |
+
top_k: Optional[int] = None,
|
111 |
+
top_p: Optional[float] = None,
|
112 |
+
repetition_penalty: Optional[float] = None,
|
113 |
+
bad_words_ids: Optional[Iterable[int]] = None,
|
114 |
+
bos_token_id: Optional[int] = None,
|
115 |
+
pad_token_id: Optional[int] = None,
|
116 |
+
eos_token_id: Optional[int] = None,
|
117 |
+
length_penalty: Optional[float] = None,
|
118 |
+
no_repeat_ngram_size: Optional[int] = None,
|
119 |
+
num_return_sequences: Optional[int] = None,
|
120 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
121 |
+
decoder_start_token_id: Optional[int] = None,
|
122 |
+
use_cache: Optional[bool] = None,
|
123 |
+
**model_specific_kwargs
|
124 |
+
) -> torch.LongTensor:
|
125 |
+
r""" Generates sequences for models with a LM head. The method currently supports greedy decoding, beam-search decoding, sampling with temperature, sampling with top-k or nucleus sampling.
|
126 |
+
|
127 |
+
Adapted in part from `Facebook's XLM beam search code`_.
|
128 |
+
|
129 |
+
.. _`Facebook's XLM beam search code`:
|
130 |
+
https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529
|
131 |
+
|
132 |
+
|
133 |
+
Parameters:
|
134 |
+
|
135 |
+
input_ids: (`optional`) `torch.LongTensor` of shape `(batch_size, sequence_length)`
|
136 |
+
The sequence used as a prompt for the generation. If `None` the method initializes
|
137 |
+
it as an empty `torch.LongTensor` of shape `(1,)`.
|
138 |
+
|
139 |
+
max_length: (`optional`) int
|
140 |
+
The max length of the sequence to be generated. Between `min_length` and infinity. Default to 20.
|
141 |
+
|
142 |
+
min_length: (`optional`) int
|
143 |
+
The min length of the sequence to be generated. Between 0 and infinity. Default to 0.
|
144 |
+
|
145 |
+
do_sample: (`optional`) bool
|
146 |
+
If set to `False` greedy decoding is used. Otherwise sampling is used. Defaults to `False` as defined in `configuration_utils.PretrainedConfig`.
|
147 |
+
|
148 |
+
early_stopping: (`optional`) bool
|
149 |
+
if set to `True` beam search is stopped when at least `num_beams` sentences finished per batch. Defaults to `False` as defined in `configuration_utils.PretrainedConfig`.
|
150 |
+
|
151 |
+
num_beams: (`optional`) int
|
152 |
+
Number of beams for beam search. Must be between 1 and infinity. 1 means no beam search. Default to 1.
|
153 |
+
|
154 |
+
temperature: (`optional`) float
|
155 |
+
The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
|
156 |
+
|
157 |
+
top_k: (`optional`) int
|
158 |
+
The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
|
159 |
+
|
160 |
+
top_p: (`optional`) float
|
161 |
+
The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
|
162 |
+
|
163 |
+
repetition_penalty: (`optional`) float
|
164 |
+
The parameter for repetition penalty. Between 1.0 and infinity. 1.0 means no penalty. Default to 1.0.
|
165 |
+
|
166 |
+
pad_token_id: (`optional`) int
|
167 |
+
Padding token. Default to specicic model pad_token_id or None if it does not exist.
|
168 |
+
|
169 |
+
bos_token_id: (`optional`) int
|
170 |
+
BOS token. Defaults to `bos_token_id` as defined in the models config.
|
171 |
+
|
172 |
+
eos_token_id: (`optional`) int
|
173 |
+
EOS token. Defaults to `eos_token_id` as defined in the models config.
|
174 |
+
|
175 |
+
length_penalty: (`optional`) float
|
176 |
+
Exponential penalty to the length. Default to 1.
|
177 |
+
|
178 |
+
no_repeat_ngram_size: (`optional`) int
|
179 |
+
If set to int > 0, all ngrams of size `no_repeat_ngram_size` can only occur once.
|
180 |
+
bad_words_ids: (`optional`) list of lists of int
|
181 |
+
`bad_words_ids` contains tokens that are not allowed to be generated. In order to get the tokens of the words that should not appear in the generated text, use `tokenizer.encode(bad_word, add_prefix_space=True)`.
|
182 |
+
|
183 |
+
num_return_sequences: (`optional`) int
|
184 |
+
The number of independently computed returned sequences for each element in the batch. Default to 1.
|
185 |
+
|
186 |
+
attention_mask (`optional`) obj: `torch.LongTensor` of same shape as `input_ids`
|
187 |
+
Mask to avoid performing attention on padding token indices.
|
188 |
+
Mask values selected in ``[0, 1]``:
|
189 |
+
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
190 |
+
Defaults to `None`.
|
191 |
+
|
192 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
193 |
+
|
194 |
+
decoder_start_token_id=None: (`optional`) int
|
195 |
+
If an encoder-decoder model starts decoding with a different token than BOS.
|
196 |
+
Defaults to `None` and is changed to `BOS` later.
|
197 |
+
|
198 |
+
use_cache: (`optional`) bool
|
199 |
+
If `use_cache` is True, past key values are used to speed up decoding if applicable to model. Defaults to `True`.
|
200 |
+
|
201 |
+
model_specific_kwargs: (`optional`) dict
|
202 |
+
Additional model specific kwargs will be forwarded to the `forward` function of the model.
|
203 |
+
|
204 |
+
Return:
|
205 |
+
|
206 |
+
output: `torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`
|
207 |
+
sequence_length is either equal to max_length or shorter if all batches finished early due to the `eos_token_id`
|
208 |
+
|
209 |
+
Examples::
|
210 |
+
|
211 |
+
tokenizer = AutoTokenizer.from_pretrained('distilgpt2') # Initialize tokenizer
|
212 |
+
model = AutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from S3 and cache.
|
213 |
+
outputs = model.generate(max_length=40) # do greedy decoding
|
214 |
+
print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))
|
215 |
+
|
216 |
+
tokenizer = AutoTokenizer.from_pretrained('openai-gpt') # Initialize tokenizer
|
217 |
+
model = AutoModelWithLMHead.from_pretrained('openai-gpt') # Download model and configuration from S3 and cache.
|
218 |
+
input_context = 'The dog'
|
219 |
+
input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context
|
220 |
+
outputs = model.generate(input_ids=input_ids, num_beams=5, num_return_sequences=3, temperature=1.5) # generate 3 independent sequences using beam search decoding (5 beams) with sampling from initial context 'The dog'
|
221 |
+
for i in range(3): # 3 output sequences were generated
|
222 |
+
print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True)))
|
223 |
+
|
224 |
+
tokenizer = AutoTokenizer.from_pretrained('distilgpt2') # Initialize tokenizer
|
225 |
+
model = AutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from S3 and cache.
|
226 |
+
input_context = 'The dog'
|
227 |
+
input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context
|
228 |
+
outputs = model.generate(input_ids=input_ids, max_length=40, temperature=0.7, num_return_sequences=3) # 3 generate sequences using by sampling
|
229 |
+
for i in range(3): # 3 output sequences were generated
|
230 |
+
print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True)))
|
231 |
+
|
232 |
+
tokenizer = AutoTokenizer.from_pretrained('ctrl') # Initialize tokenizer
|
233 |
+
model = AutoModelWithLMHead.from_pretrained('ctrl') # Download model and configuration from S3 and cache.
|
234 |
+
input_context = 'Legal My neighbor is' # "Legal" is one of the control codes for ctrl
|
235 |
+
input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context
|
236 |
+
outputs = model.generate(input_ids=input_ids, max_length=50, temperature=0.7, repetition_penalty=1.2) # generate sequences
|
237 |
+
print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))
|
238 |
+
|
239 |
+
tokenizer = AutoTokenizer.from_pretrained('gpt2') # Initialize tokenizer
|
240 |
+
model = AutoModelWithLMHead.from_pretrained('gpt2') # Download model and configuration from S3 and cache.
|
241 |
+
input_context = 'My cute dog' # "Legal" is one of the control codes for ctrl
|
242 |
+
bad_words_ids = [tokenizer.encode(bad_word, add_prefix_space=True) for bad_word in ['idiot', 'stupid', 'shut up']]
|
243 |
+
input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context
|
244 |
+
outputs = model.generate(input_ids=input_ids, max_length=100, do_sample=True, bad_words_ids=bad_words_ids) # generate sequences without allowing bad_words to be generated
|
245 |
+
"""
|
246 |
+
|
247 |
+
# We cannot generate if the model does not have a LM head
|
248 |
+
if self.get_output_embeddings() is None:
|
249 |
+
raise AttributeError(
|
250 |
+
"You tried to generate sequences with a model that does not have a LM Head."
|
251 |
+
"Please use another model class (e.g. `OpenAIGPTLMHeadModel`, `XLNetLMHeadModel`, `GPT2LMHeadModel`, `CTRLLMHeadModel`, `T5WithLMHeadModel`, `TransfoXLLMHeadModel`, `XLMWithLMHeadModel`, `BartForConditionalGeneration` )"
|
252 |
+
)
|
253 |
+
|
254 |
+
max_length = max_length if max_length is not None else self.config.max_length
|
255 |
+
min_length = min_length if min_length is not None else self.config.min_length
|
256 |
+
do_sample = do_sample if do_sample is not None else self.config.do_sample
|
257 |
+
early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping
|
258 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
259 |
+
num_beams = num_beams if num_beams is not None else self.config.num_beams
|
260 |
+
temperature = temperature if temperature is not None else self.config.temperature
|
261 |
+
top_k = top_k if top_k is not None else self.config.top_k
|
262 |
+
top_p = top_p if top_p is not None else self.config.top_p
|
263 |
+
repetition_penalty = repetition_penalty if repetition_penalty is not None else self.config.repetition_penalty
|
264 |
+
bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id
|
265 |
+
pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
|
266 |
+
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
|
267 |
+
length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty
|
268 |
+
no_repeat_ngram_size = (
|
269 |
+
no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size
|
270 |
+
)
|
271 |
+
bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids
|
272 |
+
num_return_sequences = (
|
273 |
+
num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
|
274 |
+
)
|
275 |
+
decoder_start_token_id = (
|
276 |
+
decoder_start_token_id if decoder_start_token_id is not None else self.config.decoder_start_token_id
|
277 |
+
)
|
278 |
+
|
279 |
+
if input_ids is not None:
|
280 |
+
batch_size = input_ids.shape[0] # overriden by the input batch_size
|
281 |
+
else:
|
282 |
+
batch_size = 1
|
283 |
+
|
284 |
+
assert isinstance(max_length, int) and max_length > 0, "`max_length` should be a strictly positive integer."
|
285 |
+
assert isinstance(min_length, int) and min_length >= 0, "`min_length` should be a positive integer."
|
286 |
+
assert isinstance(do_sample, bool), "`do_sample` should be a boolean."
|
287 |
+
assert isinstance(early_stopping, bool), "`early_stopping` should be a boolean."
|
288 |
+
assert isinstance(use_cache, bool), "`use_cache` should be a boolean."
|
289 |
+
assert isinstance(num_beams, int) and num_beams > 0, "`num_beams` should be a strictly positive integer."
|
290 |
+
assert temperature > 0, "`temperature` should be strictly positive."
|
291 |
+
assert isinstance(top_k, int) and top_k >= 0, "`top_k` should be a positive integer."
|
292 |
+
assert 0 <= top_p <= 1, "`top_p` should be between 0 and 1."
|
293 |
+
assert repetition_penalty >= 1.0, "`repetition_penalty` should be >= 1."
|
294 |
+
assert input_ids is not None or (
|
295 |
+
isinstance(bos_token_id, int) and bos_token_id >= 0
|
296 |
+
), "If input_ids is not defined, `bos_token_id` should be a positive integer."
|
297 |
+
assert pad_token_id is None or (
|
298 |
+
isinstance(pad_token_id, int) and (pad_token_id >= 0)
|
299 |
+
), "`pad_token_id` should be a positive integer."
|
300 |
+
assert (eos_token_id is None) or (
|
301 |
+
isinstance(eos_token_id, int) and (eos_token_id >= 0)
|
302 |
+
), "`eos_token_id` should be a positive integer."
|
303 |
+
assert length_penalty > 0, "`length_penalty` should be strictly positive."
|
304 |
+
assert (
|
305 |
+
isinstance(no_repeat_ngram_size, int) and no_repeat_ngram_size >= 0
|
306 |
+
), "`no_repeat_ngram_size` should be a positive integer."
|
307 |
+
assert (
|
308 |
+
isinstance(num_return_sequences, int) and num_return_sequences > 0
|
309 |
+
), "`num_return_sequences` should be a strictly positive integer."
|
310 |
+
assert (
|
311 |
+
bad_words_ids is None or isinstance(bad_words_ids, list) and isinstance(bad_words_ids[0], list)
|
312 |
+
), "`bad_words_ids` is either `None` or a list of lists of tokens that should not be generated"
|
313 |
+
|
314 |
+
if input_ids is None:
|
315 |
+
assert isinstance(bos_token_id, int) and bos_token_id >= 0, (
|
316 |
+
"you should either supply a context to complete as `input_ids` input "
|
317 |
+
"or a `bos_token_id` (integer >= 0) as a first token to start the generation."
|
318 |
+
)
|
319 |
+
input_ids = torch.full(
|
320 |
+
(batch_size, 1), bos_token_id, dtype=torch.long, device=next(self.parameters()).device,
|
321 |
+
)
|
322 |
+
else:
|
323 |
+
assert input_ids.dim() == 2, "Input prompt should be of shape (batch_size, sequence length)."
|
324 |
+
|
325 |
+
# not allow to duplicate outputs when greedy decoding
|
326 |
+
if do_sample is False:
|
327 |
+
if num_beams == 1:
|
328 |
+
# no_beam_search greedy generation conditions
|
329 |
+
assert (
|
330 |
+
num_return_sequences == 1
|
331 |
+
), "Greedy decoding will always produce the same output for num_beams == 1 and num_return_sequences > 1. Please set num_return_sequences = 1"
|
332 |
+
|
333 |
+
else:
|
334 |
+
# beam_search greedy generation conditions
|
335 |
+
assert (
|
336 |
+
num_beams >= num_return_sequences
|
337 |
+
), "Greedy beam search decoding cannot return more sequences than it has beams. Please set num_beams >= num_return_sequences"
|
338 |
+
|
339 |
+
# create attention mask if necessary
|
340 |
+
# TODO (PVP): this should later be handled by the forward fn() in each model in the future see PR 3140
|
341 |
+
if (attention_mask is None) and (pad_token_id is not None) and (pad_token_id in input_ids):
|
342 |
+
attention_mask = input_ids.ne(pad_token_id).long()
|
343 |
+
elif attention_mask is None:
|
344 |
+
attention_mask = input_ids.new_ones(input_ids.shape)
|
345 |
+
|
346 |
+
# set pad_token_id to eos_token_id if not set. Important that this is done after
|
347 |
+
# attention_mask is created
|
348 |
+
if pad_token_id is None and eos_token_id is not None:
|
349 |
+
logger.warning(
|
350 |
+
"Setting `pad_token_id` to {} (first `eos_token_id`) to generate sequence".format(eos_token_id)
|
351 |
+
)
|
352 |
+
pad_token_id = eos_token_id
|
353 |
+
|
354 |
+
# current position and vocab size
|
355 |
+
if hasattr(self.config, "vocab_size"):
|
356 |
+
vocab_size = self.config.vocab_size
|
357 |
+
elif (
|
358 |
+
self.config.is_encoder_decoder
|
359 |
+
and hasattr(self.config, "decoder")
|
360 |
+
and hasattr(self.config.decoder, "vocab_size")
|
361 |
+
):
|
362 |
+
vocab_size = self.config.decoder.vocab_size
|
363 |
+
|
364 |
+
# set effective batch size and effective batch multiplier according to do_sample
|
365 |
+
if do_sample:
|
366 |
+
effective_batch_size = batch_size * num_return_sequences
|
367 |
+
effective_batch_mult = num_return_sequences
|
368 |
+
else:
|
369 |
+
effective_batch_size = batch_size
|
370 |
+
effective_batch_mult = 1
|
371 |
+
|
372 |
+
if self.config.is_encoder_decoder:
|
373 |
+
if decoder_start_token_id is None:
|
374 |
+
decoder_start_token_id = bos_token_id
|
375 |
+
|
376 |
+
assert (
|
377 |
+
decoder_start_token_id is not None
|
378 |
+
), "decoder_start_token_id or bos_token_id has to be defined for encoder-decoder generation"
|
379 |
+
assert hasattr(self, "get_encoder"), "{} should have a 'get_encoder' function defined".format(self)
|
380 |
+
assert callable(self.get_encoder), "{} should be a method".format(self.get_encoder)
|
381 |
+
|
382 |
+
# get encoder and store encoder outputs
|
383 |
+
encoder = self.get_encoder()
|
384 |
+
|
385 |
+
encoder_outputs: tuple = encoder(input_ids, attention_mask=attention_mask)
|
386 |
+
|
387 |
+
# Expand input ids if num_beams > 1 or num_return_sequences > 1
|
388 |
+
if num_return_sequences > 1 or num_beams > 1:
|
389 |
+
input_ids_len = input_ids.shape[-1]
|
390 |
+
input_ids = input_ids.unsqueeze(1).expand(batch_size, effective_batch_mult * num_beams, input_ids_len)
|
391 |
+
attention_mask = attention_mask.unsqueeze(1).expand(
|
392 |
+
batch_size, effective_batch_mult * num_beams, input_ids_len
|
393 |
+
)
|
394 |
+
|
395 |
+
input_ids = input_ids.contiguous().view(
|
396 |
+
effective_batch_size * num_beams, input_ids_len
|
397 |
+
) # shape: (batch_size * num_return_sequences * num_beams, cur_len)
|
398 |
+
attention_mask = attention_mask.contiguous().view(
|
399 |
+
effective_batch_size * num_beams, input_ids_len
|
400 |
+
) # shape: (batch_size * num_return_sequences * num_beams, cur_len)
|
401 |
+
|
402 |
+
if self.config.is_encoder_decoder:
|
403 |
+
# create empty decoder_input_ids
|
404 |
+
input_ids = torch.full(
|
405 |
+
(effective_batch_size * num_beams, 1),
|
406 |
+
decoder_start_token_id,
|
407 |
+
dtype=torch.long,
|
408 |
+
device=next(self.parameters()).device,
|
409 |
+
)
|
410 |
+
cur_len = 1
|
411 |
+
|
412 |
+
assert (
|
413 |
+
batch_size == encoder_outputs[0].shape[0]
|
414 |
+
), f"expected encoder_outputs[0] to have 1st dimension bs={batch_size}, got {encoder_outputs[0].shape[0]} "
|
415 |
+
|
416 |
+
# expand batch_idx to assign correct encoder output for expanded input_ids (due to num_beams > 1 and num_return_sequences > 1)
|
417 |
+
expanded_batch_idxs = (
|
418 |
+
torch.arange(batch_size)
|
419 |
+
.view(-1, 1)
|
420 |
+
.repeat(1, num_beams * effective_batch_mult)
|
421 |
+
.view(-1)
|
422 |
+
.to(input_ids.device)
|
423 |
+
)
|
424 |
+
# expand encoder_outputs
|
425 |
+
encoder_outputs = (encoder_outputs[0].index_select(0, expanded_batch_idxs), *encoder_outputs[1:])
|
426 |
+
|
427 |
+
else:
|
428 |
+
encoder_outputs = None
|
429 |
+
cur_len = input_ids.shape[-1]
|
430 |
+
|
431 |
+
assert (
|
432 |
+
cur_len < max_length
|
433 |
+
), f"The context has {cur_len} number of tokens, but `max_length` is only {max_length}. Please make sure that `max_length` is bigger than the number of tokens, by setting either `generate(max_length=...,...)` or `config.max_length = ...`"
|
434 |
+
|
435 |
+
if num_beams > 1:
|
436 |
+
output = self._generate_beam_search(
|
437 |
+
input_ids,
|
438 |
+
cur_len=cur_len,
|
439 |
+
max_length=max_length,
|
440 |
+
min_length=min_length,
|
441 |
+
do_sample=do_sample,
|
442 |
+
early_stopping=early_stopping,
|
443 |
+
temperature=temperature,
|
444 |
+
top_k=top_k,
|
445 |
+
top_p=top_p,
|
446 |
+
repetition_penalty=repetition_penalty,
|
447 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
448 |
+
bad_words_ids=bad_words_ids,
|
449 |
+
pad_token_id=pad_token_id,
|
450 |
+
eos_token_id=eos_token_id,
|
451 |
+
batch_size=effective_batch_size,
|
452 |
+
num_return_sequences=num_return_sequences,
|
453 |
+
length_penalty=length_penalty,
|
454 |
+
num_beams=num_beams,
|
455 |
+
vocab_size=vocab_size,
|
456 |
+
encoder_outputs=encoder_outputs,
|
457 |
+
attention_mask=attention_mask,
|
458 |
+
use_cache=use_cache,
|
459 |
+
model_specific_kwargs=model_specific_kwargs,
|
460 |
+
)
|
461 |
+
else:
|
462 |
+
output = self._generate_no_beam_search(
|
463 |
+
input_ids,
|
464 |
+
cur_len=cur_len,
|
465 |
+
max_length=max_length,
|
466 |
+
min_length=min_length,
|
467 |
+
do_sample=do_sample,
|
468 |
+
temperature=temperature,
|
469 |
+
top_k=top_k,
|
470 |
+
top_p=top_p,
|
471 |
+
repetition_penalty=repetition_penalty,
|
472 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
473 |
+
bad_words_ids=bad_words_ids,
|
474 |
+
pad_token_id=pad_token_id,
|
475 |
+
eos_token_id=eos_token_id,
|
476 |
+
batch_size=effective_batch_size,
|
477 |
+
encoder_outputs=encoder_outputs,
|
478 |
+
attention_mask=attention_mask,
|
479 |
+
use_cache=use_cache,
|
480 |
+
model_specific_kwargs=model_specific_kwargs,
|
481 |
+
)
|
482 |
+
|
483 |
+
return output
|
484 |
+
|
485 |
+
def _generate_no_beam_search(
|
486 |
+
self,
|
487 |
+
input_ids,
|
488 |
+
cur_len,
|
489 |
+
max_length,
|
490 |
+
min_length,
|
491 |
+
do_sample,
|
492 |
+
temperature,
|
493 |
+
top_k,
|
494 |
+
top_p,
|
495 |
+
repetition_penalty,
|
496 |
+
no_repeat_ngram_size,
|
497 |
+
bad_words_ids,
|
498 |
+
pad_token_id,
|
499 |
+
eos_token_id,
|
500 |
+
batch_size,
|
501 |
+
encoder_outputs,
|
502 |
+
attention_mask,
|
503 |
+
use_cache,
|
504 |
+
model_specific_kwargs,
|
505 |
+
):
|
506 |
+
""" Generate sequences for each example without beam search (num_beams == 1).
|
507 |
+
All returned sequence are generated independantly.
|
508 |
+
"""
|
509 |
+
# length of generated sentences / unfinished sentences
|
510 |
+
unfinished_sents = input_ids.new(batch_size).fill_(1)
|
511 |
+
sent_lengths = input_ids.new(batch_size).fill_(max_length)
|
512 |
+
|
513 |
+
past = (encoder_outputs, None) if encoder_outputs is not None else None
|
514 |
+
|
515 |
+
while cur_len < max_length:
|
516 |
+
model_inputs = self.prepare_inputs_for_generation(
|
517 |
+
input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **model_specific_kwargs
|
518 |
+
)
|
519 |
+
|
520 |
+
outputs = self(**model_inputs)
|
521 |
+
next_token_logits = outputs[0][:, -1, :]
|
522 |
+
|
523 |
+
scores = self.postprocess_next_token_scores(
|
524 |
+
scores=next_token_logits,
|
525 |
+
input_ids=input_ids,
|
526 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
527 |
+
bad_words_ids=bad_words_ids,
|
528 |
+
cur_len=cur_len,
|
529 |
+
min_length=min_length,
|
530 |
+
max_length=max_length,
|
531 |
+
eos_token_id=eos_token_id,
|
532 |
+
repetition_penalty=repetition_penalty,
|
533 |
+
batch_size=batch_size,
|
534 |
+
num_beams=1,
|
535 |
+
)
|
536 |
+
|
537 |
+
# if model has past, then set the past variable to speed up decoding
|
538 |
+
if self._use_cache(outputs, use_cache):
|
539 |
+
past = outputs[1]
|
540 |
+
|
541 |
+
if do_sample:
|
542 |
+
# Temperature (higher temperature => more likely to sample low probability tokens)
|
543 |
+
if temperature != 1.0:
|
544 |
+
scores = scores / temperature
|
545 |
+
# Top-p/top-k filtering
|
546 |
+
next_token_logscores = top_k_top_p_filtering(scores, top_k=top_k, top_p=top_p)
|
547 |
+
# Sample
|
548 |
+
probs = F.softmax(next_token_logscores, dim=-1)
|
549 |
+
next_token = torch.multinomial(probs, num_samples=1).squeeze(1)
|
550 |
+
else:
|
551 |
+
# Greedy decoding
|
552 |
+
next_token = torch.argmax(next_token_logits, dim=-1)
|
553 |
+
|
554 |
+
# update generations and finished sentences
|
555 |
+
if eos_token_id is not None:
|
556 |
+
# pad finished sentences if eos_token_id exist
|
557 |
+
tokens_to_add = next_token * unfinished_sents + (pad_token_id) * (1 - unfinished_sents)
|
558 |
+
else:
|
559 |
+
tokens_to_add = next_token
|
560 |
+
|
561 |
+
# add token and increase length by one
|
562 |
+
input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=-1)
|
563 |
+
cur_len = cur_len + 1
|
564 |
+
|
565 |
+
if eos_token_id is not None:
|
566 |
+
eos_in_sents = tokens_to_add == eos_token_id
|
567 |
+
# if sentence is unfinished and the token to add is eos, sent_lengths is filled with current length
|
568 |
+
is_sents_unfinished_and_token_to_add_is_eos = unfinished_sents.mul(eos_in_sents.long()).bool()
|
569 |
+
sent_lengths.masked_fill_(is_sents_unfinished_and_token_to_add_is_eos, cur_len)
|
570 |
+
# unfinished_sents is set to zero if eos in sentence
|
571 |
+
unfinished_sents.mul_((~eos_in_sents).long())
|
572 |
+
|
573 |
+
# stop when there is a </s> in each sentence, or if we exceed the maximul length
|
574 |
+
if unfinished_sents.max() == 0:
|
575 |
+
break
|
576 |
+
|
577 |
+
# extend attention_mask for new generated input if only decoder
|
578 |
+
if self.config.is_encoder_decoder is False:
|
579 |
+
attention_mask = torch.cat(
|
580 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
581 |
+
)
|
582 |
+
|
583 |
+
return input_ids
|
584 |
+
|
585 |
+
def _generate_beam_search(
|
586 |
+
self,
|
587 |
+
input_ids,
|
588 |
+
cur_len,
|
589 |
+
max_length,
|
590 |
+
min_length,
|
591 |
+
do_sample,
|
592 |
+
early_stopping,
|
593 |
+
temperature,
|
594 |
+
top_k,
|
595 |
+
top_p,
|
596 |
+
repetition_penalty,
|
597 |
+
no_repeat_ngram_size,
|
598 |
+
bad_words_ids,
|
599 |
+
pad_token_id,
|
600 |
+
eos_token_id,
|
601 |
+
batch_size,
|
602 |
+
num_return_sequences,
|
603 |
+
length_penalty,
|
604 |
+
num_beams,
|
605 |
+
vocab_size,
|
606 |
+
encoder_outputs,
|
607 |
+
attention_mask,
|
608 |
+
use_cache,
|
609 |
+
model_specific_kwargs,
|
610 |
+
):
|
611 |
+
""" Generate sequences for each example with beam search.
|
612 |
+
"""
|
613 |
+
|
614 |
+
# generated hypotheses
|
615 |
+
generated_hyps = [
|
616 |
+
BeamHypotheses(num_beams, max_length, length_penalty, early_stopping=early_stopping)
|
617 |
+
for _ in range(batch_size)
|
618 |
+
]
|
619 |
+
|
620 |
+
# scores for each sentence in the beam
|
621 |
+
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
|
622 |
+
|
623 |
+
# for greedy decoding it is made sure that only tokens of the first beam are considered to avoid sampling the exact same tokens three times
|
624 |
+
if do_sample is False:
|
625 |
+
beam_scores[:, 1:] = -1e9
|
626 |
+
beam_scores = beam_scores.view(-1) # shape (batch_size * num_beams,)
|
627 |
+
|
628 |
+
# cache compute states
|
629 |
+
past = (encoder_outputs, None) if encoder_outputs is not None else None
|
630 |
+
|
631 |
+
# done sentences
|
632 |
+
done = [False for _ in range(batch_size)]
|
633 |
+
|
634 |
+
while cur_len < max_length:
|
635 |
+
model_inputs = self.prepare_inputs_for_generation(
|
636 |
+
input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **model_specific_kwargs
|
637 |
+
)
|
638 |
+
outputs = self(**model_inputs) # (batch_size * num_beams, cur_len, vocab_size)
|
639 |
+
next_token_logits = outputs[0][:, -1, :] # (batch_size * num_beams, vocab_size)
|
640 |
+
|
641 |
+
# if model has past, then set the past variable to speed up decoding
|
642 |
+
if self._use_cache(outputs, use_cache):
|
643 |
+
past = outputs[1]
|
644 |
+
if self.config.is_encoder_decoder and do_sample is False:
|
645 |
+
# TODO (PVP) still a bit hacky here - there might be a better solution
|
646 |
+
next_token_logits = self.adjust_logits_during_generation(
|
647 |
+
next_token_logits, cur_len=cur_len, max_length=max_length
|
648 |
+
)
|
649 |
+
|
650 |
+
scores = F.log_softmax(next_token_logits, dim=-1) # (batch_size * num_beams, vocab_size)
|
651 |
+
|
652 |
+
scores = self.postprocess_next_token_scores(
|
653 |
+
scores=scores,
|
654 |
+
input_ids=input_ids,
|
655 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
656 |
+
bad_words_ids=bad_words_ids,
|
657 |
+
cur_len=cur_len,
|
658 |
+
min_length=min_length,
|
659 |
+
max_length=max_length,
|
660 |
+
eos_token_id=eos_token_id,
|
661 |
+
repetition_penalty=repetition_penalty,
|
662 |
+
batch_size=batch_size,
|
663 |
+
num_beams=num_beams,
|
664 |
+
)
|
665 |
+
|
666 |
+
assert scores.shape == (batch_size * num_beams, vocab_size), "Shapes of scores: {} != {}".format(
|
667 |
+
scores.shape, (batch_size * num_beams, vocab_size)
|
668 |
+
)
|
669 |
+
|
670 |
+
if do_sample:
|
671 |
+
_scores = scores + beam_scores[:, None].expand_as(scores) # (batch_size * num_beams, vocab_size)
|
672 |
+
# Temperature
|
673 |
+
if temperature != 1.0:
|
674 |
+
_scores = _scores / temperature
|
675 |
+
# Top-p/top-k filtering
|
676 |
+
_scores = top_k_top_p_filtering(
|
677 |
+
_scores, top_k=top_k, top_p=top_p, min_tokens_to_keep=2
|
678 |
+
) # (batch_size * num_beams, vocab_size)
|
679 |
+
# re-organize to group the beam together to sample from all beam_idxs
|
680 |
+
_scores = _scores.contiguous().view(
|
681 |
+
batch_size, num_beams * vocab_size
|
682 |
+
) # (batch_size, num_beams * vocab_size)
|
683 |
+
|
684 |
+
# Sample 2 next tokens for each beam (so we have some spare tokens and match output of greedy beam search)
|
685 |
+
probs = F.softmax(_scores, dim=-1)
|
686 |
+
next_tokens = torch.multinomial(probs, num_samples=2 * num_beams) # (batch_size, num_beams * 2)
|
687 |
+
# Compute next scores
|
688 |
+
next_scores = torch.gather(_scores, -1, next_tokens) # (batch_size, num_beams * 2)
|
689 |
+
# sort the sampled vector to make sure that the first num_beams samples are the best
|
690 |
+
next_scores, next_scores_indices = torch.sort(next_scores, descending=True, dim=1)
|
691 |
+
next_tokens = torch.gather(next_tokens, -1, next_scores_indices) # (batch_size, num_beams * 2)
|
692 |
+
|
693 |
+
else:
|
694 |
+
next_scores = scores + beam_scores[:, None].expand_as(scores) # (batch_size * num_beams, vocab_size)
|
695 |
+
|
696 |
+
# re-organize to group the beam together (we are keeping top hypothesis accross beams)
|
697 |
+
next_scores = next_scores.view(
|
698 |
+
batch_size, num_beams * vocab_size
|
699 |
+
) # (batch_size, num_beams * vocab_size)
|
700 |
+
|
701 |
+
next_scores, next_tokens = torch.topk(next_scores, 2 * num_beams, dim=1, largest=True, sorted=True)
|
702 |
+
|
703 |
+
assert next_scores.size() == next_tokens.size() == (batch_size, 2 * num_beams)
|
704 |
+
|
705 |
+
# next batch beam content
|
706 |
+
next_batch_beam = []
|
707 |
+
|
708 |
+
# for each sentence
|
709 |
+
for batch_idx in range(batch_size):
|
710 |
+
|
711 |
+
# if we are done with this sentence, add a pad token
|
712 |
+
if done[batch_idx]:
|
713 |
+
assert (
|
714 |
+
len(generated_hyps[batch_idx]) >= num_beams
|
715 |
+
), "Batch can only be done if at least {} beams have been generated".format(num_beams)
|
716 |
+
assert (
|
717 |
+
eos_token_id is not None and pad_token_id is not None
|
718 |
+
), "generated beams >= num_beams -> eos_token_id and pad_token have to be defined"
|
719 |
+
next_batch_beam.extend([(0, pad_token_id, 0)] * num_beams) # pad the batch
|
720 |
+
continue
|
721 |
+
|
722 |
+
# next sentence beam content, this will get added to next_batch_beam
|
723 |
+
next_sent_beam = []
|
724 |
+
|
725 |
+
# next tokens for this sentence
|
726 |
+
for beam_token_rank, (beam_token_id, beam_token_score) in enumerate(
|
727 |
+
zip(next_tokens[batch_idx], next_scores[batch_idx])
|
728 |
+
):
|
729 |
+
# get beam and token IDs
|
730 |
+
beam_id = beam_token_id // vocab_size
|
731 |
+
token_id = beam_token_id % vocab_size
|
732 |
+
|
733 |
+
effective_beam_id = batch_idx * num_beams + beam_id
|
734 |
+
# add to generated hypotheses if end of sentence
|
735 |
+
if (eos_token_id is not None) and (token_id.item() == eos_token_id):
|
736 |
+
# if beam_token does not belong to top num_beams tokens, it should not be added
|
737 |
+
is_beam_token_worse_than_top_num_beams = beam_token_rank >= num_beams
|
738 |
+
if is_beam_token_worse_than_top_num_beams:
|
739 |
+
continue
|
740 |
+
generated_hyps[batch_idx].add(
|
741 |
+
input_ids[effective_beam_id].clone(), beam_token_score.item(),
|
742 |
+
)
|
743 |
+
else:
|
744 |
+
# add next predicted token since it is not eos_token
|
745 |
+
next_sent_beam.append((beam_token_score, token_id, effective_beam_id))
|
746 |
+
|
747 |
+
# once the beam for next step is full, don't add more tokens to it.
|
748 |
+
if len(next_sent_beam) == num_beams:
|
749 |
+
break
|
750 |
+
|
751 |
+
# Check if we are done so that we can save a pad step if all(done)
|
752 |
+
done[batch_idx] = done[batch_idx] or generated_hyps[batch_idx].is_done(
|
753 |
+
next_scores[batch_idx].max().item(), cur_len
|
754 |
+
)
|
755 |
+
|
756 |
+
# update next beam content
|
757 |
+
assert len(next_sent_beam) == num_beams, "Beam should always be full"
|
758 |
+
next_batch_beam.extend(next_sent_beam)
|
759 |
+
assert len(next_batch_beam) == num_beams * (batch_idx + 1), "We should have added num_beams each step"
|
760 |
+
|
761 |
+
# stop when we are done with each sentence
|
762 |
+
if all(done):
|
763 |
+
break
|
764 |
+
|
765 |
+
# sanity check / prepare next batch
|
766 |
+
assert len(next_batch_beam) == batch_size * num_beams
|
767 |
+
beam_scores = beam_scores.new([x[0] for x in next_batch_beam])
|
768 |
+
beam_tokens = input_ids.new([x[1] for x in next_batch_beam])
|
769 |
+
beam_idx = input_ids.new([x[2] for x in next_batch_beam])
|
770 |
+
|
771 |
+
# re-order batch and update current length
|
772 |
+
input_ids = input_ids[beam_idx, :]
|
773 |
+
input_ids = torch.cat([input_ids, beam_tokens.unsqueeze(1)], dim=-1)
|
774 |
+
cur_len = cur_len + 1
|
775 |
+
|
776 |
+
# re-order internal states
|
777 |
+
if past is not None:
|
778 |
+
past = self._reorder_cache(past, beam_idx)
|
779 |
+
|
780 |
+
# extend attention_mask for new generated input if only decoder
|
781 |
+
if self.config.is_encoder_decoder is False:
|
782 |
+
attention_mask = torch.cat(
|
783 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
784 |
+
)
|
785 |
+
|
786 |
+
# finalize all open beam hypotheses and add to generated hypotheses
|
787 |
+
for batch_idx in range(batch_size):
|
788 |
+
if done[batch_idx]:
|
789 |
+
continue
|
790 |
+
|
791 |
+
# test that beam scores match previously calculated scores if not eos and batch_idx not done
|
792 |
+
if eos_token_id is not None and all(
|
793 |
+
(token_id % vocab_size).item() != eos_token_id for token_id in next_tokens[batch_idx]
|
794 |
+
):
|
795 |
+
assert torch.all(
|
796 |
+
next_scores[batch_idx, :num_beams] == beam_scores.view(batch_size, num_beams)[batch_idx]
|
797 |
+
), "If batch_idx is not done, final next scores: {} have to equal to accumulated beam_scores: {}".format(
|
798 |
+
next_scores[:, :num_beams][batch_idx], beam_scores.view(batch_size, num_beams)[batch_idx],
|
799 |
+
)
|
800 |
+
|
801 |
+
# need to add best num_beams hypotheses to generated hyps
|
802 |
+
for beam_id in range(num_beams):
|
803 |
+
effective_beam_id = batch_idx * num_beams + beam_id
|
804 |
+
final_score = beam_scores[effective_beam_id].item()
|
805 |
+
final_tokens = input_ids[effective_beam_id]
|
806 |
+
generated_hyps[batch_idx].add(final_tokens, final_score)
|
807 |
+
|
808 |
+
# depending on whether greedy generation is wanted or not define different output_batch_size and output_num_return_sequences_per_batch
|
809 |
+
output_batch_size = batch_size if do_sample else batch_size * num_return_sequences
|
810 |
+
output_num_return_sequences_per_batch = 1 if do_sample else num_return_sequences
|
811 |
+
|
812 |
+
# select the best hypotheses
|
813 |
+
sent_lengths = input_ids.new(output_batch_size)
|
814 |
+
best = []
|
815 |
+
|
816 |
+
# retrieve best hypotheses
|
817 |
+
for i, hypotheses in enumerate(generated_hyps):
|
818 |
+
sorted_hyps = sorted(hypotheses.beams, key=lambda x: x[0])
|
819 |
+
for j in range(output_num_return_sequences_per_batch):
|
820 |
+
effective_batch_idx = output_num_return_sequences_per_batch * i + j
|
821 |
+
best_hyp = sorted_hyps.pop()[1]
|
822 |
+
sent_lengths[effective_batch_idx] = len(best_hyp)
|
823 |
+
best.append(best_hyp)
|
824 |
+
|
825 |
+
# shorter batches are padded
|
826 |
+
if sent_lengths.min().item() != sent_lengths.max().item():
|
827 |
+
assert pad_token_id is not None, "`Pad_token_id` has to be defined"
|
828 |
+
sent_max_len = min(sent_lengths.max().item() + 1, max_length)
|
829 |
+
decoded = input_ids.new(output_batch_size, sent_max_len).fill_(pad_token_id)
|
830 |
+
|
831 |
+
# fill with hypothesis and eos_token_id if necessary
|
832 |
+
for i, hypo in enumerate(best):
|
833 |
+
decoded[i, : sent_lengths[i]] = hypo
|
834 |
+
if sent_lengths[i] < max_length:
|
835 |
+
decoded[i, sent_lengths[i]] = eos_token_id
|
836 |
+
else:
|
837 |
+
# none of the hypotheses have an eos_token
|
838 |
+
assert (len(hypo) == max_length for hypo in best)
|
839 |
+
decoded = torch.stack(best).type(torch.long).to(next(self.parameters()).device)
|
840 |
+
|
841 |
+
return decoded
|
842 |
+
|
843 |
+
@staticmethod
|
844 |
+
def _reorder_cache(past: Tuple, beam_idx: Tensor) -> Tuple[Tensor]:
|
845 |
+
return tuple(layer_past.index_select(1, beam_idx) for layer_past in past)
|
846 |
+
|
847 |
+
|
848 |
+
def calc_banned_ngram_tokens(prev_input_ids: Tensor, num_hypos: int, no_repeat_ngram_size: int, cur_len: int) -> None:
|
849 |
+
"""Copied from fairseq for no_repeat_ngram in beam_search"""
|
850 |
+
if cur_len + 1 < no_repeat_ngram_size:
|
851 |
+
# return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
|
852 |
+
return [[] for _ in range(num_hypos)]
|
853 |
+
generated_ngrams = [{} for _ in range(num_hypos)]
|
854 |
+
for idx in range(num_hypos):
|
855 |
+
gen_tokens = prev_input_ids[idx].tolist()
|
856 |
+
generated_ngram = generated_ngrams[idx]
|
857 |
+
for ngram in zip(*[gen_tokens[i:] for i in range(no_repeat_ngram_size)]):
|
858 |
+
prev_ngram_tuple = tuple(ngram[:-1])
|
859 |
+
generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]]
|
860 |
+
|
861 |
+
def _get_generated_ngrams(hypo_idx):
|
862 |
+
# Before decoding the next token, prevent decoding of ngrams that have already appeared
|
863 |
+
start_idx = cur_len + 1 - no_repeat_ngram_size
|
864 |
+
ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].tolist())
|
865 |
+
return generated_ngrams[hypo_idx].get(ngram_idx, [])
|
866 |
+
|
867 |
+
banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)]
|
868 |
+
return banned_tokens
|
869 |
+
|
870 |
+
|
871 |
+
def calc_banned_bad_words_ids(prev_input_ids: Iterable[int], bad_words_ids: Iterable[int]) -> Iterable[int]:
|
872 |
+
banned_tokens = []
|
873 |
+
|
874 |
+
def _tokens_match(prev_tokens, tokens):
|
875 |
+
if len(tokens) == 0:
|
876 |
+
# if bad word tokens is just one token always ban it
|
877 |
+
return True
|
878 |
+
if len(tokens) > len(prev_input_ids):
|
879 |
+
# if bad word tokens are longer then prev input_ids they can't be equal
|
880 |
+
return False
|
881 |
+
|
882 |
+
if prev_tokens[-len(tokens) :] == tokens:
|
883 |
+
# if tokens match
|
884 |
+
return True
|
885 |
+
else:
|
886 |
+
return False
|
887 |
+
|
888 |
+
for prev_input_ids_slice in prev_input_ids:
|
889 |
+
banned_tokens_slice = []
|
890 |
+
|
891 |
+
for banned_token_seq in bad_words_ids:
|
892 |
+
assert len(banned_token_seq) > 0, "Banned words token sequences {} cannot have an empty list".format(
|
893 |
+
bad_words_ids
|
894 |
+
)
|
895 |
+
|
896 |
+
if _tokens_match(prev_input_ids_slice.tolist(), banned_token_seq[:-1]) is False:
|
897 |
+
# if tokens do not match continue
|
898 |
+
continue
|
899 |
+
|
900 |
+
banned_tokens_slice.append(banned_token_seq[-1])
|
901 |
+
|
902 |
+
banned_tokens.append(banned_tokens_slice)
|
903 |
+
|
904 |
+
return banned_tokens
|
905 |
+
|
906 |
+
|
907 |
+
def top_k_top_p_filtering(
|
908 |
+
logits: Tensor,
|
909 |
+
top_k: int = 0,
|
910 |
+
top_p: float = 1.0,
|
911 |
+
filter_value: float = -float("Inf"),
|
912 |
+
min_tokens_to_keep: int = 1,
|
913 |
+
) -> Tensor:
|
914 |
+
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
915 |
+
Args:
|
916 |
+
logits: logits distribution shape (batch size, vocabulary size)
|
917 |
+
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
918 |
+
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
919 |
+
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
920 |
+
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
921 |
+
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
922 |
+
"""
|
923 |
+
if top_k > 0:
|
924 |
+
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
|
925 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
926 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
927 |
+
logits[indices_to_remove] = filter_value
|
928 |
+
|
929 |
+
if top_p < 1.0:
|
930 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
931 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
932 |
+
|
933 |
+
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
934 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
935 |
+
if min_tokens_to_keep > 1:
|
936 |
+
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
937 |
+
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
938 |
+
# Shift the indices to the right to keep also the first token above the threshold
|
939 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
940 |
+
sorted_indices_to_remove[..., 0] = 0
|
941 |
+
|
942 |
+
# scatter sorted tensors to original indexing
|
943 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
944 |
+
logits[indices_to_remove] = filter_value
|
945 |
+
return logits
|
946 |
+
|
947 |
+
|
948 |
+
class BeamHypotheses(object):
|
949 |
+
def __init__(self, num_beams, max_length, length_penalty, early_stopping):
|
950 |
+
"""
|
951 |
+
Initialize n-best list of hypotheses.
|
952 |
+
"""
|
953 |
+
self.max_length = max_length - 1 # ignoring bos_token
|
954 |
+
self.length_penalty = length_penalty
|
955 |
+
self.early_stopping = early_stopping
|
956 |
+
self.num_beams = num_beams
|
957 |
+
self.beams = []
|
958 |
+
self.worst_score = 1e9
|
959 |
+
|
960 |
+
def __len__(self):
|
961 |
+
"""
|
962 |
+
Number of hypotheses in the list.
|
963 |
+
"""
|
964 |
+
return len(self.beams)
|
965 |
+
|
966 |
+
def add(self, hyp, sum_logprobs):
|
967 |
+
"""
|
968 |
+
Add a new hypothesis to the list.
|
969 |
+
"""
|
970 |
+
score = sum_logprobs / len(hyp) ** self.length_penalty
|
971 |
+
if len(self) < self.num_beams or score > self.worst_score:
|
972 |
+
self.beams.append((score, hyp))
|
973 |
+
if len(self) > self.num_beams:
|
974 |
+
sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.beams)])
|
975 |
+
del self.beams[sorted_scores[0][1]]
|
976 |
+
self.worst_score = sorted_scores[1][0]
|
977 |
+
else:
|
978 |
+
self.worst_score = min(score, self.worst_score)
|
979 |
+
|
980 |
+
def is_done(self, best_sum_logprobs, cur_len):
|
981 |
+
"""
|
982 |
+
If there are enough hypotheses and that none of the hypotheses being generated
|
983 |
+
can become better than the worst one in the heap, then we are done with this sentence.
|
984 |
+
"""
|
985 |
+
|
986 |
+
if len(self) < self.num_beams:
|
987 |
+
return False
|
988 |
+
elif self.early_stopping:
|
989 |
+
return True
|
990 |
+
else:
|
991 |
+
cur_score = best_sum_logprobs / cur_len ** self.length_penalty
|
992 |
+
ret = self.worst_score >= cur_score
|
993 |
+
return ret
|
elia/bert/modeling_bert.py
ADDED
@@ -0,0 +1,1569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch BERT model. """
|
17 |
+
|
18 |
+
|
19 |
+
import logging
|
20 |
+
import math
|
21 |
+
import os
|
22 |
+
import warnings
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
28 |
+
|
29 |
+
from .activations import gelu, gelu_new, swish
|
30 |
+
from .configuration_bert import BertConfig
|
31 |
+
from .file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_callable
|
32 |
+
from .modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
|
33 |
+
|
34 |
+
|
35 |
+
logger = logging.getLogger(__name__)
|
36 |
+
|
37 |
+
_TOKENIZER_FOR_DOC = "BertTokenizer"
|
38 |
+
|
39 |
+
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
40 |
+
"bert-base-uncased",
|
41 |
+
"bert-large-uncased",
|
42 |
+
"bert-base-cased",
|
43 |
+
"bert-large-cased",
|
44 |
+
"bert-base-multilingual-uncased",
|
45 |
+
"bert-base-multilingual-cased",
|
46 |
+
"bert-base-chinese",
|
47 |
+
"bert-base-german-cased",
|
48 |
+
"bert-large-uncased-whole-word-masking",
|
49 |
+
"bert-large-cased-whole-word-masking",
|
50 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad",
|
51 |
+
"bert-large-cased-whole-word-masking-finetuned-squad",
|
52 |
+
"bert-base-cased-finetuned-mrpc",
|
53 |
+
"bert-base-german-dbmdz-cased",
|
54 |
+
"bert-base-german-dbmdz-uncased",
|
55 |
+
"cl-tohoku/bert-base-japanese",
|
56 |
+
"cl-tohoku/bert-base-japanese-whole-word-masking",
|
57 |
+
"cl-tohoku/bert-base-japanese-char",
|
58 |
+
"cl-tohoku/bert-base-japanese-char-whole-word-masking",
|
59 |
+
"TurkuNLP/bert-base-finnish-cased-v1",
|
60 |
+
"TurkuNLP/bert-base-finnish-uncased-v1",
|
61 |
+
"wietsedv/bert-base-dutch-cased",
|
62 |
+
# See all BERT models at https://huggingface.co/models?filter=bert
|
63 |
+
]
|
64 |
+
|
65 |
+
|
66 |
+
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
|
67 |
+
""" Load tf checkpoints in a pytorch model.
|
68 |
+
"""
|
69 |
+
try:
|
70 |
+
import re
|
71 |
+
import numpy as np
|
72 |
+
import tensorflow as tf
|
73 |
+
except ImportError:
|
74 |
+
logger.error(
|
75 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
76 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
77 |
+
)
|
78 |
+
raise
|
79 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
80 |
+
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
|
81 |
+
# Load weights from TF model
|
82 |
+
init_vars = tf.train.list_variables(tf_path)
|
83 |
+
names = []
|
84 |
+
arrays = []
|
85 |
+
for name, shape in init_vars:
|
86 |
+
logger.info("Loading TF weight {} with shape {}".format(name, shape))
|
87 |
+
array = tf.train.load_variable(tf_path, name)
|
88 |
+
names.append(name)
|
89 |
+
arrays.append(array)
|
90 |
+
|
91 |
+
for name, array in zip(names, arrays):
|
92 |
+
name = name.split("/")
|
93 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
94 |
+
# which are not required for using pretrained model
|
95 |
+
if any(
|
96 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
97 |
+
for n in name
|
98 |
+
):
|
99 |
+
logger.info("Skipping {}".format("/".join(name)))
|
100 |
+
continue
|
101 |
+
pointer = model
|
102 |
+
for m_name in name:
|
103 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
104 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
105 |
+
else:
|
106 |
+
scope_names = [m_name]
|
107 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
108 |
+
pointer = getattr(pointer, "weight")
|
109 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
110 |
+
pointer = getattr(pointer, "bias")
|
111 |
+
elif scope_names[0] == "output_weights":
|
112 |
+
pointer = getattr(pointer, "weight")
|
113 |
+
elif scope_names[0] == "squad":
|
114 |
+
pointer = getattr(pointer, "classifier")
|
115 |
+
else:
|
116 |
+
try:
|
117 |
+
pointer = getattr(pointer, scope_names[0])
|
118 |
+
except AttributeError:
|
119 |
+
logger.info("Skipping {}".format("/".join(name)))
|
120 |
+
continue
|
121 |
+
if len(scope_names) >= 2:
|
122 |
+
num = int(scope_names[1])
|
123 |
+
pointer = pointer[num]
|
124 |
+
if m_name[-11:] == "_embeddings":
|
125 |
+
pointer = getattr(pointer, "weight")
|
126 |
+
elif m_name == "kernel":
|
127 |
+
array = np.transpose(array)
|
128 |
+
try:
|
129 |
+
assert pointer.shape == array.shape
|
130 |
+
except AssertionError as e:
|
131 |
+
e.args += (pointer.shape, array.shape)
|
132 |
+
raise
|
133 |
+
logger.info("Initialize PyTorch weight {}".format(name))
|
134 |
+
pointer.data = torch.from_numpy(array)
|
135 |
+
return model
|
136 |
+
|
137 |
+
|
138 |
+
def mish(x):
|
139 |
+
return x * torch.tanh(nn.functional.softplus(x))
|
140 |
+
|
141 |
+
|
142 |
+
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish, "gelu_new": gelu_new, "mish": mish}
|
143 |
+
|
144 |
+
|
145 |
+
BertLayerNorm = torch.nn.LayerNorm
|
146 |
+
|
147 |
+
|
148 |
+
class BertEmbeddings(nn.Module):
|
149 |
+
"""Construct the embeddings from word, position and token_type embeddings.
|
150 |
+
"""
|
151 |
+
|
152 |
+
def __init__(self, config):
|
153 |
+
super().__init__()
|
154 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
155 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
156 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
157 |
+
|
158 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
159 |
+
# any TensorFlow checkpoint file
|
160 |
+
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
161 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
162 |
+
|
163 |
+
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
|
164 |
+
if input_ids is not None:
|
165 |
+
input_shape = input_ids.size()
|
166 |
+
else:
|
167 |
+
input_shape = inputs_embeds.size()[:-1]
|
168 |
+
|
169 |
+
seq_length = input_shape[1]
|
170 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
171 |
+
if position_ids is None:
|
172 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
|
173 |
+
position_ids = position_ids.unsqueeze(0).expand(input_shape)
|
174 |
+
if token_type_ids is None:
|
175 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
176 |
+
|
177 |
+
if inputs_embeds is None:
|
178 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
179 |
+
position_embeddings = self.position_embeddings(position_ids)
|
180 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
181 |
+
|
182 |
+
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
|
183 |
+
embeddings = self.LayerNorm(embeddings)
|
184 |
+
embeddings = self.dropout(embeddings)
|
185 |
+
return embeddings
|
186 |
+
|
187 |
+
|
188 |
+
class BertSelfAttention(nn.Module):
|
189 |
+
def __init__(self, config):
|
190 |
+
super().__init__()
|
191 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
192 |
+
raise ValueError(
|
193 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
194 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
195 |
+
)
|
196 |
+
|
197 |
+
self.num_attention_heads = config.num_attention_heads
|
198 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
199 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
200 |
+
|
201 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
202 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
203 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
204 |
+
|
205 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
206 |
+
|
207 |
+
def transpose_for_scores(self, x):
|
208 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
209 |
+
x = x.view(*new_x_shape)
|
210 |
+
return x.permute(0, 2, 1, 3)
|
211 |
+
|
212 |
+
def forward(
|
213 |
+
self,
|
214 |
+
hidden_states,
|
215 |
+
attention_mask=None,
|
216 |
+
head_mask=None,
|
217 |
+
encoder_hidden_states=None,
|
218 |
+
encoder_attention_mask=None,
|
219 |
+
output_attentions=False,
|
220 |
+
):
|
221 |
+
mixed_query_layer = self.query(hidden_states)
|
222 |
+
|
223 |
+
# If this is instantiated as a cross-attention module, the keys
|
224 |
+
# and values come from an encoder; the attention mask needs to be
|
225 |
+
# such that the encoder's padding tokens are not attended to.
|
226 |
+
if encoder_hidden_states is not None:
|
227 |
+
mixed_key_layer = self.key(encoder_hidden_states)
|
228 |
+
mixed_value_layer = self.value(encoder_hidden_states)
|
229 |
+
attention_mask = encoder_attention_mask
|
230 |
+
else:
|
231 |
+
mixed_key_layer = self.key(hidden_states)
|
232 |
+
mixed_value_layer = self.value(hidden_states)
|
233 |
+
|
234 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
235 |
+
key_layer = self.transpose_for_scores(mixed_key_layer)
|
236 |
+
value_layer = self.transpose_for_scores(mixed_value_layer)
|
237 |
+
|
238 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
239 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
240 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
241 |
+
if attention_mask is not None:
|
242 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
243 |
+
attention_scores = attention_scores + attention_mask
|
244 |
+
|
245 |
+
# Normalize the attention scores to probabilities.
|
246 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
247 |
+
|
248 |
+
# This is actually dropping out entire tokens to attend to, which might
|
249 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
250 |
+
attention_probs = self.dropout(attention_probs)
|
251 |
+
|
252 |
+
# Mask heads if we want to
|
253 |
+
if head_mask is not None:
|
254 |
+
attention_probs = attention_probs * head_mask
|
255 |
+
|
256 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
257 |
+
|
258 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
259 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
260 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
261 |
+
|
262 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
263 |
+
return outputs
|
264 |
+
|
265 |
+
|
266 |
+
class BertSelfOutput(nn.Module):
|
267 |
+
def __init__(self, config):
|
268 |
+
super().__init__()
|
269 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
270 |
+
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
271 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
272 |
+
|
273 |
+
def forward(self, hidden_states, input_tensor):
|
274 |
+
hidden_states = self.dense(hidden_states)
|
275 |
+
hidden_states = self.dropout(hidden_states)
|
276 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
277 |
+
return hidden_states
|
278 |
+
|
279 |
+
|
280 |
+
class BertAttention(nn.Module):
|
281 |
+
def __init__(self, config):
|
282 |
+
super().__init__()
|
283 |
+
self.self = BertSelfAttention(config)
|
284 |
+
self.output = BertSelfOutput(config)
|
285 |
+
self.pruned_heads = set()
|
286 |
+
|
287 |
+
def prune_heads(self, heads):
|
288 |
+
if len(heads) == 0:
|
289 |
+
return
|
290 |
+
heads, index = find_pruneable_heads_and_indices(
|
291 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
292 |
+
)
|
293 |
+
|
294 |
+
# Prune linear layers
|
295 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
296 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
297 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
298 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
299 |
+
|
300 |
+
# Update hyper params and store pruned heads
|
301 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
302 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
303 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
304 |
+
|
305 |
+
def forward(
|
306 |
+
self,
|
307 |
+
hidden_states,
|
308 |
+
attention_mask=None,
|
309 |
+
head_mask=None,
|
310 |
+
encoder_hidden_states=None,
|
311 |
+
encoder_attention_mask=None,
|
312 |
+
output_attentions=False,
|
313 |
+
):
|
314 |
+
self_outputs = self.self(
|
315 |
+
hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions,
|
316 |
+
)
|
317 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
318 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
319 |
+
return outputs
|
320 |
+
|
321 |
+
|
322 |
+
class BertIntermediate(nn.Module):
|
323 |
+
def __init__(self, config):
|
324 |
+
super().__init__()
|
325 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
326 |
+
if isinstance(config.hidden_act, str):
|
327 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
328 |
+
else:
|
329 |
+
self.intermediate_act_fn = config.hidden_act
|
330 |
+
|
331 |
+
def forward(self, hidden_states):
|
332 |
+
hidden_states = self.dense(hidden_states)
|
333 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
334 |
+
return hidden_states
|
335 |
+
|
336 |
+
|
337 |
+
class BertOutput(nn.Module):
|
338 |
+
def __init__(self, config):
|
339 |
+
super().__init__()
|
340 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
341 |
+
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
342 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
343 |
+
|
344 |
+
def forward(self, hidden_states, input_tensor):
|
345 |
+
hidden_states = self.dense(hidden_states)
|
346 |
+
hidden_states = self.dropout(hidden_states)
|
347 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
348 |
+
return hidden_states
|
349 |
+
|
350 |
+
|
351 |
+
class BertLayer(nn.Module):
|
352 |
+
def __init__(self, config):
|
353 |
+
super().__init__()
|
354 |
+
self.attention = BertAttention(config)
|
355 |
+
self.is_decoder = config.is_decoder
|
356 |
+
if self.is_decoder:
|
357 |
+
self.crossattention = BertAttention(config)
|
358 |
+
self.intermediate = BertIntermediate(config)
|
359 |
+
self.output = BertOutput(config)
|
360 |
+
|
361 |
+
def forward(
|
362 |
+
self,
|
363 |
+
hidden_states,
|
364 |
+
attention_mask=None,
|
365 |
+
head_mask=None,
|
366 |
+
encoder_hidden_states=None,
|
367 |
+
encoder_attention_mask=None,
|
368 |
+
output_attentions=False,
|
369 |
+
):
|
370 |
+
self_attention_outputs = self.attention(
|
371 |
+
hidden_states, attention_mask, head_mask, output_attentions=output_attentions,
|
372 |
+
)
|
373 |
+
attention_output = self_attention_outputs[0]
|
374 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
375 |
+
|
376 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
377 |
+
cross_attention_outputs = self.crossattention(
|
378 |
+
attention_output,
|
379 |
+
attention_mask,
|
380 |
+
head_mask,
|
381 |
+
encoder_hidden_states,
|
382 |
+
encoder_attention_mask,
|
383 |
+
output_attentions,
|
384 |
+
)
|
385 |
+
attention_output = cross_attention_outputs[0]
|
386 |
+
outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights
|
387 |
+
|
388 |
+
intermediate_output = self.intermediate(attention_output)
|
389 |
+
layer_output = self.output(intermediate_output, attention_output)
|
390 |
+
outputs = (layer_output,) + outputs
|
391 |
+
return outputs
|
392 |
+
|
393 |
+
|
394 |
+
class BertEncoder(nn.Module):
|
395 |
+
def __init__(self, config):
|
396 |
+
super().__init__()
|
397 |
+
self.config = config
|
398 |
+
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
|
399 |
+
|
400 |
+
def forward(
|
401 |
+
self,
|
402 |
+
hidden_states,
|
403 |
+
attention_mask=None,
|
404 |
+
head_mask=None,
|
405 |
+
encoder_hidden_states=None,
|
406 |
+
encoder_attention_mask=None,
|
407 |
+
output_attentions=False,
|
408 |
+
output_hidden_states=False,
|
409 |
+
):
|
410 |
+
all_hidden_states = ()
|
411 |
+
all_attentions = ()
|
412 |
+
for i, layer_module in enumerate(self.layer):
|
413 |
+
if output_hidden_states:
|
414 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
415 |
+
|
416 |
+
if getattr(self.config, "gradient_checkpointing", False):
|
417 |
+
|
418 |
+
def create_custom_forward(module):
|
419 |
+
def custom_forward(*inputs):
|
420 |
+
return module(*inputs, output_attentions)
|
421 |
+
|
422 |
+
return custom_forward
|
423 |
+
|
424 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
425 |
+
create_custom_forward(layer_module),
|
426 |
+
hidden_states,
|
427 |
+
attention_mask,
|
428 |
+
head_mask[i],
|
429 |
+
encoder_hidden_states,
|
430 |
+
encoder_attention_mask,
|
431 |
+
)
|
432 |
+
else:
|
433 |
+
layer_outputs = layer_module(
|
434 |
+
hidden_states,
|
435 |
+
attention_mask,
|
436 |
+
head_mask[i],
|
437 |
+
encoder_hidden_states,
|
438 |
+
encoder_attention_mask,
|
439 |
+
output_attentions,
|
440 |
+
)
|
441 |
+
hidden_states = layer_outputs[0]
|
442 |
+
|
443 |
+
if output_attentions:
|
444 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
445 |
+
|
446 |
+
# Add last layer
|
447 |
+
if output_hidden_states:
|
448 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
449 |
+
|
450 |
+
outputs = (hidden_states,)
|
451 |
+
if output_hidden_states:
|
452 |
+
outputs = outputs + (all_hidden_states,)
|
453 |
+
if output_attentions:
|
454 |
+
outputs = outputs + (all_attentions,)
|
455 |
+
return outputs # last-layer hidden state, (all hidden states), (all attentions)
|
456 |
+
|
457 |
+
|
458 |
+
class BertPooler(nn.Module):
|
459 |
+
def __init__(self, config):
|
460 |
+
super().__init__()
|
461 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
462 |
+
self.activation = nn.Tanh()
|
463 |
+
|
464 |
+
def forward(self, hidden_states):
|
465 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
466 |
+
# to the first token.
|
467 |
+
first_token_tensor = hidden_states[:, 0]
|
468 |
+
pooled_output = self.dense(first_token_tensor)
|
469 |
+
pooled_output = self.activation(pooled_output)
|
470 |
+
return pooled_output
|
471 |
+
|
472 |
+
|
473 |
+
class BertPredictionHeadTransform(nn.Module):
|
474 |
+
def __init__(self, config):
|
475 |
+
super().__init__()
|
476 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
477 |
+
if isinstance(config.hidden_act, str):
|
478 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
479 |
+
else:
|
480 |
+
self.transform_act_fn = config.hidden_act
|
481 |
+
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
482 |
+
|
483 |
+
def forward(self, hidden_states):
|
484 |
+
hidden_states = self.dense(hidden_states)
|
485 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
486 |
+
hidden_states = self.LayerNorm(hidden_states)
|
487 |
+
return hidden_states
|
488 |
+
|
489 |
+
|
490 |
+
class BertLMPredictionHead(nn.Module):
|
491 |
+
def __init__(self, config):
|
492 |
+
super().__init__()
|
493 |
+
self.transform = BertPredictionHeadTransform(config)
|
494 |
+
|
495 |
+
# The output weights are the same as the input embeddings, but there is
|
496 |
+
# an output-only bias for each token.
|
497 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
498 |
+
|
499 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
500 |
+
|
501 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
502 |
+
self.decoder.bias = self.bias
|
503 |
+
|
504 |
+
def forward(self, hidden_states):
|
505 |
+
hidden_states = self.transform(hidden_states)
|
506 |
+
hidden_states = self.decoder(hidden_states)
|
507 |
+
return hidden_states
|
508 |
+
|
509 |
+
|
510 |
+
class BertOnlyMLMHead(nn.Module):
|
511 |
+
def __init__(self, config):
|
512 |
+
super().__init__()
|
513 |
+
self.predictions = BertLMPredictionHead(config)
|
514 |
+
|
515 |
+
def forward(self, sequence_output):
|
516 |
+
prediction_scores = self.predictions(sequence_output)
|
517 |
+
return prediction_scores
|
518 |
+
|
519 |
+
|
520 |
+
class BertOnlyNSPHead(nn.Module):
|
521 |
+
def __init__(self, config):
|
522 |
+
super().__init__()
|
523 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
524 |
+
|
525 |
+
def forward(self, pooled_output):
|
526 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
527 |
+
return seq_relationship_score
|
528 |
+
|
529 |
+
|
530 |
+
class BertPreTrainingHeads(nn.Module):
|
531 |
+
def __init__(self, config):
|
532 |
+
super().__init__()
|
533 |
+
self.predictions = BertLMPredictionHead(config)
|
534 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
535 |
+
|
536 |
+
def forward(self, sequence_output, pooled_output):
|
537 |
+
prediction_scores = self.predictions(sequence_output)
|
538 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
539 |
+
return prediction_scores, seq_relationship_score
|
540 |
+
|
541 |
+
|
542 |
+
class BertPreTrainedModel(PreTrainedModel):
|
543 |
+
""" An abstract class to handle weights initialization and
|
544 |
+
a simple interface for downloading and loading pretrained models.
|
545 |
+
"""
|
546 |
+
|
547 |
+
config_class = BertConfig
|
548 |
+
load_tf_weights = load_tf_weights_in_bert
|
549 |
+
base_model_prefix = "bert"
|
550 |
+
|
551 |
+
def _init_weights(self, module):
|
552 |
+
""" Initialize the weights """
|
553 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
554 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
555 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
556 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
557 |
+
elif isinstance(module, BertLayerNorm):
|
558 |
+
module.bias.data.zero_()
|
559 |
+
module.weight.data.fill_(1.0)
|
560 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
561 |
+
module.bias.data.zero_()
|
562 |
+
|
563 |
+
|
564 |
+
BERT_START_DOCSTRING = r"""
|
565 |
+
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
|
566 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
|
567 |
+
usage and behavior.
|
568 |
+
|
569 |
+
Parameters:
|
570 |
+
config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model.
|
571 |
+
Initializing with a config file does not load the weights associated with the model, only the configuration.
|
572 |
+
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
|
573 |
+
"""
|
574 |
+
|
575 |
+
BERT_INPUTS_DOCSTRING = r"""
|
576 |
+
Args:
|
577 |
+
input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
|
578 |
+
Indices of input sequence tokens in the vocabulary.
|
579 |
+
|
580 |
+
Indices can be obtained using :class:`transformers.BertTokenizer`.
|
581 |
+
See :func:`transformers.PreTrainedTokenizer.encode` and
|
582 |
+
:func:`transformers.PreTrainedTokenizer.__call__` for details.
|
583 |
+
|
584 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
585 |
+
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
|
586 |
+
Mask to avoid performing attention on padding token indices.
|
587 |
+
Mask values selected in ``[0, 1]``:
|
588 |
+
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
589 |
+
|
590 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
591 |
+
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
|
592 |
+
Segment token indices to indicate first and second portions of the inputs.
|
593 |
+
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
|
594 |
+
corresponds to a `sentence B` token
|
595 |
+
|
596 |
+
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
597 |
+
position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
|
598 |
+
Indices of positions of each input sequence tokens in the position embeddings.
|
599 |
+
Selected in the range ``[0, config.max_position_embeddings - 1]``.
|
600 |
+
|
601 |
+
`What are position IDs? <../glossary.html#position-ids>`_
|
602 |
+
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
|
603 |
+
Mask to nullify selected heads of the self-attention modules.
|
604 |
+
Mask values selected in ``[0, 1]``:
|
605 |
+
:obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
|
606 |
+
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
|
607 |
+
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
608 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
609 |
+
than the model's internal embedding lookup matrix.
|
610 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
|
611 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
612 |
+
if the model is configured as a decoder.
|
613 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
|
614 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
|
615 |
+
is used in the cross-attention if the model is configured as a decoder.
|
616 |
+
Mask values selected in ``[0, 1]``:
|
617 |
+
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
618 |
+
output_attentions (:obj:`bool`, `optional`, defaults to :obj:`None`):
|
619 |
+
If set to ``True``, the attentions tensors of all attention layers are returned. See ``attentions`` under returned tensors for more detail.
|
620 |
+
"""
|
621 |
+
|
622 |
+
|
623 |
+
@add_start_docstrings(
|
624 |
+
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
625 |
+
BERT_START_DOCSTRING,
|
626 |
+
)
|
627 |
+
class BertModel(BertPreTrainedModel):
|
628 |
+
"""
|
629 |
+
|
630 |
+
The model can behave as an encoder (with only self-attention) as well
|
631 |
+
as a decoder, in which case a layer of cross-attention is added between
|
632 |
+
the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani,
|
633 |
+
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
634 |
+
|
635 |
+
To behave as an decoder the model needs to be initialized with the
|
636 |
+
:obj:`is_decoder` argument of the configuration set to :obj:`True`; an
|
637 |
+
:obj:`encoder_hidden_states` is expected as an input to the forward pass.
|
638 |
+
|
639 |
+
.. _`Attention is all you need`:
|
640 |
+
https://arxiv.org/abs/1706.03762
|
641 |
+
|
642 |
+
"""
|
643 |
+
|
644 |
+
def __init__(self, config):
|
645 |
+
super().__init__(config)
|
646 |
+
self.config = config
|
647 |
+
|
648 |
+
self.embeddings = BertEmbeddings(config)
|
649 |
+
self.encoder = BertEncoder(config)
|
650 |
+
self.pooler = BertPooler(config)
|
651 |
+
|
652 |
+
self.init_weights()
|
653 |
+
|
654 |
+
def get_input_embeddings(self):
|
655 |
+
return self.embeddings.word_embeddings
|
656 |
+
|
657 |
+
def set_input_embeddings(self, value):
|
658 |
+
self.embeddings.word_embeddings = value
|
659 |
+
|
660 |
+
def _prune_heads(self, heads_to_prune):
|
661 |
+
""" Prunes heads of the model.
|
662 |
+
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
663 |
+
See base class PreTrainedModel
|
664 |
+
"""
|
665 |
+
for layer, heads in heads_to_prune.items():
|
666 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
667 |
+
|
668 |
+
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
669 |
+
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
|
670 |
+
def forward(
|
671 |
+
self,
|
672 |
+
input_ids=None,
|
673 |
+
attention_mask=None,
|
674 |
+
token_type_ids=None,
|
675 |
+
position_ids=None,
|
676 |
+
head_mask=None,
|
677 |
+
inputs_embeds=None,
|
678 |
+
encoder_hidden_states=None,
|
679 |
+
encoder_attention_mask=None,
|
680 |
+
output_attentions=None,
|
681 |
+
output_hidden_states=None,
|
682 |
+
):
|
683 |
+
r"""
|
684 |
+
Return:
|
685 |
+
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
686 |
+
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
|
687 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
688 |
+
pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`):
|
689 |
+
Last layer hidden-state of the first token of the sequence (classification token)
|
690 |
+
further processed by a Linear layer and a Tanh activation function. The Linear
|
691 |
+
layer weights are trained from the next sentence prediction (classification)
|
692 |
+
objective during pre-training.
|
693 |
+
|
694 |
+
This output is usually *not* a good summary
|
695 |
+
of the semantic content of the input, you're often better with averaging or pooling
|
696 |
+
the sequence of hidden-states for the whole input sequence.
|
697 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
698 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
699 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
700 |
+
|
701 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
702 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
703 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
704 |
+
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
705 |
+
|
706 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
707 |
+
heads.
|
708 |
+
"""
|
709 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
710 |
+
output_hidden_states = (
|
711 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
712 |
+
)
|
713 |
+
|
714 |
+
if input_ids is not None and inputs_embeds is not None:
|
715 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
716 |
+
elif input_ids is not None:
|
717 |
+
input_shape = input_ids.size()
|
718 |
+
elif inputs_embeds is not None:
|
719 |
+
input_shape = inputs_embeds.size()[:-1]
|
720 |
+
else:
|
721 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
722 |
+
|
723 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
724 |
+
|
725 |
+
if attention_mask is None:
|
726 |
+
attention_mask = torch.ones(input_shape, device=device)
|
727 |
+
if token_type_ids is None:
|
728 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
729 |
+
|
730 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
731 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
732 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
733 |
+
|
734 |
+
# If a 2D ou 3D attention mask is provided for the cross-attention
|
735 |
+
# we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length]
|
736 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
737 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
738 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
739 |
+
if encoder_attention_mask is None:
|
740 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
741 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
742 |
+
else:
|
743 |
+
encoder_extended_attention_mask = None
|
744 |
+
|
745 |
+
# Prepare head mask if needed
|
746 |
+
# 1.0 in head_mask indicate we keep the head
|
747 |
+
# attention_probs has shape bsz x n_heads x N x N
|
748 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
749 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
750 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
751 |
+
|
752 |
+
embedding_output = self.embeddings(
|
753 |
+
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
|
754 |
+
)
|
755 |
+
encoder_outputs = self.encoder(
|
756 |
+
embedding_output,
|
757 |
+
attention_mask=extended_attention_mask,
|
758 |
+
head_mask=head_mask,
|
759 |
+
encoder_hidden_states=encoder_hidden_states,
|
760 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
761 |
+
output_attentions=output_attentions,
|
762 |
+
output_hidden_states=output_hidden_states,
|
763 |
+
)
|
764 |
+
sequence_output = encoder_outputs[0]
|
765 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
766 |
+
|
767 |
+
outputs = (sequence_output, pooled_output,) + encoder_outputs[
|
768 |
+
1:
|
769 |
+
] # add hidden_states and attentions if they are here
|
770 |
+
return outputs # sequence_output, pooled_output, (hidden_states), (attentions)
|
771 |
+
|
772 |
+
|
773 |
+
@add_start_docstrings(
|
774 |
+
"""Bert Model with two heads on top as done during the pre-training: a `masked language modeling` head and
|
775 |
+
a `next sentence prediction (classification)` head. """,
|
776 |
+
BERT_START_DOCSTRING,
|
777 |
+
)
|
778 |
+
class BertForPreTraining(BertPreTrainedModel):
|
779 |
+
def __init__(self, config):
|
780 |
+
super().__init__(config)
|
781 |
+
|
782 |
+
self.bert = BertModel(config)
|
783 |
+
self.cls = BertPreTrainingHeads(config)
|
784 |
+
|
785 |
+
self.init_weights()
|
786 |
+
|
787 |
+
def get_output_embeddings(self):
|
788 |
+
return self.cls.predictions.decoder
|
789 |
+
|
790 |
+
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
791 |
+
def forward(
|
792 |
+
self,
|
793 |
+
input_ids=None,
|
794 |
+
attention_mask=None,
|
795 |
+
token_type_ids=None,
|
796 |
+
position_ids=None,
|
797 |
+
head_mask=None,
|
798 |
+
inputs_embeds=None,
|
799 |
+
labels=None,
|
800 |
+
next_sentence_label=None,
|
801 |
+
output_attentions=None,
|
802 |
+
output_hidden_states=None,
|
803 |
+
**kwargs
|
804 |
+
):
|
805 |
+
r"""
|
806 |
+
labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`, defaults to :obj:`None`):
|
807 |
+
Labels for computing the masked language modeling loss.
|
808 |
+
Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
|
809 |
+
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
|
810 |
+
in ``[0, ..., config.vocab_size]``
|
811 |
+
next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`, defaults to :obj:`None`):
|
812 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring)
|
813 |
+
Indices should be in ``[0, 1]``.
|
814 |
+
``0`` indicates sequence B is a continuation of sequence A,
|
815 |
+
``1`` indicates sequence B is a random sequence.
|
816 |
+
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
|
817 |
+
Used to hide legacy arguments that have been deprecated.
|
818 |
+
|
819 |
+
Returns:
|
820 |
+
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
821 |
+
loss (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
|
822 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
|
823 |
+
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
|
824 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
825 |
+
seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
|
826 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False
|
827 |
+
continuation before SoftMax).
|
828 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
829 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
830 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
831 |
+
|
832 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
833 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
834 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
835 |
+
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
836 |
+
|
837 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
838 |
+
heads.
|
839 |
+
|
840 |
+
|
841 |
+
Examples::
|
842 |
+
|
843 |
+
>>> from transformers import BertTokenizer, BertForPreTraining
|
844 |
+
>>> import torch
|
845 |
+
|
846 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
847 |
+
>>> model = BertForPreTraining.from_pretrained('bert-base-uncased')
|
848 |
+
|
849 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
850 |
+
>>> outputs = model(**inputs)
|
851 |
+
|
852 |
+
>>> prediction_scores, seq_relationship_scores = outputs[:2]
|
853 |
+
|
854 |
+
"""
|
855 |
+
if "masked_lm_labels" in kwargs:
|
856 |
+
warnings.warn(
|
857 |
+
"The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
|
858 |
+
DeprecationWarning,
|
859 |
+
)
|
860 |
+
labels = kwargs.pop("masked_lm_labels")
|
861 |
+
assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
|
862 |
+
|
863 |
+
outputs = self.bert(
|
864 |
+
input_ids,
|
865 |
+
attention_mask=attention_mask,
|
866 |
+
token_type_ids=token_type_ids,
|
867 |
+
position_ids=position_ids,
|
868 |
+
head_mask=head_mask,
|
869 |
+
inputs_embeds=inputs_embeds,
|
870 |
+
output_attentions=output_attentions,
|
871 |
+
output_hidden_states=output_hidden_states,
|
872 |
+
)
|
873 |
+
|
874 |
+
sequence_output, pooled_output = outputs[:2]
|
875 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
876 |
+
|
877 |
+
outputs = (prediction_scores, seq_relationship_score,) + outputs[
|
878 |
+
2:
|
879 |
+
] # add hidden states and attention if they are here
|
880 |
+
|
881 |
+
if labels is not None and next_sentence_label is not None:
|
882 |
+
loss_fct = CrossEntropyLoss()
|
883 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
884 |
+
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
885 |
+
total_loss = masked_lm_loss + next_sentence_loss
|
886 |
+
outputs = (total_loss,) + outputs
|
887 |
+
|
888 |
+
return outputs # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
|
889 |
+
|
890 |
+
|
891 |
+
@add_start_docstrings(
|
892 |
+
"""Bert Model with a `language modeling` head on top for CLM fine-tuning. """, BERT_START_DOCSTRING
|
893 |
+
)
|
894 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
895 |
+
def __init__(self, config):
|
896 |
+
super().__init__(config)
|
897 |
+
assert config.is_decoder, "If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True`."
|
898 |
+
|
899 |
+
self.bert = BertModel(config)
|
900 |
+
self.cls = BertOnlyMLMHead(config)
|
901 |
+
|
902 |
+
self.init_weights()
|
903 |
+
|
904 |
+
def get_output_embeddings(self):
|
905 |
+
return self.cls.predictions.decoder
|
906 |
+
|
907 |
+
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
908 |
+
def forward(
|
909 |
+
self,
|
910 |
+
input_ids=None,
|
911 |
+
attention_mask=None,
|
912 |
+
token_type_ids=None,
|
913 |
+
position_ids=None,
|
914 |
+
head_mask=None,
|
915 |
+
inputs_embeds=None,
|
916 |
+
labels=None,
|
917 |
+
encoder_hidden_states=None,
|
918 |
+
encoder_attention_mask=None,
|
919 |
+
output_attentions=None,
|
920 |
+
output_hidden_states=None,
|
921 |
+
**kwargs
|
922 |
+
):
|
923 |
+
r"""
|
924 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
|
925 |
+
Labels for computing the left-to-right language modeling loss (next word prediction).
|
926 |
+
Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
|
927 |
+
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
|
928 |
+
in ``[0, ..., config.vocab_size]``
|
929 |
+
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
|
930 |
+
Used to hide legacy arguments that have been deprecated.
|
931 |
+
|
932 |
+
Returns:
|
933 |
+
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
934 |
+
ltr_lm_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
|
935 |
+
Next token prediction loss.
|
936 |
+
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
|
937 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
938 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
939 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
940 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
941 |
+
|
942 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
943 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
944 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
945 |
+
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
946 |
+
|
947 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
948 |
+
heads.
|
949 |
+
|
950 |
+
Example::
|
951 |
+
|
952 |
+
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
953 |
+
>>> import torch
|
954 |
+
|
955 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
956 |
+
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
957 |
+
>>> config.is_decoder = True
|
958 |
+
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
959 |
+
|
960 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
961 |
+
>>> outputs = model(**inputs)
|
962 |
+
|
963 |
+
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
964 |
+
"""
|
965 |
+
|
966 |
+
outputs = self.bert(
|
967 |
+
input_ids,
|
968 |
+
attention_mask=attention_mask,
|
969 |
+
token_type_ids=token_type_ids,
|
970 |
+
position_ids=position_ids,
|
971 |
+
head_mask=head_mask,
|
972 |
+
inputs_embeds=inputs_embeds,
|
973 |
+
encoder_hidden_states=encoder_hidden_states,
|
974 |
+
encoder_attention_mask=encoder_attention_mask,
|
975 |
+
output_attentions=output_attentions,
|
976 |
+
output_hidden_states=output_hidden_states,
|
977 |
+
)
|
978 |
+
|
979 |
+
sequence_output = outputs[0]
|
980 |
+
prediction_scores = self.cls(sequence_output)
|
981 |
+
|
982 |
+
outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here
|
983 |
+
|
984 |
+
if labels is not None:
|
985 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
986 |
+
prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
987 |
+
labels = labels[:, 1:].contiguous()
|
988 |
+
loss_fct = CrossEntropyLoss()
|
989 |
+
ltr_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
990 |
+
outputs = (ltr_lm_loss,) + outputs
|
991 |
+
|
992 |
+
return outputs # (ltr_lm_loss), prediction_scores, (hidden_states), (attentions)
|
993 |
+
|
994 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
995 |
+
input_shape = input_ids.shape
|
996 |
+
|
997 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
998 |
+
if attention_mask is None:
|
999 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1000 |
+
|
1001 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1002 |
+
|
1003 |
+
|
1004 |
+
@add_start_docstrings("""Bert Model with a `language modeling` head on top. """, BERT_START_DOCSTRING)
|
1005 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
1006 |
+
def __init__(self, config):
|
1007 |
+
super().__init__(config)
|
1008 |
+
assert (
|
1009 |
+
not config.is_decoder
|
1010 |
+
), "If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for bi-directional self-attention."
|
1011 |
+
|
1012 |
+
self.bert = BertModel(config)
|
1013 |
+
self.cls = BertOnlyMLMHead(config)
|
1014 |
+
|
1015 |
+
self.init_weights()
|
1016 |
+
|
1017 |
+
def get_output_embeddings(self):
|
1018 |
+
return self.cls.predictions.decoder
|
1019 |
+
|
1020 |
+
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
1021 |
+
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
|
1022 |
+
def forward(
|
1023 |
+
self,
|
1024 |
+
input_ids=None,
|
1025 |
+
attention_mask=None,
|
1026 |
+
token_type_ids=None,
|
1027 |
+
position_ids=None,
|
1028 |
+
head_mask=None,
|
1029 |
+
inputs_embeds=None,
|
1030 |
+
labels=None,
|
1031 |
+
encoder_hidden_states=None,
|
1032 |
+
encoder_attention_mask=None,
|
1033 |
+
output_attentions=None,
|
1034 |
+
output_hidden_states=None,
|
1035 |
+
**kwargs
|
1036 |
+
):
|
1037 |
+
r"""
|
1038 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
|
1039 |
+
Labels for computing the masked language modeling loss.
|
1040 |
+
Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
|
1041 |
+
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
|
1042 |
+
in ``[0, ..., config.vocab_size]``
|
1043 |
+
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
|
1044 |
+
Used to hide legacy arguments that have been deprecated.
|
1045 |
+
|
1046 |
+
Returns:
|
1047 |
+
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
1048 |
+
masked_lm_loss (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
|
1049 |
+
Masked language modeling loss.
|
1050 |
+
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
|
1051 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
1052 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
1053 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
1054 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
1055 |
+
|
1056 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
1057 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
1058 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
1059 |
+
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
1060 |
+
|
1061 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
1062 |
+
heads.
|
1063 |
+
"""
|
1064 |
+
if "masked_lm_labels" in kwargs:
|
1065 |
+
warnings.warn(
|
1066 |
+
"The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
|
1067 |
+
DeprecationWarning,
|
1068 |
+
)
|
1069 |
+
labels = kwargs.pop("masked_lm_labels")
|
1070 |
+
assert "lm_labels" not in kwargs, "Use `BertWithLMHead` for autoregressive language modeling task."
|
1071 |
+
assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
|
1072 |
+
|
1073 |
+
outputs = self.bert(
|
1074 |
+
input_ids,
|
1075 |
+
attention_mask=attention_mask,
|
1076 |
+
token_type_ids=token_type_ids,
|
1077 |
+
position_ids=position_ids,
|
1078 |
+
head_mask=head_mask,
|
1079 |
+
inputs_embeds=inputs_embeds,
|
1080 |
+
encoder_hidden_states=encoder_hidden_states,
|
1081 |
+
encoder_attention_mask=encoder_attention_mask,
|
1082 |
+
output_attentions=output_attentions,
|
1083 |
+
output_hidden_states=output_hidden_states,
|
1084 |
+
)
|
1085 |
+
|
1086 |
+
sequence_output = outputs[0]
|
1087 |
+
prediction_scores = self.cls(sequence_output)
|
1088 |
+
|
1089 |
+
outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here
|
1090 |
+
|
1091 |
+
if labels is not None:
|
1092 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1093 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1094 |
+
outputs = (masked_lm_loss,) + outputs
|
1095 |
+
|
1096 |
+
return outputs # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
|
1097 |
+
|
1098 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
1099 |
+
input_shape = input_ids.shape
|
1100 |
+
effective_batch_size = input_shape[0]
|
1101 |
+
|
1102 |
+
# add a dummy token
|
1103 |
+
assert self.config.pad_token_id is not None, "The PAD token should be defined for generation"
|
1104 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
1105 |
+
dummy_token = torch.full(
|
1106 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
1107 |
+
)
|
1108 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
1109 |
+
|
1110 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1111 |
+
|
1112 |
+
|
1113 |
+
@add_start_docstrings(
|
1114 |
+
"""Bert Model with a `next sentence prediction (classification)` head on top. """, BERT_START_DOCSTRING,
|
1115 |
+
)
|
1116 |
+
class BertForNextSentencePrediction(BertPreTrainedModel):
|
1117 |
+
def __init__(self, config):
|
1118 |
+
super().__init__(config)
|
1119 |
+
|
1120 |
+
self.bert = BertModel(config)
|
1121 |
+
self.cls = BertOnlyNSPHead(config)
|
1122 |
+
|
1123 |
+
self.init_weights()
|
1124 |
+
|
1125 |
+
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
1126 |
+
def forward(
|
1127 |
+
self,
|
1128 |
+
input_ids=None,
|
1129 |
+
attention_mask=None,
|
1130 |
+
token_type_ids=None,
|
1131 |
+
position_ids=None,
|
1132 |
+
head_mask=None,
|
1133 |
+
inputs_embeds=None,
|
1134 |
+
next_sentence_label=None,
|
1135 |
+
output_attentions=None,
|
1136 |
+
output_hidden_states=None,
|
1137 |
+
):
|
1138 |
+
r"""
|
1139 |
+
next_sentence_label (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
|
1140 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
|
1141 |
+
Indices should be in ``[0, 1]``.
|
1142 |
+
``0`` indicates sequence B is a continuation of sequence A,
|
1143 |
+
``1`` indicates sequence B is a random sequence.
|
1144 |
+
|
1145 |
+
Returns:
|
1146 |
+
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
1147 |
+
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`next_sentence_label` is provided):
|
1148 |
+
Next sequence prediction (classification) loss.
|
1149 |
+
seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
|
1150 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
|
1151 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
1152 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
1153 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
1154 |
+
|
1155 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
1156 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
1157 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
1158 |
+
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
1159 |
+
|
1160 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
1161 |
+
heads.
|
1162 |
+
|
1163 |
+
Examples::
|
1164 |
+
|
1165 |
+
>>> from transformers import BertTokenizer, BertForNextSentencePrediction
|
1166 |
+
>>> import torch
|
1167 |
+
|
1168 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
1169 |
+
>>> model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
|
1170 |
+
|
1171 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1172 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
1173 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt')
|
1174 |
+
|
1175 |
+
>>> loss, logits = model(**encoding, next_sentence_label=torch.LongTensor([1]))
|
1176 |
+
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
|
1177 |
+
"""
|
1178 |
+
|
1179 |
+
outputs = self.bert(
|
1180 |
+
input_ids,
|
1181 |
+
attention_mask=attention_mask,
|
1182 |
+
token_type_ids=token_type_ids,
|
1183 |
+
position_ids=position_ids,
|
1184 |
+
head_mask=head_mask,
|
1185 |
+
inputs_embeds=inputs_embeds,
|
1186 |
+
output_attentions=output_attentions,
|
1187 |
+
output_hidden_states=output_hidden_states,
|
1188 |
+
)
|
1189 |
+
|
1190 |
+
pooled_output = outputs[1]
|
1191 |
+
|
1192 |
+
seq_relationship_score = self.cls(pooled_output)
|
1193 |
+
|
1194 |
+
outputs = (seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here
|
1195 |
+
if next_sentence_label is not None:
|
1196 |
+
loss_fct = CrossEntropyLoss()
|
1197 |
+
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
1198 |
+
outputs = (next_sentence_loss,) + outputs
|
1199 |
+
|
1200 |
+
return outputs # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
|
1201 |
+
|
1202 |
+
|
1203 |
+
@add_start_docstrings(
|
1204 |
+
"""Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of
|
1205 |
+
the pooled output) e.g. for GLUE tasks. """,
|
1206 |
+
BERT_START_DOCSTRING,
|
1207 |
+
)
|
1208 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
1209 |
+
def __init__(self, config):
|
1210 |
+
super().__init__(config)
|
1211 |
+
self.num_labels = config.num_labels
|
1212 |
+
|
1213 |
+
self.bert = BertModel(config)
|
1214 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1215 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1216 |
+
|
1217 |
+
self.init_weights()
|
1218 |
+
|
1219 |
+
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
1220 |
+
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
|
1221 |
+
def forward(
|
1222 |
+
self,
|
1223 |
+
input_ids=None,
|
1224 |
+
attention_mask=None,
|
1225 |
+
token_type_ids=None,
|
1226 |
+
position_ids=None,
|
1227 |
+
head_mask=None,
|
1228 |
+
inputs_embeds=None,
|
1229 |
+
labels=None,
|
1230 |
+
output_attentions=None,
|
1231 |
+
output_hidden_states=None,
|
1232 |
+
):
|
1233 |
+
r"""
|
1234 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
|
1235 |
+
Labels for computing the sequence classification/regression loss.
|
1236 |
+
Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
|
1237 |
+
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
1238 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1239 |
+
|
1240 |
+
Returns:
|
1241 |
+
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
1242 |
+
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
|
1243 |
+
Classification (or regression if config.num_labels==1) loss.
|
1244 |
+
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
|
1245 |
+
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
1246 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
1247 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
1248 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
1249 |
+
|
1250 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
1251 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
1252 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
1253 |
+
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
1254 |
+
|
1255 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
1256 |
+
heads.
|
1257 |
+
"""
|
1258 |
+
|
1259 |
+
outputs = self.bert(
|
1260 |
+
input_ids,
|
1261 |
+
attention_mask=attention_mask,
|
1262 |
+
token_type_ids=token_type_ids,
|
1263 |
+
position_ids=position_ids,
|
1264 |
+
head_mask=head_mask,
|
1265 |
+
inputs_embeds=inputs_embeds,
|
1266 |
+
output_attentions=output_attentions,
|
1267 |
+
output_hidden_states=output_hidden_states,
|
1268 |
+
)
|
1269 |
+
|
1270 |
+
pooled_output = outputs[1]
|
1271 |
+
|
1272 |
+
pooled_output = self.dropout(pooled_output)
|
1273 |
+
logits = self.classifier(pooled_output)
|
1274 |
+
|
1275 |
+
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
|
1276 |
+
|
1277 |
+
if labels is not None:
|
1278 |
+
if self.num_labels == 1:
|
1279 |
+
# We are doing regression
|
1280 |
+
loss_fct = MSELoss()
|
1281 |
+
loss = loss_fct(logits.view(-1), labels.view(-1))
|
1282 |
+
else:
|
1283 |
+
loss_fct = CrossEntropyLoss()
|
1284 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1285 |
+
outputs = (loss,) + outputs
|
1286 |
+
|
1287 |
+
return outputs # (loss), logits, (hidden_states), (attentions)
|
1288 |
+
|
1289 |
+
|
1290 |
+
@add_start_docstrings(
|
1291 |
+
"""Bert Model with a multiple choice classification head on top (a linear layer on top of
|
1292 |
+
the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
|
1293 |
+
BERT_START_DOCSTRING,
|
1294 |
+
)
|
1295 |
+
class BertForMultipleChoice(BertPreTrainedModel):
|
1296 |
+
def __init__(self, config):
|
1297 |
+
super().__init__(config)
|
1298 |
+
|
1299 |
+
self.bert = BertModel(config)
|
1300 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1301 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1302 |
+
|
1303 |
+
self.init_weights()
|
1304 |
+
|
1305 |
+
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, num_choices, sequence_length)"))
|
1306 |
+
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
|
1307 |
+
def forward(
|
1308 |
+
self,
|
1309 |
+
input_ids=None,
|
1310 |
+
attention_mask=None,
|
1311 |
+
token_type_ids=None,
|
1312 |
+
position_ids=None,
|
1313 |
+
head_mask=None,
|
1314 |
+
inputs_embeds=None,
|
1315 |
+
labels=None,
|
1316 |
+
output_attentions=None,
|
1317 |
+
output_hidden_states=None,
|
1318 |
+
):
|
1319 |
+
r"""
|
1320 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
|
1321 |
+
Labels for computing the multiple choice classification loss.
|
1322 |
+
Indices should be in ``[0, ..., num_choices-1]`` where `num_choices` is the size of the second dimension
|
1323 |
+
of the input tensors. (see `input_ids` above)
|
1324 |
+
|
1325 |
+
Returns:
|
1326 |
+
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
1327 |
+
loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided):
|
1328 |
+
Classification loss.
|
1329 |
+
classification_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`):
|
1330 |
+
`num_choices` is the second dimension of the input tensors. (see `input_ids` above).
|
1331 |
+
|
1332 |
+
Classification scores (before SoftMax).
|
1333 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
1334 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
1335 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
1336 |
+
|
1337 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
1338 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
1339 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
1340 |
+
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
1341 |
+
|
1342 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
1343 |
+
heads.
|
1344 |
+
"""
|
1345 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1346 |
+
|
1347 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1348 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1349 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1350 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1351 |
+
inputs_embeds = (
|
1352 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1353 |
+
if inputs_embeds is not None
|
1354 |
+
else None
|
1355 |
+
)
|
1356 |
+
|
1357 |
+
outputs = self.bert(
|
1358 |
+
input_ids,
|
1359 |
+
attention_mask=attention_mask,
|
1360 |
+
token_type_ids=token_type_ids,
|
1361 |
+
position_ids=position_ids,
|
1362 |
+
head_mask=head_mask,
|
1363 |
+
inputs_embeds=inputs_embeds,
|
1364 |
+
output_attentions=output_attentions,
|
1365 |
+
output_hidden_states=output_hidden_states,
|
1366 |
+
)
|
1367 |
+
|
1368 |
+
pooled_output = outputs[1]
|
1369 |
+
|
1370 |
+
pooled_output = self.dropout(pooled_output)
|
1371 |
+
logits = self.classifier(pooled_output)
|
1372 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1373 |
+
|
1374 |
+
outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here
|
1375 |
+
|
1376 |
+
if labels is not None:
|
1377 |
+
loss_fct = CrossEntropyLoss()
|
1378 |
+
loss = loss_fct(reshaped_logits, labels)
|
1379 |
+
outputs = (loss,) + outputs
|
1380 |
+
|
1381 |
+
return outputs # (loss), reshaped_logits, (hidden_states), (attentions)
|
1382 |
+
|
1383 |
+
|
1384 |
+
@add_start_docstrings(
|
1385 |
+
"""Bert Model with a token classification head on top (a linear layer on top of
|
1386 |
+
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
|
1387 |
+
BERT_START_DOCSTRING,
|
1388 |
+
)
|
1389 |
+
class BertForTokenClassification(BertPreTrainedModel):
|
1390 |
+
def __init__(self, config):
|
1391 |
+
super().__init__(config)
|
1392 |
+
self.num_labels = config.num_labels
|
1393 |
+
|
1394 |
+
self.bert = BertModel(config)
|
1395 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1396 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1397 |
+
|
1398 |
+
self.init_weights()
|
1399 |
+
|
1400 |
+
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
1401 |
+
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
|
1402 |
+
def forward(
|
1403 |
+
self,
|
1404 |
+
input_ids=None,
|
1405 |
+
attention_mask=None,
|
1406 |
+
token_type_ids=None,
|
1407 |
+
position_ids=None,
|
1408 |
+
head_mask=None,
|
1409 |
+
inputs_embeds=None,
|
1410 |
+
labels=None,
|
1411 |
+
output_attentions=None,
|
1412 |
+
output_hidden_states=None,
|
1413 |
+
):
|
1414 |
+
r"""
|
1415 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
|
1416 |
+
Labels for computing the token classification loss.
|
1417 |
+
Indices should be in ``[0, ..., config.num_labels - 1]``.
|
1418 |
+
|
1419 |
+
Returns:
|
1420 |
+
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
1421 |
+
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) :
|
1422 |
+
Classification loss.
|
1423 |
+
scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`)
|
1424 |
+
Classification scores (before SoftMax).
|
1425 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
1426 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
1427 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
1428 |
+
|
1429 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
1430 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
1431 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
1432 |
+
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
1433 |
+
|
1434 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
1435 |
+
heads.
|
1436 |
+
"""
|
1437 |
+
|
1438 |
+
outputs = self.bert(
|
1439 |
+
input_ids,
|
1440 |
+
attention_mask=attention_mask,
|
1441 |
+
token_type_ids=token_type_ids,
|
1442 |
+
position_ids=position_ids,
|
1443 |
+
head_mask=head_mask,
|
1444 |
+
inputs_embeds=inputs_embeds,
|
1445 |
+
output_attentions=output_attentions,
|
1446 |
+
output_hidden_states=output_hidden_states,
|
1447 |
+
)
|
1448 |
+
|
1449 |
+
sequence_output = outputs[0]
|
1450 |
+
|
1451 |
+
sequence_output = self.dropout(sequence_output)
|
1452 |
+
logits = self.classifier(sequence_output)
|
1453 |
+
|
1454 |
+
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
|
1455 |
+
if labels is not None:
|
1456 |
+
loss_fct = CrossEntropyLoss()
|
1457 |
+
# Only keep active parts of the loss
|
1458 |
+
if attention_mask is not None:
|
1459 |
+
active_loss = attention_mask.view(-1) == 1
|
1460 |
+
active_logits = logits.view(-1, self.num_labels)
|
1461 |
+
active_labels = torch.where(
|
1462 |
+
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
1463 |
+
)
|
1464 |
+
loss = loss_fct(active_logits, active_labels)
|
1465 |
+
else:
|
1466 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1467 |
+
outputs = (loss,) + outputs
|
1468 |
+
|
1469 |
+
return outputs # (loss), scores, (hidden_states), (attentions)
|
1470 |
+
|
1471 |
+
|
1472 |
+
@add_start_docstrings(
|
1473 |
+
"""Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1474 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """,
|
1475 |
+
BERT_START_DOCSTRING,
|
1476 |
+
)
|
1477 |
+
class BertForQuestionAnswering(BertPreTrainedModel):
|
1478 |
+
def __init__(self, config):
|
1479 |
+
super().__init__(config)
|
1480 |
+
self.num_labels = config.num_labels
|
1481 |
+
|
1482 |
+
self.bert = BertModel(config)
|
1483 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1484 |
+
|
1485 |
+
self.init_weights()
|
1486 |
+
|
1487 |
+
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
1488 |
+
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
|
1489 |
+
def forward(
|
1490 |
+
self,
|
1491 |
+
input_ids=None,
|
1492 |
+
attention_mask=None,
|
1493 |
+
token_type_ids=None,
|
1494 |
+
position_ids=None,
|
1495 |
+
head_mask=None,
|
1496 |
+
inputs_embeds=None,
|
1497 |
+
start_positions=None,
|
1498 |
+
end_positions=None,
|
1499 |
+
output_attentions=None,
|
1500 |
+
output_hidden_states=None,
|
1501 |
+
):
|
1502 |
+
r"""
|
1503 |
+
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
|
1504 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1505 |
+
Positions are clamped to the length of the sequence (`sequence_length`).
|
1506 |
+
Position outside of the sequence are not taken into account for computing the loss.
|
1507 |
+
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
|
1508 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1509 |
+
Positions are clamped to the length of the sequence (`sequence_length`).
|
1510 |
+
Position outside of the sequence are not taken into account for computing the loss.
|
1511 |
+
|
1512 |
+
Returns:
|
1513 |
+
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
1514 |
+
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
|
1515 |
+
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
|
1516 |
+
start_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
|
1517 |
+
Span-start scores (before SoftMax).
|
1518 |
+
end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
|
1519 |
+
Span-end scores (before SoftMax).
|
1520 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
1521 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
1522 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
1523 |
+
|
1524 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
1525 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
1526 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
1527 |
+
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
1528 |
+
|
1529 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
1530 |
+
heads.
|
1531 |
+
"""
|
1532 |
+
|
1533 |
+
outputs = self.bert(
|
1534 |
+
input_ids,
|
1535 |
+
attention_mask=attention_mask,
|
1536 |
+
token_type_ids=token_type_ids,
|
1537 |
+
position_ids=position_ids,
|
1538 |
+
head_mask=head_mask,
|
1539 |
+
inputs_embeds=inputs_embeds,
|
1540 |
+
output_attentions=output_attentions,
|
1541 |
+
output_hidden_states=output_hidden_states,
|
1542 |
+
)
|
1543 |
+
|
1544 |
+
sequence_output = outputs[0]
|
1545 |
+
|
1546 |
+
logits = self.qa_outputs(sequence_output)
|
1547 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1548 |
+
start_logits = start_logits.squeeze(-1)
|
1549 |
+
end_logits = end_logits.squeeze(-1)
|
1550 |
+
|
1551 |
+
outputs = (start_logits, end_logits,) + outputs[2:]
|
1552 |
+
if start_positions is not None and end_positions is not None:
|
1553 |
+
# If we are on multi-GPU, split add a dimension
|
1554 |
+
if len(start_positions.size()) > 1:
|
1555 |
+
start_positions = start_positions.squeeze(-1)
|
1556 |
+
if len(end_positions.size()) > 1:
|
1557 |
+
end_positions = end_positions.squeeze(-1)
|
1558 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1559 |
+
ignored_index = start_logits.size(1)
|
1560 |
+
start_positions.clamp_(0, ignored_index)
|
1561 |
+
end_positions.clamp_(0, ignored_index)
|
1562 |
+
|
1563 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1564 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1565 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1566 |
+
total_loss = (start_loss + end_loss) / 2
|
1567 |
+
outputs = (total_loss,) + outputs
|
1568 |
+
|
1569 |
+
return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions)
|
elia/bert/modeling_utils.py
ADDED
@@ -0,0 +1,1268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import inspect
|
18 |
+
import logging
|
19 |
+
import os
|
20 |
+
from typing import Callable, Dict, List, Optional, Tuple
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch import Tensor, device, dtype, nn
|
24 |
+
from torch.nn import CrossEntropyLoss
|
25 |
+
from torch.nn import functional as F
|
26 |
+
|
27 |
+
from .activations import get_activation
|
28 |
+
from .configuration_utils import PretrainedConfig
|
29 |
+
from .file_utils import (
|
30 |
+
DUMMY_INPUTS,
|
31 |
+
TF2_WEIGHTS_NAME,
|
32 |
+
TF_WEIGHTS_NAME,
|
33 |
+
WEIGHTS_NAME,
|
34 |
+
cached_path,
|
35 |
+
hf_bucket_url,
|
36 |
+
is_remote_url,
|
37 |
+
)
|
38 |
+
from .generation_utils import GenerationMixin
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.getLogger(__name__)
|
42 |
+
|
43 |
+
|
44 |
+
try:
|
45 |
+
from torch.nn import Identity
|
46 |
+
except ImportError:
|
47 |
+
# Older PyTorch compatibility
|
48 |
+
class Identity(nn.Module):
|
49 |
+
r"""A placeholder identity operator that is argument-insensitive.
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(self, *args, **kwargs):
|
53 |
+
super().__init__()
|
54 |
+
|
55 |
+
def forward(self, input):
|
56 |
+
return input
|
57 |
+
|
58 |
+
|
59 |
+
def find_pruneable_heads_and_indices(
|
60 |
+
heads: List, n_heads: int, head_size: int, already_pruned_heads: set
|
61 |
+
) -> Tuple[set, "torch.LongTensor"]:
|
62 |
+
mask = torch.ones(n_heads, head_size)
|
63 |
+
heads = set(heads) - already_pruned_heads # Convert to set and remove already pruned heads
|
64 |
+
for head in heads:
|
65 |
+
# Compute how many pruned heads are before the head and move the index accordingly
|
66 |
+
head = head - sum(1 if h < head else 0 for h in already_pruned_heads)
|
67 |
+
mask[head] = 0
|
68 |
+
mask = mask.view(-1).contiguous().eq(1)
|
69 |
+
index: torch.LongTensor = torch.arange(len(mask))[mask].long()
|
70 |
+
return heads, index
|
71 |
+
|
72 |
+
|
73 |
+
class ModuleUtilsMixin:
|
74 |
+
"""
|
75 |
+
A few utilities for torch.nn.Modules, to be used as a mixin.
|
76 |
+
"""
|
77 |
+
|
78 |
+
def num_parameters(self, only_trainable: bool = False) -> int:
|
79 |
+
"""
|
80 |
+
Get number of (optionally, trainable) parameters in the module.
|
81 |
+
"""
|
82 |
+
params = filter(lambda x: x.requires_grad, self.parameters()) if only_trainable else self.parameters()
|
83 |
+
return sum(p.numel() for p in params)
|
84 |
+
|
85 |
+
@staticmethod
|
86 |
+
def _hook_rss_memory_pre_forward(module, *args, **kwargs):
|
87 |
+
try:
|
88 |
+
import psutil
|
89 |
+
except (ImportError):
|
90 |
+
raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")
|
91 |
+
|
92 |
+
process = psutil.Process(os.getpid())
|
93 |
+
mem = process.memory_info()
|
94 |
+
module.mem_rss_pre_forward = mem.rss
|
95 |
+
return None
|
96 |
+
|
97 |
+
@staticmethod
|
98 |
+
def _hook_rss_memory_post_forward(module, *args, **kwargs):
|
99 |
+
try:
|
100 |
+
import psutil
|
101 |
+
except (ImportError):
|
102 |
+
raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")
|
103 |
+
|
104 |
+
process = psutil.Process(os.getpid())
|
105 |
+
mem = process.memory_info()
|
106 |
+
module.mem_rss_post_forward = mem.rss
|
107 |
+
mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
|
108 |
+
module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
|
109 |
+
return None
|
110 |
+
|
111 |
+
def add_memory_hooks(self):
|
112 |
+
""" Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.
|
113 |
+
Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero with `model.reset_memory_hooks_state()`
|
114 |
+
"""
|
115 |
+
for module in self.modules():
|
116 |
+
module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
|
117 |
+
module.register_forward_hook(self._hook_rss_memory_post_forward)
|
118 |
+
self.reset_memory_hooks_state()
|
119 |
+
|
120 |
+
def reset_memory_hooks_state(self):
|
121 |
+
for module in self.modules():
|
122 |
+
module.mem_rss_diff = 0
|
123 |
+
module.mem_rss_post_forward = 0
|
124 |
+
module.mem_rss_pre_forward = 0
|
125 |
+
|
126 |
+
@property
|
127 |
+
def device(self) -> device:
|
128 |
+
"""
|
129 |
+
Get torch.device from module, assuming that the whole module has one device.
|
130 |
+
"""
|
131 |
+
try:
|
132 |
+
return next(self.parameters()).device
|
133 |
+
except StopIteration:
|
134 |
+
# For nn.DataParallel compatibility in PyTorch 1.5
|
135 |
+
|
136 |
+
def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
|
137 |
+
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
|
138 |
+
return tuples
|
139 |
+
|
140 |
+
gen = self._named_members(get_members_fn=find_tensor_attributes)
|
141 |
+
first_tuple = next(gen)
|
142 |
+
return first_tuple[1].device
|
143 |
+
|
144 |
+
@property
|
145 |
+
def dtype(self) -> dtype:
|
146 |
+
"""
|
147 |
+
Get torch.dtype from module, assuming that the whole module has one dtype.
|
148 |
+
"""
|
149 |
+
try:
|
150 |
+
return next(self.parameters()).dtype
|
151 |
+
except StopIteration:
|
152 |
+
# For nn.DataParallel compatibility in PyTorch 1.5
|
153 |
+
|
154 |
+
def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
|
155 |
+
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
|
156 |
+
return tuples
|
157 |
+
|
158 |
+
gen = self._named_members(get_members_fn=find_tensor_attributes)
|
159 |
+
first_tuple = next(gen)
|
160 |
+
return first_tuple[1].dtype
|
161 |
+
|
162 |
+
def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
|
163 |
+
"""type: torch.Tensor -> torch.Tensor"""
|
164 |
+
if encoder_attention_mask.dim() == 3:
|
165 |
+
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
|
166 |
+
if encoder_attention_mask.dim() == 2:
|
167 |
+
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
|
168 |
+
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
|
169 |
+
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
|
170 |
+
# /transformer/transformer_layers.py#L270
|
171 |
+
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
|
172 |
+
# encoder_extended_attention_mask.transpose(-1, -2))
|
173 |
+
encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
174 |
+
|
175 |
+
if self.dtype == torch.float16:
|
176 |
+
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e4
|
177 |
+
elif self.dtype == torch.float32:
|
178 |
+
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9
|
179 |
+
else:
|
180 |
+
raise ValueError(
|
181 |
+
"{} not recognized. `dtype` should be set to either `torch.float32` or `torch.float16`".format(
|
182 |
+
self.dtype
|
183 |
+
)
|
184 |
+
)
|
185 |
+
|
186 |
+
return encoder_extended_attention_mask
|
187 |
+
|
188 |
+
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple, device: device) -> Tensor:
|
189 |
+
"""Makes broadcastable attention mask and causal mask so that future and maked tokens are ignored.
|
190 |
+
|
191 |
+
Arguments:
|
192 |
+
attention_mask: torch.Tensor with 1 indicating tokens to ATTEND to
|
193 |
+
input_shape: tuple, shape of input_ids
|
194 |
+
device: torch.Device, usually self.device
|
195 |
+
|
196 |
+
Returns:
|
197 |
+
torch.Tensor with dtype of attention_mask.dtype
|
198 |
+
"""
|
199 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
200 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
201 |
+
if attention_mask.dim() == 3:
|
202 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
203 |
+
elif attention_mask.dim() == 2:
|
204 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
205 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
206 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
207 |
+
if self.config.is_decoder:
|
208 |
+
batch_size, seq_length = input_shape
|
209 |
+
seq_ids = torch.arange(seq_length, device=device)
|
210 |
+
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
211 |
+
# causal and attention masks must have same type with pytorch version < 1.3
|
212 |
+
causal_mask = causal_mask.to(attention_mask.dtype)
|
213 |
+
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
214 |
+
else:
|
215 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
216 |
+
else:
|
217 |
+
raise ValueError(
|
218 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
219 |
+
input_shape, attention_mask.shape
|
220 |
+
)
|
221 |
+
)
|
222 |
+
|
223 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
224 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
225 |
+
# positions we want to attend and -10000.0 for masked positions.
|
226 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
227 |
+
# effectively the same as removing these entirely.
|
228 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
229 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
230 |
+
return extended_attention_mask
|
231 |
+
|
232 |
+
def get_head_mask(self, head_mask: Tensor, num_hidden_layers: int, is_attention_chunked: bool = False) -> Tensor:
|
233 |
+
"""
|
234 |
+
# Prepare head mask if needed
|
235 |
+
# 1.0 in head_mask indicate we keep the head
|
236 |
+
attention_probs has shape bsz x n_heads x N x N
|
237 |
+
Arguments:
|
238 |
+
head_mask: torch.Tensor or None: has shape [num_heads] or [num_hidden_layers x num_heads]
|
239 |
+
num_hidden_layers: int
|
240 |
+
Returns:
|
241 |
+
Tensor of shape shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
242 |
+
or list with [None] for each layer
|
243 |
+
"""
|
244 |
+
if head_mask is not None:
|
245 |
+
head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
|
246 |
+
if is_attention_chunked is True:
|
247 |
+
head_mask = head_mask.unsqueeze(-1)
|
248 |
+
else:
|
249 |
+
head_mask = [None] * num_hidden_layers
|
250 |
+
|
251 |
+
return head_mask
|
252 |
+
|
253 |
+
def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
|
254 |
+
"""-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
|
255 |
+
if head_mask.dim() == 1:
|
256 |
+
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
257 |
+
head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
|
258 |
+
elif head_mask.dim() == 2:
|
259 |
+
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
|
260 |
+
assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
|
261 |
+
head_mask = head_mask.to(dtype=self.dtype) # switch to fload if need + fp16 compatibility
|
262 |
+
return head_mask
|
263 |
+
|
264 |
+
|
265 |
+
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin):
|
266 |
+
r""" Base class for all models.
|
267 |
+
|
268 |
+
:class:`~transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods for loading/downloading/saving models
|
269 |
+
as well as a few methods common to all models to (i) resize the input embeddings and (ii) prune heads in the self-attention heads.
|
270 |
+
|
271 |
+
Class attributes (overridden by derived classes):
|
272 |
+
- ``config_class``: a class derived from :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture.
|
273 |
+
- ``load_tf_weights``: a python ``method`` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments:
|
274 |
+
|
275 |
+
- ``model``: an instance of the relevant subclass of :class:`~transformers.PreTrainedModel`,
|
276 |
+
- ``config``: an instance of the relevant subclass of :class:`~transformers.PretrainedConfig`,
|
277 |
+
- ``path``: a path (string) to the TensorFlow checkpoint.
|
278 |
+
|
279 |
+
- ``base_model_prefix``: a string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model.
|
280 |
+
"""
|
281 |
+
config_class = None
|
282 |
+
base_model_prefix = ""
|
283 |
+
|
284 |
+
@property
|
285 |
+
def dummy_inputs(self):
|
286 |
+
""" Dummy inputs to do a forward pass in the network.
|
287 |
+
|
288 |
+
Returns:
|
289 |
+
torch.Tensor with dummy inputs
|
290 |
+
"""
|
291 |
+
return {"input_ids": torch.tensor(DUMMY_INPUTS)}
|
292 |
+
|
293 |
+
def __init__(self, config, *inputs, **kwargs):
|
294 |
+
super().__init__()
|
295 |
+
if not isinstance(config, PretrainedConfig):
|
296 |
+
raise ValueError(
|
297 |
+
"Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
|
298 |
+
"To create a model from a pretrained model use "
|
299 |
+
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
300 |
+
self.__class__.__name__, self.__class__.__name__
|
301 |
+
)
|
302 |
+
)
|
303 |
+
# Save config in model
|
304 |
+
self.config = config
|
305 |
+
|
306 |
+
@property
|
307 |
+
def base_model(self):
|
308 |
+
return getattr(self, self.base_model_prefix, self)
|
309 |
+
|
310 |
+
def get_input_embeddings(self):
|
311 |
+
"""
|
312 |
+
Returns the model's input embeddings.
|
313 |
+
|
314 |
+
Returns:
|
315 |
+
:obj:`nn.Module`:
|
316 |
+
A torch module mapping vocabulary to hidden states.
|
317 |
+
"""
|
318 |
+
base_model = getattr(self, self.base_model_prefix, self)
|
319 |
+
if base_model is not self:
|
320 |
+
return base_model.get_input_embeddings()
|
321 |
+
else:
|
322 |
+
raise NotImplementedError
|
323 |
+
|
324 |
+
def set_input_embeddings(self, value: nn.Module):
|
325 |
+
"""
|
326 |
+
Set model's input embeddings
|
327 |
+
|
328 |
+
Args:
|
329 |
+
value (:obj:`nn.Module`):
|
330 |
+
A module mapping vocabulary to hidden states.
|
331 |
+
"""
|
332 |
+
base_model = getattr(self, self.base_model_prefix, self)
|
333 |
+
if base_model is not self:
|
334 |
+
base_model.set_input_embeddings(value)
|
335 |
+
else:
|
336 |
+
raise NotImplementedError
|
337 |
+
|
338 |
+
def get_output_embeddings(self):
|
339 |
+
"""
|
340 |
+
Returns the model's output embeddings.
|
341 |
+
|
342 |
+
Returns:
|
343 |
+
:obj:`nn.Module`:
|
344 |
+
A torch module mapping hidden states to vocabulary.
|
345 |
+
"""
|
346 |
+
return None # Overwrite for models with output embeddings
|
347 |
+
|
348 |
+
def tie_weights(self):
|
349 |
+
"""
|
350 |
+
Tie the weights between the input embeddings and the output embeddings.
|
351 |
+
If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning
|
352 |
+
the weights instead.
|
353 |
+
"""
|
354 |
+
output_embeddings = self.get_output_embeddings()
|
355 |
+
if output_embeddings is not None:
|
356 |
+
self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
|
357 |
+
|
358 |
+
def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
|
359 |
+
""" Tie or clone module weights depending of whether we are using TorchScript or not
|
360 |
+
"""
|
361 |
+
if self.config.torchscript:
|
362 |
+
output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
|
363 |
+
else:
|
364 |
+
output_embeddings.weight = input_embeddings.weight
|
365 |
+
|
366 |
+
if getattr(output_embeddings, "bias", None) is not None:
|
367 |
+
output_embeddings.bias.data = torch.nn.functional.pad(
|
368 |
+
output_embeddings.bias.data,
|
369 |
+
(0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],),
|
370 |
+
"constant",
|
371 |
+
0,
|
372 |
+
)
|
373 |
+
if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
|
374 |
+
output_embeddings.out_features = input_embeddings.num_embeddings
|
375 |
+
|
376 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None):
|
377 |
+
""" Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size.
|
378 |
+
Take care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
|
379 |
+
|
380 |
+
Arguments:
|
381 |
+
|
382 |
+
new_num_tokens: (`optional`) int:
|
383 |
+
New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end.
|
384 |
+
If not provided or None: does nothing and just returns a pointer to the input tokens ``torch.nn.Embeddings`` Module of the model.
|
385 |
+
|
386 |
+
Return: ``torch.nn.Embeddings``
|
387 |
+
Pointer to the input tokens Embeddings Module of the model
|
388 |
+
"""
|
389 |
+
base_model = getattr(self, self.base_model_prefix, self) # get the base model if needed
|
390 |
+
model_embeds = base_model._resize_token_embeddings(new_num_tokens)
|
391 |
+
if new_num_tokens is None:
|
392 |
+
return model_embeds
|
393 |
+
|
394 |
+
# Update base model and current model config
|
395 |
+
self.config.vocab_size = new_num_tokens
|
396 |
+
base_model.vocab_size = new_num_tokens
|
397 |
+
|
398 |
+
# Tie weights again if needed
|
399 |
+
self.tie_weights()
|
400 |
+
|
401 |
+
return model_embeds
|
402 |
+
|
403 |
+
def _resize_token_embeddings(self, new_num_tokens):
|
404 |
+
old_embeddings = self.get_input_embeddings()
|
405 |
+
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
|
406 |
+
self.set_input_embeddings(new_embeddings)
|
407 |
+
return self.get_input_embeddings()
|
408 |
+
|
409 |
+
def _get_resized_embeddings(
|
410 |
+
self, old_embeddings: torch.nn.Embedding, new_num_tokens: Optional[int] = None
|
411 |
+
) -> torch.nn.Embedding:
|
412 |
+
""" Build a resized Embedding Module from a provided token Embedding Module.
|
413 |
+
Increasing the size will add newly initialized vectors at the end
|
414 |
+
Reducing the size will remove vectors from the end
|
415 |
+
|
416 |
+
Args:
|
417 |
+
old_embeddings: ``torch.nn.Embedding``
|
418 |
+
Old embeddings to be resized.
|
419 |
+
new_num_tokens: (`optional`) int
|
420 |
+
New number of tokens in the embedding matrix.
|
421 |
+
Increasing the size will add newly initialized vectors at the end
|
422 |
+
Reducing the size will remove vectors from the end
|
423 |
+
If not provided or None: return the provided token Embedding Module.
|
424 |
+
Return: ``torch.nn.Embedding``
|
425 |
+
Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None
|
426 |
+
"""
|
427 |
+
if new_num_tokens is None:
|
428 |
+
return old_embeddings
|
429 |
+
|
430 |
+
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
|
431 |
+
if old_num_tokens == new_num_tokens:
|
432 |
+
return old_embeddings
|
433 |
+
|
434 |
+
# Build new embeddings
|
435 |
+
new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)
|
436 |
+
new_embeddings.to(old_embeddings.weight.device)
|
437 |
+
|
438 |
+
# initialize all new embeddings (in particular added tokens)
|
439 |
+
self._init_weights(new_embeddings)
|
440 |
+
|
441 |
+
# Copy token embeddings from the previous weights
|
442 |
+
num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
|
443 |
+
new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :]
|
444 |
+
|
445 |
+
return new_embeddings
|
446 |
+
|
447 |
+
def init_weights(self):
|
448 |
+
""" Initialize and prunes weights if needed. """
|
449 |
+
# Initialize weights
|
450 |
+
self.apply(self._init_weights)
|
451 |
+
|
452 |
+
# Prune heads if needed
|
453 |
+
if self.config.pruned_heads:
|
454 |
+
self.prune_heads(self.config.pruned_heads)
|
455 |
+
|
456 |
+
# Tie weights if needed
|
457 |
+
self.tie_weights()
|
458 |
+
|
459 |
+
def prune_heads(self, heads_to_prune: Dict):
|
460 |
+
""" Prunes heads of the base model.
|
461 |
+
|
462 |
+
Arguments:
|
463 |
+
|
464 |
+
heads_to_prune: dict with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`).
|
465 |
+
E.g. {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2.
|
466 |
+
"""
|
467 |
+
# save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
|
468 |
+
for layer, heads in heads_to_prune.items():
|
469 |
+
union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
|
470 |
+
self.config.pruned_heads[layer] = list(union_heads) # Unfortunately we have to store it as list for JSON
|
471 |
+
|
472 |
+
self.base_model._prune_heads(heads_to_prune)
|
473 |
+
|
474 |
+
def save_pretrained(self, save_directory):
|
475 |
+
""" Save a model and its configuration file to a directory, so that it
|
476 |
+
can be re-loaded using the `:func:`~transformers.PreTrainedModel.from_pretrained`` class method.
|
477 |
+
|
478 |
+
Arguments:
|
479 |
+
save_directory: directory to which to save.
|
480 |
+
"""
|
481 |
+
if os.path.isfile(save_directory):
|
482 |
+
logger.error("Provided path ({}) should be a directory, not a file".format(save_directory))
|
483 |
+
return
|
484 |
+
os.makedirs(save_directory, exist_ok=True)
|
485 |
+
|
486 |
+
# Only save the model itself if we are using distributed training
|
487 |
+
model_to_save = self.module if hasattr(self, "module") else self
|
488 |
+
|
489 |
+
# Attach architecture to the config
|
490 |
+
model_to_save.config.architectures = [model_to_save.__class__.__name__]
|
491 |
+
|
492 |
+
# If we save using the predefined names, we can load using `from_pretrained`
|
493 |
+
output_model_file = os.path.join(save_directory, WEIGHTS_NAME)
|
494 |
+
|
495 |
+
if getattr(self.config, "xla_device", False):
|
496 |
+
import torch_xla.core.xla_model as xm
|
497 |
+
|
498 |
+
if xm.is_master_ordinal():
|
499 |
+
# Save configuration file
|
500 |
+
model_to_save.config.save_pretrained(save_directory)
|
501 |
+
# xm.save takes care of saving only from master
|
502 |
+
xm.save(model_to_save.state_dict(), output_model_file)
|
503 |
+
else:
|
504 |
+
model_to_save.config.save_pretrained(save_directory)
|
505 |
+
torch.save(model_to_save.state_dict(), output_model_file)
|
506 |
+
|
507 |
+
logger.info("Model weights saved in {}".format(output_model_file))
|
508 |
+
|
509 |
+
@classmethod
|
510 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
511 |
+
r"""Instantiate a pretrained pytorch model from a pre-trained model configuration.
|
512 |
+
|
513 |
+
The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated)
|
514 |
+
To train the model, you should first set it back in training mode with ``model.train()``
|
515 |
+
|
516 |
+
The warning ``Weights from XXX not initialized from pretrained model`` means that the weights of XXX do not come pre-trained with the rest of the model.
|
517 |
+
It is up to you to train those weights with a downstream fine-tuning task.
|
518 |
+
|
519 |
+
The warning ``Weights from XXX not used in YYY`` means that the layer XXX is not used by YYY, therefore those weights are discarded.
|
520 |
+
|
521 |
+
Parameters:
|
522 |
+
pretrained_model_name_or_path: either:
|
523 |
+
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
524 |
+
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
525 |
+
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
|
526 |
+
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
527 |
+
- None if you are both providing the configuration and state dictionary (resp. with keyword arguments ``config`` and ``state_dict``)
|
528 |
+
|
529 |
+
model_args: (`optional`) Sequence of positional arguments:
|
530 |
+
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
|
531 |
+
|
532 |
+
config: (`optional`) one of:
|
533 |
+
- an instance of a class derived from :class:`~transformers.PretrainedConfig`, or
|
534 |
+
- a string valid as input to :func:`~transformers.PretrainedConfig.from_pretrained()`
|
535 |
+
|
536 |
+
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
|
537 |
+
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
|
538 |
+
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
|
539 |
+
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
|
540 |
+
|
541 |
+
state_dict: (`optional`) dict:
|
542 |
+
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
|
543 |
+
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
|
544 |
+
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
|
545 |
+
|
546 |
+
cache_dir: (`optional`) string:
|
547 |
+
Path to a directory in which a downloaded pre-trained model
|
548 |
+
configuration should be cached if the standard cache should not be used.
|
549 |
+
|
550 |
+
force_download: (`optional`) boolean, default False:
|
551 |
+
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
|
552 |
+
|
553 |
+
resume_download: (`optional`) boolean, default False:
|
554 |
+
Do not delete incompletely recieved file. Attempt to resume the download if such a file exists.
|
555 |
+
|
556 |
+
proxies: (`optional`) dict, default None:
|
557 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
|
558 |
+
The proxies are used on each request.
|
559 |
+
|
560 |
+
output_loading_info: (`optional`) boolean:
|
561 |
+
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
|
562 |
+
|
563 |
+
kwargs: (`optional`) Remaining dictionary of keyword arguments:
|
564 |
+
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
|
565 |
+
|
566 |
+
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
|
567 |
+
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
|
568 |
+
|
569 |
+
Examples::
|
570 |
+
|
571 |
+
# For example purposes. Not runnable.
|
572 |
+
model = BertModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
|
573 |
+
model = BertModel.from_pretrained('./test/saved_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
|
574 |
+
model = BertModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading
|
575 |
+
assert model.config.output_attention == True
|
576 |
+
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
|
577 |
+
config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json')
|
578 |
+
model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config)
|
579 |
+
|
580 |
+
"""
|
581 |
+
config = kwargs.pop("config", None)
|
582 |
+
state_dict = kwargs.pop("state_dict", None)
|
583 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
584 |
+
from_tf = kwargs.pop("from_tf", False)
|
585 |
+
force_download = kwargs.pop("force_download", False)
|
586 |
+
resume_download = kwargs.pop("resume_download", False)
|
587 |
+
proxies = kwargs.pop("proxies", None)
|
588 |
+
output_loading_info = kwargs.pop("output_loading_info", False)
|
589 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
590 |
+
use_cdn = kwargs.pop("use_cdn", True)
|
591 |
+
|
592 |
+
# Load config if we don't provide a configuration
|
593 |
+
if not isinstance(config, PretrainedConfig):
|
594 |
+
config_path = config if config is not None else pretrained_model_name_or_path
|
595 |
+
config, model_kwargs = cls.config_class.from_pretrained(
|
596 |
+
config_path,
|
597 |
+
*model_args,
|
598 |
+
cache_dir=cache_dir,
|
599 |
+
return_unused_kwargs=True,
|
600 |
+
force_download=force_download,
|
601 |
+
resume_download=resume_download,
|
602 |
+
proxies=proxies,
|
603 |
+
local_files_only=local_files_only,
|
604 |
+
**kwargs,
|
605 |
+
)
|
606 |
+
else:
|
607 |
+
model_kwargs = kwargs
|
608 |
+
|
609 |
+
# Load model
|
610 |
+
if pretrained_model_name_or_path is not None:
|
611 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
612 |
+
if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")):
|
613 |
+
# Load from a TF 1.0 checkpoint
|
614 |
+
archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
|
615 |
+
elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
|
616 |
+
# Load from a TF 2.0 checkpoint
|
617 |
+
archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
|
618 |
+
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
|
619 |
+
# Load from a PyTorch checkpoint
|
620 |
+
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
|
621 |
+
else:
|
622 |
+
raise EnvironmentError(
|
623 |
+
"Error no file named {} found in directory {} or `from_tf` set to False".format(
|
624 |
+
[WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"],
|
625 |
+
pretrained_model_name_or_path,
|
626 |
+
)
|
627 |
+
)
|
628 |
+
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
|
629 |
+
archive_file = pretrained_model_name_or_path
|
630 |
+
elif os.path.isfile(pretrained_model_name_or_path + ".index"):
|
631 |
+
assert (
|
632 |
+
from_tf
|
633 |
+
), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format(
|
634 |
+
pretrained_model_name_or_path + ".index"
|
635 |
+
)
|
636 |
+
archive_file = pretrained_model_name_or_path + ".index"
|
637 |
+
else:
|
638 |
+
archive_file = hf_bucket_url(
|
639 |
+
pretrained_model_name_or_path,
|
640 |
+
filename=(TF2_WEIGHTS_NAME if from_tf else WEIGHTS_NAME),
|
641 |
+
use_cdn=use_cdn,
|
642 |
+
)
|
643 |
+
|
644 |
+
try:
|
645 |
+
# Load from URL or cache if already cached
|
646 |
+
resolved_archive_file = cached_path(
|
647 |
+
archive_file,
|
648 |
+
cache_dir=cache_dir,
|
649 |
+
force_download=force_download,
|
650 |
+
proxies=proxies,
|
651 |
+
resume_download=resume_download,
|
652 |
+
local_files_only=local_files_only,
|
653 |
+
)
|
654 |
+
if resolved_archive_file is None:
|
655 |
+
raise EnvironmentError
|
656 |
+
except EnvironmentError:
|
657 |
+
msg = (
|
658 |
+
f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
|
659 |
+
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
|
660 |
+
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME}.\n\n"
|
661 |
+
)
|
662 |
+
raise EnvironmentError(msg)
|
663 |
+
|
664 |
+
if resolved_archive_file == archive_file:
|
665 |
+
logger.info("loading weights file {}".format(archive_file))
|
666 |
+
else:
|
667 |
+
logger.info("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file))
|
668 |
+
else:
|
669 |
+
resolved_archive_file = None
|
670 |
+
|
671 |
+
# Instantiate model.
|
672 |
+
model = cls(config, *model_args, **model_kwargs)
|
673 |
+
|
674 |
+
if state_dict is None and not from_tf:
|
675 |
+
try:
|
676 |
+
state_dict = torch.load(resolved_archive_file, map_location="cpu")
|
677 |
+
except Exception:
|
678 |
+
raise OSError(
|
679 |
+
"Unable to load weights from pytorch checkpoint file. "
|
680 |
+
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
|
681 |
+
)
|
682 |
+
|
683 |
+
missing_keys = []
|
684 |
+
unexpected_keys = []
|
685 |
+
error_msgs = []
|
686 |
+
|
687 |
+
if from_tf:
|
688 |
+
if resolved_archive_file.endswith(".index"):
|
689 |
+
# Load from a TensorFlow 1.X checkpoint - provided by original authors
|
690 |
+
model = cls.load_tf_weights(model, config, resolved_archive_file[:-6]) # Remove the '.index'
|
691 |
+
else:
|
692 |
+
# Load from our TensorFlow 2.0 checkpoints
|
693 |
+
try:
|
694 |
+
from transformers import load_tf2_checkpoint_in_pytorch_model
|
695 |
+
|
696 |
+
model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True)
|
697 |
+
except ImportError:
|
698 |
+
logger.error(
|
699 |
+
"Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see "
|
700 |
+
"https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
|
701 |
+
)
|
702 |
+
raise
|
703 |
+
else:
|
704 |
+
# Convert old format to new format if needed from a PyTorch state_dict
|
705 |
+
old_keys = []
|
706 |
+
new_keys = []
|
707 |
+
for key in state_dict.keys():
|
708 |
+
new_key = None
|
709 |
+
if "gamma" in key:
|
710 |
+
new_key = key.replace("gamma", "weight")
|
711 |
+
if "beta" in key:
|
712 |
+
new_key = key.replace("beta", "bias")
|
713 |
+
if new_key:
|
714 |
+
old_keys.append(key)
|
715 |
+
new_keys.append(new_key)
|
716 |
+
for old_key, new_key in zip(old_keys, new_keys):
|
717 |
+
state_dict[new_key] = state_dict.pop(old_key)
|
718 |
+
|
719 |
+
# copy state_dict so _load_from_state_dict can modify it
|
720 |
+
metadata = getattr(state_dict, "_metadata", None)
|
721 |
+
state_dict = state_dict.copy()
|
722 |
+
if metadata is not None:
|
723 |
+
state_dict._metadata = metadata
|
724 |
+
|
725 |
+
##############################################################################################
|
726 |
+
# Print out state_dict's contents: keys
|
727 |
+
'''
|
728 |
+
for key, _ in state_dict.items():
|
729 |
+
print(key)
|
730 |
+
'''
|
731 |
+
##############################################################################################
|
732 |
+
|
733 |
+
|
734 |
+
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
|
735 |
+
# so we need to apply the function recursively.
|
736 |
+
def load(module: nn.Module, prefix=""):
|
737 |
+
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
738 |
+
module._load_from_state_dict(
|
739 |
+
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs,
|
740 |
+
)
|
741 |
+
for name, child in module._modules.items():
|
742 |
+
if child is not None:
|
743 |
+
load(child, prefix + name + ".")
|
744 |
+
|
745 |
+
# Make sure we are able to load base models as well as derived models (with heads)
|
746 |
+
start_prefix = ""
|
747 |
+
model_to_load = model
|
748 |
+
has_prefix_module = any(s.startswith(cls.base_model_prefix) for s in state_dict.keys())
|
749 |
+
if not hasattr(model, cls.base_model_prefix) and has_prefix_module:
|
750 |
+
start_prefix = cls.base_model_prefix + "."
|
751 |
+
if hasattr(model, cls.base_model_prefix) and not has_prefix_module:
|
752 |
+
model_to_load = getattr(model, cls.base_model_prefix)
|
753 |
+
|
754 |
+
load(model_to_load, prefix=start_prefix)
|
755 |
+
|
756 |
+
if model.__class__.__name__ != model_to_load.__class__.__name__:
|
757 |
+
base_model_state_dict = model_to_load.state_dict().keys()
|
758 |
+
head_model_state_dict_without_base_prefix = [
|
759 |
+
key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys()
|
760 |
+
]
|
761 |
+
|
762 |
+
missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict)
|
763 |
+
|
764 |
+
if len(unexpected_keys) > 0:
|
765 |
+
logger.warning(
|
766 |
+
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
|
767 |
+
f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
|
768 |
+
f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
|
769 |
+
f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPretraining model).\n"
|
770 |
+
f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
|
771 |
+
f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
|
772 |
+
)
|
773 |
+
else:
|
774 |
+
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
|
775 |
+
if len(missing_keys) > 0:
|
776 |
+
logger.warning(
|
777 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
|
778 |
+
f"and are newly initialized: {missing_keys}\n"
|
779 |
+
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
780 |
+
)
|
781 |
+
else:
|
782 |
+
logger.info(
|
783 |
+
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
|
784 |
+
f"If your task is similar to the task the model of the ckeckpoint was trained on, "
|
785 |
+
f"you can already use {model.__class__.__name__} for predictions without further training."
|
786 |
+
)
|
787 |
+
if len(error_msgs) > 0:
|
788 |
+
raise RuntimeError(
|
789 |
+
"Error(s) in loading state_dict for {}:\n\t{}".format(
|
790 |
+
model.__class__.__name__, "\n\t".join(error_msgs)
|
791 |
+
)
|
792 |
+
)
|
793 |
+
model.tie_weights() # make sure token embedding weights are still tied if needed
|
794 |
+
|
795 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
796 |
+
model.eval()
|
797 |
+
|
798 |
+
if output_loading_info:
|
799 |
+
loading_info = {
|
800 |
+
"missing_keys": missing_keys,
|
801 |
+
"unexpected_keys": unexpected_keys,
|
802 |
+
"error_msgs": error_msgs,
|
803 |
+
}
|
804 |
+
return model, loading_info
|
805 |
+
|
806 |
+
if hasattr(config, "xla_device") and config.xla_device:
|
807 |
+
import torch_xla.core.xla_model as xm
|
808 |
+
|
809 |
+
model = xm.send_cpu_data_to_device(model, xm.xla_device())
|
810 |
+
model.to(xm.xla_device())
|
811 |
+
|
812 |
+
return model
|
813 |
+
|
814 |
+
|
815 |
+
class Conv1D(nn.Module):
|
816 |
+
def __init__(self, nf, nx):
|
817 |
+
""" Conv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2)
|
818 |
+
Basically works like a Linear layer but the weights are transposed
|
819 |
+
"""
|
820 |
+
super().__init__()
|
821 |
+
self.nf = nf
|
822 |
+
w = torch.empty(nx, nf)
|
823 |
+
nn.init.normal_(w, std=0.02)
|
824 |
+
self.weight = nn.Parameter(w)
|
825 |
+
self.bias = nn.Parameter(torch.zeros(nf))
|
826 |
+
|
827 |
+
def forward(self, x):
|
828 |
+
size_out = x.size()[:-1] + (self.nf,)
|
829 |
+
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
|
830 |
+
x = x.view(*size_out)
|
831 |
+
return x
|
832 |
+
|
833 |
+
|
834 |
+
class PoolerStartLogits(nn.Module):
|
835 |
+
""" Compute SQuAD start_logits from sequence hidden states. """
|
836 |
+
|
837 |
+
def __init__(self, config):
|
838 |
+
super().__init__()
|
839 |
+
self.dense = nn.Linear(config.hidden_size, 1)
|
840 |
+
|
841 |
+
def forward(self, hidden_states, p_mask=None):
|
842 |
+
""" Args:
|
843 |
+
**p_mask**: (`optional`) ``torch.FloatTensor`` of shape `(batch_size, seq_len)`
|
844 |
+
invalid position mask such as query and special symbols (PAD, SEP, CLS)
|
845 |
+
1.0 means token should be masked.
|
846 |
+
"""
|
847 |
+
x = self.dense(hidden_states).squeeze(-1)
|
848 |
+
|
849 |
+
if p_mask is not None:
|
850 |
+
if next(self.parameters()).dtype == torch.float16:
|
851 |
+
x = x * (1 - p_mask) - 65500 * p_mask
|
852 |
+
else:
|
853 |
+
x = x * (1 - p_mask) - 1e30 * p_mask
|
854 |
+
|
855 |
+
return x
|
856 |
+
|
857 |
+
|
858 |
+
class PoolerEndLogits(nn.Module):
|
859 |
+
""" Compute SQuAD end_logits from sequence hidden states and start token hidden state.
|
860 |
+
"""
|
861 |
+
|
862 |
+
def __init__(self, config):
|
863 |
+
super().__init__()
|
864 |
+
self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
|
865 |
+
self.activation = nn.Tanh()
|
866 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
867 |
+
self.dense_1 = nn.Linear(config.hidden_size, 1)
|
868 |
+
|
869 |
+
def forward(self, hidden_states, start_states=None, start_positions=None, p_mask=None):
|
870 |
+
""" Args:
|
871 |
+
One of ``start_states``, ``start_positions`` should be not None.
|
872 |
+
If both are set, ``start_positions`` overrides ``start_states``.
|
873 |
+
|
874 |
+
**start_states**: ``torch.LongTensor`` of shape identical to hidden_states
|
875 |
+
hidden states of the first tokens for the labeled span.
|
876 |
+
**start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
|
877 |
+
position of the first token for the labeled span:
|
878 |
+
**p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)``
|
879 |
+
Mask of invalid position such as query and special symbols (PAD, SEP, CLS)
|
880 |
+
1.0 means token should be masked.
|
881 |
+
"""
|
882 |
+
assert (
|
883 |
+
start_states is not None or start_positions is not None
|
884 |
+
), "One of start_states, start_positions should be not None"
|
885 |
+
if start_positions is not None:
|
886 |
+
slen, hsz = hidden_states.shape[-2:]
|
887 |
+
start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
|
888 |
+
start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz)
|
889 |
+
start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz)
|
890 |
+
|
891 |
+
x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
|
892 |
+
x = self.activation(x)
|
893 |
+
x = self.LayerNorm(x)
|
894 |
+
x = self.dense_1(x).squeeze(-1)
|
895 |
+
|
896 |
+
if p_mask is not None:
|
897 |
+
if next(self.parameters()).dtype == torch.float16:
|
898 |
+
x = x * (1 - p_mask) - 65500 * p_mask
|
899 |
+
else:
|
900 |
+
x = x * (1 - p_mask) - 1e30 * p_mask
|
901 |
+
|
902 |
+
return x
|
903 |
+
|
904 |
+
|
905 |
+
class PoolerAnswerClass(nn.Module):
|
906 |
+
""" Compute SQuAD 2.0 answer class from classification and start tokens hidden states. """
|
907 |
+
|
908 |
+
def __init__(self, config):
|
909 |
+
super().__init__()
|
910 |
+
self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
|
911 |
+
self.activation = nn.Tanh()
|
912 |
+
self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)
|
913 |
+
|
914 |
+
def forward(self, hidden_states, start_states=None, start_positions=None, cls_index=None):
|
915 |
+
"""
|
916 |
+
Args:
|
917 |
+
One of ``start_states``, ``start_positions`` should be not None.
|
918 |
+
If both are set, ``start_positions`` overrides ``start_states``.
|
919 |
+
|
920 |
+
**start_states**: ``torch.LongTensor`` of shape identical to ``hidden_states``.
|
921 |
+
hidden states of the first tokens for the labeled span.
|
922 |
+
**start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
|
923 |
+
position of the first token for the labeled span.
|
924 |
+
**cls_index**: torch.LongTensor of shape ``(batch_size,)``
|
925 |
+
position of the CLS token. If None, take the last token.
|
926 |
+
|
927 |
+
note(Original repo):
|
928 |
+
no dependency on end_feature so that we can obtain one single `cls_logits`
|
929 |
+
for each sample
|
930 |
+
"""
|
931 |
+
hsz = hidden_states.shape[-1]
|
932 |
+
assert (
|
933 |
+
start_states is not None or start_positions is not None
|
934 |
+
), "One of start_states, start_positions should be not None"
|
935 |
+
if start_positions is not None:
|
936 |
+
start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
|
937 |
+
start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz)
|
938 |
+
|
939 |
+
if cls_index is not None:
|
940 |
+
cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
|
941 |
+
cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz)
|
942 |
+
else:
|
943 |
+
cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz)
|
944 |
+
|
945 |
+
x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
|
946 |
+
x = self.activation(x)
|
947 |
+
x = self.dense_1(x).squeeze(-1)
|
948 |
+
|
949 |
+
return x
|
950 |
+
|
951 |
+
|
952 |
+
class SQuADHead(nn.Module):
|
953 |
+
r""" A SQuAD head inspired by XLNet.
|
954 |
+
|
955 |
+
Parameters:
|
956 |
+
config (:class:`~transformers.XLNetConfig`): Model configuration class with all the parameters of the model.
|
957 |
+
|
958 |
+
Inputs:
|
959 |
+
**hidden_states**: ``torch.FloatTensor`` of shape ``(batch_size, seq_len, hidden_size)``
|
960 |
+
hidden states of sequence tokens
|
961 |
+
**start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
|
962 |
+
position of the first token for the labeled span.
|
963 |
+
**end_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
|
964 |
+
position of the last token for the labeled span.
|
965 |
+
**cls_index**: torch.LongTensor of shape ``(batch_size,)``
|
966 |
+
position of the CLS token. If None, take the last token.
|
967 |
+
**is_impossible**: ``torch.LongTensor`` of shape ``(batch_size,)``
|
968 |
+
Whether the question has a possible answer in the paragraph or not.
|
969 |
+
**p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)``
|
970 |
+
Mask of invalid position such as query and special symbols (PAD, SEP, CLS)
|
971 |
+
1.0 means token should be masked.
|
972 |
+
|
973 |
+
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
974 |
+
**loss**: (`optional`, returned if both ``start_positions`` and ``end_positions`` are provided) ``torch.FloatTensor`` of shape ``(1,)``:
|
975 |
+
Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses.
|
976 |
+
**start_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
|
977 |
+
``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``
|
978 |
+
Log probabilities for the top config.start_n_top start token possibilities (beam-search).
|
979 |
+
**start_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
|
980 |
+
``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``
|
981 |
+
Indices for the top config.start_n_top start token possibilities (beam-search).
|
982 |
+
**end_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
|
983 |
+
``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
|
984 |
+
Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
|
985 |
+
**end_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
|
986 |
+
``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
|
987 |
+
Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
|
988 |
+
**cls_logits**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
|
989 |
+
``torch.FloatTensor`` of shape ``(batch_size,)``
|
990 |
+
Log probabilities for the ``is_impossible`` label of the answers.
|
991 |
+
"""
|
992 |
+
|
993 |
+
def __init__(self, config):
|
994 |
+
super().__init__()
|
995 |
+
self.start_n_top = config.start_n_top
|
996 |
+
self.end_n_top = config.end_n_top
|
997 |
+
|
998 |
+
self.start_logits = PoolerStartLogits(config)
|
999 |
+
self.end_logits = PoolerEndLogits(config)
|
1000 |
+
self.answer_class = PoolerAnswerClass(config)
|
1001 |
+
|
1002 |
+
def forward(
|
1003 |
+
self, hidden_states, start_positions=None, end_positions=None, cls_index=None, is_impossible=None, p_mask=None,
|
1004 |
+
):
|
1005 |
+
outputs = ()
|
1006 |
+
|
1007 |
+
start_logits = self.start_logits(hidden_states, p_mask=p_mask)
|
1008 |
+
|
1009 |
+
if start_positions is not None and end_positions is not None:
|
1010 |
+
# If we are on multi-GPU, let's remove the dimension added by batch splitting
|
1011 |
+
for x in (start_positions, end_positions, cls_index, is_impossible):
|
1012 |
+
if x is not None and x.dim() > 1:
|
1013 |
+
x.squeeze_(-1)
|
1014 |
+
|
1015 |
+
# during training, compute the end logits based on the ground truth of the start position
|
1016 |
+
end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)
|
1017 |
+
|
1018 |
+
loss_fct = CrossEntropyLoss()
|
1019 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1020 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1021 |
+
total_loss = (start_loss + end_loss) / 2
|
1022 |
+
|
1023 |
+
if cls_index is not None and is_impossible is not None:
|
1024 |
+
# Predict answerability from the representation of CLS and START
|
1025 |
+
cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
|
1026 |
+
loss_fct_cls = nn.BCEWithLogitsLoss()
|
1027 |
+
cls_loss = loss_fct_cls(cls_logits, is_impossible)
|
1028 |
+
|
1029 |
+
# note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
|
1030 |
+
total_loss += cls_loss * 0.5
|
1031 |
+
|
1032 |
+
outputs = (total_loss,) + outputs
|
1033 |
+
|
1034 |
+
else:
|
1035 |
+
# during inference, compute the end logits based on beam search
|
1036 |
+
bsz, slen, hsz = hidden_states.size()
|
1037 |
+
start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen)
|
1038 |
+
|
1039 |
+
start_top_log_probs, start_top_index = torch.topk(
|
1040 |
+
start_log_probs, self.start_n_top, dim=-1
|
1041 |
+
) # shape (bsz, start_n_top)
|
1042 |
+
start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
|
1043 |
+
start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz)
|
1044 |
+
start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)
|
1045 |
+
|
1046 |
+
hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
|
1047 |
+
start_states
|
1048 |
+
) # shape (bsz, slen, start_n_top, hsz)
|
1049 |
+
p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
|
1050 |
+
end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
|
1051 |
+
end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)
|
1052 |
+
|
1053 |
+
end_top_log_probs, end_top_index = torch.topk(
|
1054 |
+
end_log_probs, self.end_n_top, dim=1
|
1055 |
+
) # shape (bsz, end_n_top, start_n_top)
|
1056 |
+
end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
|
1057 |
+
end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)
|
1058 |
+
|
1059 |
+
start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
|
1060 |
+
cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)
|
1061 |
+
|
1062 |
+
outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits,) + outputs
|
1063 |
+
|
1064 |
+
# return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits
|
1065 |
+
# or (if labels are provided) (total_loss,)
|
1066 |
+
return outputs
|
1067 |
+
|
1068 |
+
|
1069 |
+
class SequenceSummary(nn.Module):
|
1070 |
+
r""" Compute a single vector summary of a sequence hidden states according to various possibilities:
|
1071 |
+
Args of the config class:
|
1072 |
+
summary_type:
|
1073 |
+
- 'last' => [default] take the last token hidden state (like XLNet)
|
1074 |
+
- 'first' => take the first token hidden state (like Bert)
|
1075 |
+
- 'mean' => take the mean of all tokens hidden states
|
1076 |
+
- 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2)
|
1077 |
+
- 'attn' => Not implemented now, use multi-head attention
|
1078 |
+
summary_use_proj: Add a projection after the vector extraction
|
1079 |
+
summary_proj_to_labels: If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False.
|
1080 |
+
summary_activation: 'tanh' or another string => add an activation to the output, Other => no activation. Default
|
1081 |
+
summary_first_dropout: Add a dropout before the projection and activation
|
1082 |
+
summary_last_dropout: Add a dropout after the projection and activation
|
1083 |
+
"""
|
1084 |
+
|
1085 |
+
def __init__(self, config: PretrainedConfig):
|
1086 |
+
super().__init__()
|
1087 |
+
|
1088 |
+
self.summary_type = getattr(config, "summary_type", "last")
|
1089 |
+
if self.summary_type == "attn":
|
1090 |
+
# We should use a standard multi-head attention module with absolute positional embedding for that.
|
1091 |
+
# Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
|
1092 |
+
# We can probably just use the multi-head attention module of PyTorch >=1.1.0
|
1093 |
+
raise NotImplementedError
|
1094 |
+
|
1095 |
+
self.summary = Identity()
|
1096 |
+
if hasattr(config, "summary_use_proj") and config.summary_use_proj:
|
1097 |
+
if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
|
1098 |
+
num_classes = config.num_labels
|
1099 |
+
else:
|
1100 |
+
num_classes = config.hidden_size
|
1101 |
+
self.summary = nn.Linear(config.hidden_size, num_classes)
|
1102 |
+
|
1103 |
+
activation_string = getattr(config, "summary_activation", None)
|
1104 |
+
self.activation: Callable = (get_activation(activation_string) if activation_string else Identity())
|
1105 |
+
|
1106 |
+
self.first_dropout = Identity()
|
1107 |
+
if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
|
1108 |
+
self.first_dropout = nn.Dropout(config.summary_first_dropout)
|
1109 |
+
|
1110 |
+
self.last_dropout = Identity()
|
1111 |
+
if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
|
1112 |
+
self.last_dropout = nn.Dropout(config.summary_last_dropout)
|
1113 |
+
|
1114 |
+
def forward(self, hidden_states, cls_index=None):
|
1115 |
+
""" hidden_states: float Tensor in shape [bsz, ..., seq_len, hidden_size], the hidden-states of the last layer.
|
1116 |
+
cls_index: [optional] position of the classification token if summary_type == 'cls_index',
|
1117 |
+
shape (bsz,) or more generally (bsz, ...) where ... are optional leading dimensions of hidden_states.
|
1118 |
+
if summary_type == 'cls_index' and cls_index is None:
|
1119 |
+
we take the last token of the sequence as classification token
|
1120 |
+
"""
|
1121 |
+
if self.summary_type == "last":
|
1122 |
+
output = hidden_states[:, -1]
|
1123 |
+
elif self.summary_type == "first":
|
1124 |
+
output = hidden_states[:, 0]
|
1125 |
+
elif self.summary_type == "mean":
|
1126 |
+
output = hidden_states.mean(dim=1)
|
1127 |
+
elif self.summary_type == "cls_index":
|
1128 |
+
if cls_index is None:
|
1129 |
+
cls_index = torch.full_like(hidden_states[..., :1, :], hidden_states.shape[-2] - 1, dtype=torch.long,)
|
1130 |
+
else:
|
1131 |
+
cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
|
1132 |
+
cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
|
1133 |
+
# shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
|
1134 |
+
output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size)
|
1135 |
+
elif self.summary_type == "attn":
|
1136 |
+
raise NotImplementedError
|
1137 |
+
|
1138 |
+
output = self.first_dropout(output)
|
1139 |
+
output = self.summary(output)
|
1140 |
+
output = self.activation(output)
|
1141 |
+
output = self.last_dropout(output)
|
1142 |
+
|
1143 |
+
return output
|
1144 |
+
|
1145 |
+
|
1146 |
+
def prune_linear_layer(layer, index, dim=0):
|
1147 |
+
""" Prune a linear layer (a model parameters) to keep only entries in index.
|
1148 |
+
Return the pruned layer as a new layer with requires_grad=True.
|
1149 |
+
Used to remove heads.
|
1150 |
+
"""
|
1151 |
+
index = index.to(layer.weight.device)
|
1152 |
+
W = layer.weight.index_select(dim, index).clone().detach()
|
1153 |
+
if layer.bias is not None:
|
1154 |
+
if dim == 1:
|
1155 |
+
b = layer.bias.clone().detach()
|
1156 |
+
else:
|
1157 |
+
b = layer.bias[index].clone().detach()
|
1158 |
+
new_size = list(layer.weight.size())
|
1159 |
+
new_size[dim] = len(index)
|
1160 |
+
new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
|
1161 |
+
new_layer.weight.requires_grad = False
|
1162 |
+
new_layer.weight.copy_(W.contiguous())
|
1163 |
+
new_layer.weight.requires_grad = True
|
1164 |
+
if layer.bias is not None:
|
1165 |
+
new_layer.bias.requires_grad = False
|
1166 |
+
new_layer.bias.copy_(b.contiguous())
|
1167 |
+
new_layer.bias.requires_grad = True
|
1168 |
+
return new_layer
|
1169 |
+
|
1170 |
+
|
1171 |
+
def prune_conv1d_layer(layer, index, dim=1):
|
1172 |
+
""" Prune a Conv1D layer (a model parameters) to keep only entries in index.
|
1173 |
+
A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed.
|
1174 |
+
Return the pruned layer as a new layer with requires_grad=True.
|
1175 |
+
Used to remove heads.
|
1176 |
+
"""
|
1177 |
+
index = index.to(layer.weight.device)
|
1178 |
+
W = layer.weight.index_select(dim, index).clone().detach()
|
1179 |
+
if dim == 0:
|
1180 |
+
b = layer.bias.clone().detach()
|
1181 |
+
else:
|
1182 |
+
b = layer.bias[index].clone().detach()
|
1183 |
+
new_size = list(layer.weight.size())
|
1184 |
+
new_size[dim] = len(index)
|
1185 |
+
new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
|
1186 |
+
new_layer.weight.requires_grad = False
|
1187 |
+
new_layer.weight.copy_(W.contiguous())
|
1188 |
+
new_layer.weight.requires_grad = True
|
1189 |
+
new_layer.bias.requires_grad = False
|
1190 |
+
new_layer.bias.copy_(b.contiguous())
|
1191 |
+
new_layer.bias.requires_grad = True
|
1192 |
+
return new_layer
|
1193 |
+
|
1194 |
+
|
1195 |
+
def prune_layer(layer, index, dim=None):
|
1196 |
+
""" Prune a Conv1D or nn.Linear layer (a model parameters) to keep only entries in index.
|
1197 |
+
Return the pruned layer as a new layer with requires_grad=True.
|
1198 |
+
Used to remove heads.
|
1199 |
+
"""
|
1200 |
+
if isinstance(layer, nn.Linear):
|
1201 |
+
return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
|
1202 |
+
elif isinstance(layer, Conv1D):
|
1203 |
+
return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
|
1204 |
+
else:
|
1205 |
+
raise ValueError("Can't prune layer of class {}".format(layer.__class__))
|
1206 |
+
|
1207 |
+
|
1208 |
+
def apply_chunking_to_forward(
|
1209 |
+
chunk_size: int, chunk_dim: int, forward_fn: Callable[..., torch.Tensor], *input_tensors
|
1210 |
+
) -> torch.Tensor:
|
1211 |
+
"""
|
1212 |
+
This function chunks the `input_tensors` into smaller input tensor parts of size `chunk_size` over the dimension `chunk_dim`.
|
1213 |
+
It then applies a layer `forward_fn` to each chunk independently to save memory.
|
1214 |
+
If the `forward_fn` is independent across the `chunk_dim` this function will yield the
|
1215 |
+
same result as not applying it.
|
1216 |
+
|
1217 |
+
Args:
|
1218 |
+
chunk_size: int - the chunk size of a chunked tensor. `num_chunks` = `len(input_tensors[0]) / chunk_size`
|
1219 |
+
chunk_dim: int - the dimension over which the input_tensors should be chunked
|
1220 |
+
forward_fn: fn - the forward fn of the model
|
1221 |
+
input_tensors: tuple(torch.Tensor) - the input tensors of `forward_fn` which are chunked
|
1222 |
+
Returns:
|
1223 |
+
a Tensor with the same shape the foward_fn would have given if applied
|
1224 |
+
|
1225 |
+
|
1226 |
+
Examples::
|
1227 |
+
|
1228 |
+
# rename the usual forward() fn to forward_chunk()
|
1229 |
+
def forward_chunk(self, hidden_states):
|
1230 |
+
hidden_states = self.decoder(hidden_states)
|
1231 |
+
return hidden_states
|
1232 |
+
|
1233 |
+
# implement a chunked forward function
|
1234 |
+
def forward(self, hidden_states):
|
1235 |
+
return apply_chunking_to_forward(self.chunk_size_lm_head, self.seq_len_dim, self.forward_chunk, hidden_states)
|
1236 |
+
"""
|
1237 |
+
|
1238 |
+
assert len(input_tensors) > 0, "{} has to be a tuple/list of tensors".format(input_tensors)
|
1239 |
+
tensor_shape = input_tensors[0].shape
|
1240 |
+
assert all(
|
1241 |
+
input_tensor.shape == tensor_shape for input_tensor in input_tensors
|
1242 |
+
), "All input tenors have to be of the same shape"
|
1243 |
+
|
1244 |
+
# inspect.signature exist since python 3.5 and is a python method -> no problem with backward compability
|
1245 |
+
num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters)
|
1246 |
+
assert num_args_in_forward_chunk_fn == len(
|
1247 |
+
input_tensors
|
1248 |
+
), "forward_chunk_fn expects {} arguments, but only {} input tensors are given".format(
|
1249 |
+
num_args_in_forward_chunk_fn, len(input_tensors)
|
1250 |
+
)
|
1251 |
+
|
1252 |
+
if chunk_size > 0:
|
1253 |
+
assert (
|
1254 |
+
input_tensors[0].shape[chunk_dim] % chunk_size == 0
|
1255 |
+
), "The dimension to be chunked {} has to be a multiple of the chunk size {}".format(
|
1256 |
+
input_tensors[0].shape[chunk_dim], chunk_size
|
1257 |
+
)
|
1258 |
+
|
1259 |
+
num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size
|
1260 |
+
|
1261 |
+
# chunk input tensor into tuples
|
1262 |
+
input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors)
|
1263 |
+
# apply forward fn to every tuple
|
1264 |
+
output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks))
|
1265 |
+
# concatenate output at same dimension
|
1266 |
+
return torch.cat(output_chunks, dim=chunk_dim)
|
1267 |
+
|
1268 |
+
return forward_fn(*input_tensors)
|
elia/bert/multimodal_bert.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from .modeling_bert import BertModel
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
class MultiModalBert(BertModel):
|
10 |
+
def __init__(self, config, embed_dim, pwam_idx=[3,6,9,12], num_heads_fusion=[1,1,1,1], fusion_drop=0.0):
|
11 |
+
super().__init__(config)
|
12 |
+
self.pwam_idx = pwam_idx
|
13 |
+
self.num_heads_fusion = num_heads_fusion
|
14 |
+
self.fusion_drop = fusion_drop
|
15 |
+
|
16 |
+
pwam_dims=[embed_dim * 2** i for i in range(len(pwam_idx))]
|
17 |
+
#print(pwam_dims)
|
18 |
+
self.pwams = nn.ModuleList()
|
19 |
+
self.res_gates = nn.ModuleList()
|
20 |
+
self.norms = nn.ModuleList()
|
21 |
+
for i in range(0, len(pwam_idx)):
|
22 |
+
dim = pwam_dims[i]
|
23 |
+
fusion = PWAM(768, # both the visual input and for combining, num of channels
|
24 |
+
dim, # v_in
|
25 |
+
768, # l_in
|
26 |
+
768, # key
|
27 |
+
768, # value
|
28 |
+
num_heads=num_heads_fusion[i],
|
29 |
+
dropout=fusion_drop)
|
30 |
+
self.pwams.append(fusion)
|
31 |
+
|
32 |
+
res_gate = nn.Sequential(
|
33 |
+
nn.Linear(768, 768, bias=False),
|
34 |
+
nn.ReLU(),
|
35 |
+
nn.Linear(768, 768, bias=False),
|
36 |
+
nn.Tanh()
|
37 |
+
)
|
38 |
+
nn.init.zeros_(res_gate[0].weight)
|
39 |
+
nn.init.zeros_(res_gate[2].weight)
|
40 |
+
self.res_gates.append(res_gate)
|
41 |
+
|
42 |
+
self.norms.append(nn.LayerNorm(768))
|
43 |
+
|
44 |
+
def forward_stem(self, input_ids, attention_mask):
|
45 |
+
input_shape = input_ids.size()
|
46 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=input_ids.device)
|
47 |
+
|
48 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, input_ids.device)
|
49 |
+
|
50 |
+
embedding_output = self.embeddings(
|
51 |
+
input_ids=input_ids, token_type_ids=token_type_ids
|
52 |
+
)
|
53 |
+
#print(embedding_output.shape, extended_attention_mask.shape, "?>>>")
|
54 |
+
return embedding_output, extended_attention_mask
|
55 |
+
|
56 |
+
def forward_stage1(self, hidden_states, attention_mask):
|
57 |
+
for i in range(0, self.pwam_idx[0]):
|
58 |
+
layer_module = self.encoder.layer[i]
|
59 |
+
layer_outputs = layer_module(
|
60 |
+
hidden_states,
|
61 |
+
attention_mask,
|
62 |
+
)
|
63 |
+
hidden_states = layer_outputs[0]
|
64 |
+
|
65 |
+
return layer_outputs[0]
|
66 |
+
|
67 |
+
def forward_stage2(self, hidden_states, attention_mask):
|
68 |
+
for i in range(self.pwam_idx[0], self.pwam_idx[1]):
|
69 |
+
layer_module = self.encoder.layer[i]
|
70 |
+
layer_outputs = layer_module(
|
71 |
+
hidden_states,
|
72 |
+
attention_mask,
|
73 |
+
)
|
74 |
+
hidden_states = layer_outputs[0]
|
75 |
+
|
76 |
+
return layer_outputs[0]
|
77 |
+
|
78 |
+
def forward_stage3(self, hidden_states, attention_mask):
|
79 |
+
for i in range(self.pwam_idx[1], self.pwam_idx[2]):
|
80 |
+
layer_module = self.encoder.layer[i]
|
81 |
+
layer_outputs = layer_module(
|
82 |
+
hidden_states,
|
83 |
+
attention_mask,
|
84 |
+
)
|
85 |
+
hidden_states = layer_outputs[0]
|
86 |
+
|
87 |
+
return layer_outputs[0]
|
88 |
+
|
89 |
+
def forward_stage4(self, hidden_states, attention_mask):
|
90 |
+
for i in range(self.pwam_idx[2], self.pwam_idx[3]):
|
91 |
+
layer_module = self.encoder.layer[i]
|
92 |
+
layer_outputs = layer_module(
|
93 |
+
hidden_states,
|
94 |
+
attention_mask,
|
95 |
+
)
|
96 |
+
hidden_states = layer_outputs[0]
|
97 |
+
|
98 |
+
return layer_outputs[0]
|
99 |
+
|
100 |
+
def forward_pwam1(self, x, l, l_mask):
|
101 |
+
l_residual = self.pwams[0](x, l, l_mask)
|
102 |
+
l = l + (self.res_gates[0](l_residual) * l_residual)
|
103 |
+
return self.norms[0](l_residual), l
|
104 |
+
|
105 |
+
def forward_pwam2(self, x, l, l_mask):
|
106 |
+
l_residual = self.pwams[1](x, l, l_mask)
|
107 |
+
l = l + (self.res_gates[1](l_residual) * l_residual)
|
108 |
+
return self.norms[1](l_residual), l
|
109 |
+
|
110 |
+
def forward_pwam3(self, x, l, l_mask):
|
111 |
+
l_residual = self.pwams[2](x, l, l_mask)
|
112 |
+
l = l + (self.res_gates[2](l_residual) * l_residual)
|
113 |
+
return self.norms[2](l_residual), l
|
114 |
+
|
115 |
+
def forward_pwam4(self, x, l, l_mask):
|
116 |
+
l_residual = self.pwams[3](x, l, l_mask)
|
117 |
+
l = l + (self.res_gates[3](l_residual) * l_residual)
|
118 |
+
return self.norms[3](l_residual), l
|
119 |
+
|
120 |
+
class PWAM(nn.Module):
|
121 |
+
def __init__(self, dim, v_in_channels, l_in_channels, key_channels, value_channels, num_heads=0, dropout=0.0):
|
122 |
+
super(PWAM, self).__init__()
|
123 |
+
# input x shape: (B, H*W, dim)
|
124 |
+
#self.vis_project = nn.Sequential(nn.Conv1d(dim, dim, 1, 1), # the init function sets bias to 0 if bias is True
|
125 |
+
# nn.GELU(),
|
126 |
+
# nn.Dropout(dropout)
|
127 |
+
# )
|
128 |
+
#self.vis_project = nn.Sequential(nn.Conv1d(dim, dim, 1, 1), # the init function sets bias to 0 if bias is True
|
129 |
+
self.vis_project = nn.Sequential(nn.Linear(dim, dim), # the init function sets bias to 0 if bias is True
|
130 |
+
nn.GELU(),
|
131 |
+
nn.Dropout(dropout)
|
132 |
+
)
|
133 |
+
|
134 |
+
self.image_lang_att = SpatialImageLanguageAttention(v_in_channels, # v_in
|
135 |
+
l_in_channels, # l_in
|
136 |
+
key_channels, # key
|
137 |
+
value_channels, # value
|
138 |
+
out_channels=value_channels, # out
|
139 |
+
num_heads=num_heads)
|
140 |
+
|
141 |
+
self.project_mm = nn.Sequential(nn.Conv1d(value_channels, value_channels, 1, 1),
|
142 |
+
nn.GELU(),
|
143 |
+
nn.Dropout(dropout)
|
144 |
+
)
|
145 |
+
|
146 |
+
def forward(self, x, l, l_mask):
|
147 |
+
# input x shape: (B, H*W, dim)
|
148 |
+
#print("???", x.shape, l.shape, l_mask.shape)
|
149 |
+
#print(self.vis_project)
|
150 |
+
#vis = self.vis_project(x.permute(0, 2, 1)) # (B, dim, H*W)
|
151 |
+
vis = self.vis_project(l) # (B, dim, H*W)
|
152 |
+
|
153 |
+
lang = self.image_lang_att(x, l, l_mask) # (B, H*W, dim)
|
154 |
+
|
155 |
+
lang = lang.permute(0, 2, 1) # (B, dim, H*W)
|
156 |
+
|
157 |
+
#print("vis", vis.shape, "lang", lang.shape)
|
158 |
+
mm = torch.mul(vis.permute(0,2,1), lang)
|
159 |
+
#print(mm.shape)
|
160 |
+
mm = self.project_mm(mm) # (B, dim, H*W)
|
161 |
+
|
162 |
+
mm = mm.permute(0, 2, 1) # (B, H*W, dim)
|
163 |
+
|
164 |
+
return mm
|
165 |
+
|
166 |
+
#self.fusion = PWAM(dim, # both the visual input and for combining, num of channels
|
167 |
+
# dim, # v_in
|
168 |
+
# 768, # l_in
|
169 |
+
# dim, # key
|
170 |
+
# dim, # value
|
171 |
+
# num_heads=num_heads_fusion,
|
172 |
+
# dropout=fusion_drop)
|
173 |
+
|
174 |
+
class SpatialImageLanguageAttention(nn.Module):
|
175 |
+
def __init__(self, v_in_channels, l_in_channels, key_channels, value_channels, out_channels=None, num_heads=1):
|
176 |
+
super(SpatialImageLanguageAttention, self).__init__()
|
177 |
+
# x shape: (B, H*W, v_in_channels)
|
178 |
+
# l input shape: (B, l_in_channels, N_l)
|
179 |
+
# l_mask shape: (B, N_l, 1)
|
180 |
+
self.v_in_channels = v_in_channels
|
181 |
+
self.l_in_channels = l_in_channels
|
182 |
+
self.out_channels = out_channels
|
183 |
+
self.key_channels = key_channels
|
184 |
+
self.value_channels = value_channels
|
185 |
+
self.num_heads = num_heads
|
186 |
+
if out_channels is None:
|
187 |
+
self.out_channels = self.value_channels
|
188 |
+
|
189 |
+
# Keys: language features: (B, l_in_channels, #words)
|
190 |
+
# avoid any form of spatial normalization because a sentence contains many padding 0s
|
191 |
+
self.f_query = nn.Sequential(
|
192 |
+
nn.Conv1d(self.l_in_channels, self.key_channels, kernel_size=1, stride=1),
|
193 |
+
)
|
194 |
+
|
195 |
+
# Queries: visual features: (B, H*W, v_in_channels)
|
196 |
+
self.f_key = nn.Sequential(
|
197 |
+
nn.Conv1d(self.v_in_channels, self.key_channels, kernel_size=1, stride=1),
|
198 |
+
nn.InstanceNorm1d(self.key_channels),
|
199 |
+
)
|
200 |
+
|
201 |
+
# Values: language features: (B, l_in_channels, #words)
|
202 |
+
#self.f_value = nn.Sequential(
|
203 |
+
# nn.Conv1d(self.l_in_channels, self.value_channels, kernel_size=1, stride=1),
|
204 |
+
#)
|
205 |
+
self.f_value = nn.Sequential(
|
206 |
+
nn.Conv1d(self.v_in_channels, self.key_channels, kernel_size=1, stride=1),
|
207 |
+
nn.InstanceNorm1d(self.key_channels),
|
208 |
+
)
|
209 |
+
|
210 |
+
# Out projection
|
211 |
+
self.W = nn.Sequential(
|
212 |
+
nn.Conv1d(self.value_channels, self.out_channels, kernel_size=1, stride=1),
|
213 |
+
nn.InstanceNorm1d(self.out_channels),
|
214 |
+
)
|
215 |
+
|
216 |
+
def forward(self, x, l, l_mask):
|
217 |
+
#print('input shape', x.shape, l.shape, l_mask.shape)
|
218 |
+
l_mask = l_mask.squeeze(1)
|
219 |
+
# x shape: (B, H*W, v_in_channels)
|
220 |
+
# l input shape: (B, l_in_channels, N_l)
|
221 |
+
# l_mask shape: (B, N_l, 1)
|
222 |
+
B, HW = x.size(0), x.size(1)
|
223 |
+
x = x.permute(0, 2, 1) # (B, key_channels, H*W)
|
224 |
+
l = l.permute(0,2,1)
|
225 |
+
#l_mask = l_mask.permute(0, 2, 1) # (B, N_l, 1) -> (B, 1, N_l)
|
226 |
+
l_mask = l_mask # (B, N_l, 1) -> (B, 1, N_l)
|
227 |
+
|
228 |
+
#query = self.f_query(x) # (B, key_channels, H*W) if Conv1D
|
229 |
+
#query = query.permute(0, 2, 1) # (B, H*W, key_channels)
|
230 |
+
#key = self.f_key(l) # (B, key_channels, N_l)
|
231 |
+
#value = self.f_value(l) # (B, self.value_channels, N_l)
|
232 |
+
#key = key * l_mask # (B, key_channels, N_l)
|
233 |
+
#value = value * l_mask # (B, self.value_channels, N_l)
|
234 |
+
|
235 |
+
#print(l.shape, self.f_query)
|
236 |
+
query = self.f_query(l) # (B, key_channels, H*W) if Conv1D
|
237 |
+
query = query * l_mask # (B, key_channels, N_l)
|
238 |
+
query = query.permute(0, 2, 1) # (B, N_l, key_channels)
|
239 |
+
|
240 |
+
key = self.f_key(x) # (B, key_channels, H*W) if Conv1D
|
241 |
+
value = self.f_value(x) # (B, key_channels, H*W) if Conv1D
|
242 |
+
|
243 |
+
n_l = query.size(1)
|
244 |
+
#print(query.shape, key.shape, value.shape)
|
245 |
+
|
246 |
+
#query = query.reshape(B, HW, self.num_heads, self.key_channels//self.num_heads).permute(0, 2, 1, 3)
|
247 |
+
# (b, num_heads, H*W, self.key_channels//self.num_heads)
|
248 |
+
#key = key.reshape(B, self.num_heads, self.key_channels//self.num_heads, n_l)
|
249 |
+
# (b, num_heads, self.key_channels//self.num_heads, n_l)
|
250 |
+
#value = value.reshape(B, self.num_heads, self.value_channels//self.num_heads, n_l)
|
251 |
+
# # (b, num_heads, self.value_channels//self.num_heads, n_l)
|
252 |
+
key = key.reshape(B, self.num_heads, self.key_channels//self.num_heads, HW)
|
253 |
+
value = value.reshape(B, self.num_heads, self.key_channels//self.num_heads, HW)
|
254 |
+
# (b, num_heads, H*W, self.key_channels//self.num_heads)
|
255 |
+
#query = query.reshape(B, self.num_heads, self.key_channels//self.num_heads, n_l)
|
256 |
+
query = query.reshape(B, n_l, self.num_heads, self.key_channels//self.num_heads).permute(0, 2, 1, 3)
|
257 |
+
# (b, num_heads, self.key_channels//self.num_heads, n_l)
|
258 |
+
#value = value.reshape(B, self.num_heads, self.value_channels//self.num_heads, n_l)
|
259 |
+
#print('after reshape', query.shape, key.shape, value.shape)
|
260 |
+
|
261 |
+
l_mask = l_mask.unsqueeze(-1) # (b, 1, 1, n_l)
|
262 |
+
|
263 |
+
#sim_map = torch.matmul(query, key) # (B, self.num_heads, H*W, N_l)
|
264 |
+
sim_map = torch.matmul(query, key) # (B, self.num_heads, N_l, H*W)
|
265 |
+
sim_map = (self.key_channels ** -.5) * sim_map # scaled dot product
|
266 |
+
|
267 |
+
sim_map = sim_map + (1e4*l_mask - 1e4) # assign a very small number to padding positions
|
268 |
+
sim_map = F.softmax(sim_map, dim=-1) # (B, num_heads, h*w, N_l)
|
269 |
+
out = torch.matmul(sim_map, value.permute(0, 1, 3, 2)) # (B, num_heads, H*W, self.value_channels//num_heads)
|
270 |
+
#print('out', out.shape)
|
271 |
+
#out = out.permute(0, 2, 1, 3).contiguous().reshape(B, HW, self.value_channels) # (B, H*W, value_channels)
|
272 |
+
out = out.permute(0, 2, 1, 3).contiguous().reshape(B, n_l, self.value_channels) # (B, H*W, value_channels)
|
273 |
+
out = out.permute(0, 2, 1) # (B, value_channels, HW)
|
274 |
+
out = self.W(out) # (B, value_channels, HW)
|
275 |
+
out = out.permute(0, 2, 1) # (B, HW, value_channels)
|
276 |
+
|
277 |
+
return out
|
elia/bert/tokenization_bert.py
ADDED
@@ -0,0 +1,545 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes."""
|
16 |
+
|
17 |
+
|
18 |
+
import collections
|
19 |
+
import logging
|
20 |
+
import os
|
21 |
+
import unicodedata
|
22 |
+
from typing import List, Optional
|
23 |
+
|
24 |
+
from .tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.getLogger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
30 |
+
|
31 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
32 |
+
"vocab_file": {
|
33 |
+
"bert-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
|
34 |
+
"bert-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
|
35 |
+
"bert-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
|
36 |
+
"bert-large-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
|
37 |
+
"bert-base-multilingual-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
|
38 |
+
"bert-base-multilingual-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
|
39 |
+
"bert-base-chinese": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
|
40 |
+
"bert-base-german-cased": "https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased-vocab.txt",
|
41 |
+
"bert-large-uncased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-vocab.txt",
|
42 |
+
"bert-large-cased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-vocab.txt",
|
43 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-vocab.txt",
|
44 |
+
"bert-large-cased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-vocab.txt",
|
45 |
+
"bert-base-cased-finetuned-mrpc": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-vocab.txt",
|
46 |
+
"bert-base-german-dbmdz-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-vocab.txt",
|
47 |
+
"bert-base-german-dbmdz-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-vocab.txt",
|
48 |
+
"TurkuNLP/bert-base-finnish-cased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-cased-v1/vocab.txt",
|
49 |
+
"TurkuNLP/bert-base-finnish-uncased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-uncased-v1/vocab.txt",
|
50 |
+
"wietsedv/bert-base-dutch-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/wietsedv/bert-base-dutch-cased/vocab.txt",
|
51 |
+
}
|
52 |
+
}
|
53 |
+
|
54 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
55 |
+
"bert-base-uncased": 512,
|
56 |
+
"bert-large-uncased": 512,
|
57 |
+
"bert-base-cased": 512,
|
58 |
+
"bert-large-cased": 512,
|
59 |
+
"bert-base-multilingual-uncased": 512,
|
60 |
+
"bert-base-multilingual-cased": 512,
|
61 |
+
"bert-base-chinese": 512,
|
62 |
+
"bert-base-german-cased": 512,
|
63 |
+
"bert-large-uncased-whole-word-masking": 512,
|
64 |
+
"bert-large-cased-whole-word-masking": 512,
|
65 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad": 512,
|
66 |
+
"bert-large-cased-whole-word-masking-finetuned-squad": 512,
|
67 |
+
"bert-base-cased-finetuned-mrpc": 512,
|
68 |
+
"bert-base-german-dbmdz-cased": 512,
|
69 |
+
"bert-base-german-dbmdz-uncased": 512,
|
70 |
+
"TurkuNLP/bert-base-finnish-cased-v1": 512,
|
71 |
+
"TurkuNLP/bert-base-finnish-uncased-v1": 512,
|
72 |
+
"wietsedv/bert-base-dutch-cased": 512,
|
73 |
+
}
|
74 |
+
|
75 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
76 |
+
"bert-base-uncased": {"do_lower_case": True},
|
77 |
+
"bert-large-uncased": {"do_lower_case": True},
|
78 |
+
"bert-base-cased": {"do_lower_case": False},
|
79 |
+
"bert-large-cased": {"do_lower_case": False},
|
80 |
+
"bert-base-multilingual-uncased": {"do_lower_case": True},
|
81 |
+
"bert-base-multilingual-cased": {"do_lower_case": False},
|
82 |
+
"bert-base-chinese": {"do_lower_case": False},
|
83 |
+
"bert-base-german-cased": {"do_lower_case": False},
|
84 |
+
"bert-large-uncased-whole-word-masking": {"do_lower_case": True},
|
85 |
+
"bert-large-cased-whole-word-masking": {"do_lower_case": False},
|
86 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True},
|
87 |
+
"bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False},
|
88 |
+
"bert-base-cased-finetuned-mrpc": {"do_lower_case": False},
|
89 |
+
"bert-base-german-dbmdz-cased": {"do_lower_case": False},
|
90 |
+
"bert-base-german-dbmdz-uncased": {"do_lower_case": True},
|
91 |
+
"TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False},
|
92 |
+
"TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True},
|
93 |
+
"wietsedv/bert-base-dutch-cased": {"do_lower_case": False},
|
94 |
+
}
|
95 |
+
|
96 |
+
|
97 |
+
def load_vocab(vocab_file):
|
98 |
+
"""Loads a vocabulary file into a dictionary."""
|
99 |
+
vocab = collections.OrderedDict()
|
100 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
101 |
+
tokens = reader.readlines()
|
102 |
+
for index, token in enumerate(tokens):
|
103 |
+
token = token.rstrip("\n")
|
104 |
+
vocab[token] = index
|
105 |
+
return vocab
|
106 |
+
|
107 |
+
|
108 |
+
def whitespace_tokenize(text):
|
109 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
110 |
+
text = text.strip()
|
111 |
+
if not text:
|
112 |
+
return []
|
113 |
+
tokens = text.split()
|
114 |
+
return tokens
|
115 |
+
|
116 |
+
|
117 |
+
class BertTokenizer(PreTrainedTokenizer):
|
118 |
+
r"""
|
119 |
+
Constructs a BERT tokenizer. Based on WordPiece.
|
120 |
+
|
121 |
+
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the methods. Users
|
122 |
+
should refer to the superclass for more information regarding methods.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
vocab_file (:obj:`string`):
|
126 |
+
File containing the vocabulary.
|
127 |
+
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
128 |
+
Whether to lowercase the input when tokenizing.
|
129 |
+
do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
130 |
+
Whether to do basic tokenization before WordPiece.
|
131 |
+
never_split (:obj:`Iterable`, `optional`, defaults to :obj:`None`):
|
132 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
133 |
+
:obj:`do_basic_tokenize=True`
|
134 |
+
unk_token (:obj:`string`, `optional`, defaults to "[UNK]"):
|
135 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
136 |
+
token instead.
|
137 |
+
sep_token (:obj:`string`, `optional`, defaults to "[SEP]"):
|
138 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences
|
139 |
+
for sequence classification or for a text and a question for question answering.
|
140 |
+
It is also used as the last token of a sequence built with special tokens.
|
141 |
+
pad_token (:obj:`string`, `optional`, defaults to "[PAD]"):
|
142 |
+
The token used for padding, for example when batching sequences of different lengths.
|
143 |
+
cls_token (:obj:`string`, `optional`, defaults to "[CLS]"):
|
144 |
+
The classifier token which is used when doing sequence classification (classification of the whole
|
145 |
+
sequence instead of per-token classification). It is the first token of the sequence when built with
|
146 |
+
special tokens.
|
147 |
+
mask_token (:obj:`string`, `optional`, defaults to "[MASK]"):
|
148 |
+
The token used for masking values. This is the token used when training this model with masked language
|
149 |
+
modeling. This is the token which the model will try to predict.
|
150 |
+
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
151 |
+
Whether to tokenize Chinese characters.
|
152 |
+
This should likely be deactivated for Japanese:
|
153 |
+
see: https://github.com/huggingface/transformers/issues/328
|
154 |
+
"""
|
155 |
+
|
156 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
157 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
158 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
159 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
160 |
+
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
vocab_file,
|
164 |
+
do_lower_case=True,
|
165 |
+
do_basic_tokenize=True,
|
166 |
+
never_split=None,
|
167 |
+
unk_token="[UNK]",
|
168 |
+
sep_token="[SEP]",
|
169 |
+
pad_token="[PAD]",
|
170 |
+
cls_token="[CLS]",
|
171 |
+
mask_token="[MASK]",
|
172 |
+
tokenize_chinese_chars=True,
|
173 |
+
**kwargs
|
174 |
+
):
|
175 |
+
super().__init__(
|
176 |
+
unk_token=unk_token,
|
177 |
+
sep_token=sep_token,
|
178 |
+
pad_token=pad_token,
|
179 |
+
cls_token=cls_token,
|
180 |
+
mask_token=mask_token,
|
181 |
+
**kwargs,
|
182 |
+
)
|
183 |
+
|
184 |
+
if not os.path.isfile(vocab_file):
|
185 |
+
raise ValueError(
|
186 |
+
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
|
187 |
+
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)
|
188 |
+
)
|
189 |
+
self.vocab = load_vocab(vocab_file)
|
190 |
+
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
191 |
+
self.do_basic_tokenize = do_basic_tokenize
|
192 |
+
if do_basic_tokenize:
|
193 |
+
self.basic_tokenizer = BasicTokenizer(
|
194 |
+
do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars
|
195 |
+
)
|
196 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)
|
197 |
+
|
198 |
+
@property
|
199 |
+
def vocab_size(self):
|
200 |
+
return len(self.vocab)
|
201 |
+
|
202 |
+
def get_vocab(self):
|
203 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
204 |
+
|
205 |
+
def _tokenize(self, text):
|
206 |
+
split_tokens = []
|
207 |
+
if self.do_basic_tokenize:
|
208 |
+
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
|
209 |
+
|
210 |
+
# If the token is part of the never_split set
|
211 |
+
if token in self.basic_tokenizer.never_split:
|
212 |
+
split_tokens.append(token)
|
213 |
+
else:
|
214 |
+
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
215 |
+
else:
|
216 |
+
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
217 |
+
return split_tokens
|
218 |
+
|
219 |
+
def _convert_token_to_id(self, token):
|
220 |
+
""" Converts a token (str) in an id using the vocab. """
|
221 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
222 |
+
|
223 |
+
def _convert_id_to_token(self, index):
|
224 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
225 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
226 |
+
|
227 |
+
def convert_tokens_to_string(self, tokens):
|
228 |
+
""" Converts a sequence of tokens (string) in a single string. """
|
229 |
+
out_string = " ".join(tokens).replace(" ##", "").strip()
|
230 |
+
return out_string
|
231 |
+
|
232 |
+
def build_inputs_with_special_tokens(
|
233 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
234 |
+
) -> List[int]:
|
235 |
+
"""
|
236 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks
|
237 |
+
by concatenating and adding special tokens.
|
238 |
+
A BERT sequence has the following format:
|
239 |
+
|
240 |
+
- single sequence: ``[CLS] X [SEP]``
|
241 |
+
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
|
242 |
+
|
243 |
+
Args:
|
244 |
+
token_ids_0 (:obj:`List[int]`):
|
245 |
+
List of IDs to which the special tokens will be added
|
246 |
+
token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`):
|
247 |
+
Optional second list of IDs for sequence pairs.
|
248 |
+
|
249 |
+
Returns:
|
250 |
+
:obj:`List[int]`: list of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
|
251 |
+
"""
|
252 |
+
if token_ids_1 is None:
|
253 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
254 |
+
cls = [self.cls_token_id]
|
255 |
+
sep = [self.sep_token_id]
|
256 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
257 |
+
|
258 |
+
def get_special_tokens_mask(
|
259 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
260 |
+
) -> List[int]:
|
261 |
+
"""
|
262 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
263 |
+
special tokens using the tokenizer ``prepare_for_model`` method.
|
264 |
+
|
265 |
+
Args:
|
266 |
+
token_ids_0 (:obj:`List[int]`):
|
267 |
+
List of ids.
|
268 |
+
token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`):
|
269 |
+
Optional second list of IDs for sequence pairs.
|
270 |
+
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
271 |
+
Set to True if the token list is already formatted with special tokens for the model
|
272 |
+
|
273 |
+
Returns:
|
274 |
+
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
275 |
+
"""
|
276 |
+
|
277 |
+
if already_has_special_tokens:
|
278 |
+
if token_ids_1 is not None:
|
279 |
+
raise ValueError(
|
280 |
+
"You should not supply a second sequence if the provided sequence of "
|
281 |
+
"ids is already formated with special tokens for the model."
|
282 |
+
)
|
283 |
+
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
|
284 |
+
|
285 |
+
if token_ids_1 is not None:
|
286 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
287 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
288 |
+
|
289 |
+
def create_token_type_ids_from_sequences(
|
290 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
291 |
+
) -> List[int]:
|
292 |
+
"""
|
293 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
|
294 |
+
A BERT sequence pair mask has the following format:
|
295 |
+
|
296 |
+
::
|
297 |
+
|
298 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
299 |
+
| first sequence | second sequence |
|
300 |
+
|
301 |
+
if token_ids_1 is None, only returns the first portion of the mask (0's).
|
302 |
+
|
303 |
+
Args:
|
304 |
+
token_ids_0 (:obj:`List[int]`):
|
305 |
+
List of ids.
|
306 |
+
token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`):
|
307 |
+
Optional second list of IDs for sequence pairs.
|
308 |
+
|
309 |
+
Returns:
|
310 |
+
:obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given
|
311 |
+
sequence(s).
|
312 |
+
"""
|
313 |
+
sep = [self.sep_token_id]
|
314 |
+
cls = [self.cls_token_id]
|
315 |
+
if token_ids_1 is None:
|
316 |
+
return len(cls + token_ids_0 + sep) * [0]
|
317 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
318 |
+
|
319 |
+
def save_vocabulary(self, vocab_path):
|
320 |
+
"""
|
321 |
+
Save the sentencepiece vocabulary (copy original file) and special tokens file to a directory.
|
322 |
+
|
323 |
+
Args:
|
324 |
+
vocab_path (:obj:`str`):
|
325 |
+
The directory in which to save the vocabulary.
|
326 |
+
|
327 |
+
Returns:
|
328 |
+
:obj:`Tuple(str)`: Paths to the files saved.
|
329 |
+
"""
|
330 |
+
index = 0
|
331 |
+
if os.path.isdir(vocab_path):
|
332 |
+
vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES["vocab_file"])
|
333 |
+
else:
|
334 |
+
vocab_file = vocab_path
|
335 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
336 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
337 |
+
if index != token_index:
|
338 |
+
logger.warning(
|
339 |
+
"Saving vocabulary to {}: vocabulary indices are not consecutive."
|
340 |
+
" Please check that the vocabulary is not corrupted!".format(vocab_file)
|
341 |
+
)
|
342 |
+
index = token_index
|
343 |
+
writer.write(token + "\n")
|
344 |
+
index += 1
|
345 |
+
return (vocab_file,)
|
346 |
+
|
347 |
+
|
348 |
+
class BasicTokenizer(object):
|
349 |
+
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
|
350 |
+
|
351 |
+
def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True):
|
352 |
+
""" Constructs a BasicTokenizer.
|
353 |
+
|
354 |
+
Args:
|
355 |
+
**do_lower_case**: Whether to lower case the input.
|
356 |
+
**never_split**: (`optional`) list of str
|
357 |
+
Kept for backward compatibility purposes.
|
358 |
+
Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`)
|
359 |
+
List of token not to split.
|
360 |
+
**tokenize_chinese_chars**: (`optional`) boolean (default True)
|
361 |
+
Whether to tokenize Chinese characters.
|
362 |
+
This should likely be deactivated for Japanese:
|
363 |
+
see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328
|
364 |
+
"""
|
365 |
+
if never_split is None:
|
366 |
+
never_split = []
|
367 |
+
self.do_lower_case = do_lower_case
|
368 |
+
self.never_split = set(never_split)
|
369 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
370 |
+
|
371 |
+
def tokenize(self, text, never_split=None):
|
372 |
+
""" Basic Tokenization of a piece of text.
|
373 |
+
Split on "white spaces" only, for sub-word tokenization, see WordPieceTokenizer.
|
374 |
+
|
375 |
+
Args:
|
376 |
+
**never_split**: (`optional`) list of str
|
377 |
+
Kept for backward compatibility purposes.
|
378 |
+
Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`)
|
379 |
+
List of token not to split.
|
380 |
+
"""
|
381 |
+
# union() returns a new set by concatenating the two sets.
|
382 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
383 |
+
|
384 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
385 |
+
# models. This is also applied to the English models now, but it doesn't
|
386 |
+
# matter since the English models were not trained on any Chinese data
|
387 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
388 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
389 |
+
# words in the English Wikipedia.).
|
390 |
+
if self.tokenize_chinese_chars:
|
391 |
+
text = self._tokenize_chinese_chars(text)
|
392 |
+
orig_tokens = whitespace_tokenize(text)
|
393 |
+
split_tokens = []
|
394 |
+
for token in orig_tokens:
|
395 |
+
if self.do_lower_case and token not in never_split:
|
396 |
+
token = token.lower()
|
397 |
+
token = self._run_strip_accents(token)
|
398 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
399 |
+
|
400 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
401 |
+
return output_tokens
|
402 |
+
|
403 |
+
def _run_strip_accents(self, text):
|
404 |
+
"""Strips accents from a piece of text."""
|
405 |
+
text = unicodedata.normalize("NFD", text)
|
406 |
+
output = []
|
407 |
+
for char in text:
|
408 |
+
cat = unicodedata.category(char)
|
409 |
+
if cat == "Mn":
|
410 |
+
continue
|
411 |
+
output.append(char)
|
412 |
+
return "".join(output)
|
413 |
+
|
414 |
+
def _run_split_on_punc(self, text, never_split=None):
|
415 |
+
"""Splits punctuation on a piece of text."""
|
416 |
+
if never_split is not None and text in never_split:
|
417 |
+
return [text]
|
418 |
+
chars = list(text)
|
419 |
+
i = 0
|
420 |
+
start_new_word = True
|
421 |
+
output = []
|
422 |
+
while i < len(chars):
|
423 |
+
char = chars[i]
|
424 |
+
if _is_punctuation(char):
|
425 |
+
output.append([char])
|
426 |
+
start_new_word = True
|
427 |
+
else:
|
428 |
+
if start_new_word:
|
429 |
+
output.append([])
|
430 |
+
start_new_word = False
|
431 |
+
output[-1].append(char)
|
432 |
+
i += 1
|
433 |
+
|
434 |
+
return ["".join(x) for x in output]
|
435 |
+
|
436 |
+
def _tokenize_chinese_chars(self, text):
|
437 |
+
"""Adds whitespace around any CJK character."""
|
438 |
+
output = []
|
439 |
+
for char in text:
|
440 |
+
cp = ord(char)
|
441 |
+
if self._is_chinese_char(cp):
|
442 |
+
output.append(" ")
|
443 |
+
output.append(char)
|
444 |
+
output.append(" ")
|
445 |
+
else:
|
446 |
+
output.append(char)
|
447 |
+
return "".join(output)
|
448 |
+
|
449 |
+
def _is_chinese_char(self, cp):
|
450 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
451 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
452 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
453 |
+
#
|
454 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
455 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
456 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
457 |
+
# space-separated words, so they are not treated specially and handled
|
458 |
+
# like the all of the other languages.
|
459 |
+
if (
|
460 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
461 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
462 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
463 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
464 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
465 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
466 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
467 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
468 |
+
): #
|
469 |
+
return True
|
470 |
+
|
471 |
+
return False
|
472 |
+
|
473 |
+
def _clean_text(self, text):
|
474 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
475 |
+
output = []
|
476 |
+
for char in text:
|
477 |
+
cp = ord(char)
|
478 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
479 |
+
continue
|
480 |
+
if _is_whitespace(char):
|
481 |
+
output.append(" ")
|
482 |
+
else:
|
483 |
+
output.append(char)
|
484 |
+
return "".join(output)
|
485 |
+
|
486 |
+
|
487 |
+
class WordpieceTokenizer(object):
|
488 |
+
"""Runs WordPiece tokenization."""
|
489 |
+
|
490 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
491 |
+
self.vocab = vocab
|
492 |
+
self.unk_token = unk_token
|
493 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
494 |
+
|
495 |
+
def tokenize(self, text):
|
496 |
+
"""Tokenizes a piece of text into its word pieces.
|
497 |
+
|
498 |
+
This uses a greedy longest-match-first algorithm to perform tokenization
|
499 |
+
using the given vocabulary.
|
500 |
+
|
501 |
+
For example:
|
502 |
+
input = "unaffable"
|
503 |
+
output = ["un", "##aff", "##able"]
|
504 |
+
|
505 |
+
Args:
|
506 |
+
text: A single token or whitespace separated tokens. This should have
|
507 |
+
already been passed through `BasicTokenizer`.
|
508 |
+
|
509 |
+
Returns:
|
510 |
+
A list of wordpiece tokens.
|
511 |
+
"""
|
512 |
+
|
513 |
+
output_tokens = []
|
514 |
+
for token in whitespace_tokenize(text):
|
515 |
+
chars = list(token)
|
516 |
+
if len(chars) > self.max_input_chars_per_word:
|
517 |
+
output_tokens.append(self.unk_token)
|
518 |
+
continue
|
519 |
+
|
520 |
+
is_bad = False
|
521 |
+
start = 0
|
522 |
+
sub_tokens = []
|
523 |
+
while start < len(chars):
|
524 |
+
end = len(chars)
|
525 |
+
cur_substr = None
|
526 |
+
while start < end:
|
527 |
+
substr = "".join(chars[start:end])
|
528 |
+
if start > 0:
|
529 |
+
substr = "##" + substr
|
530 |
+
if substr in self.vocab:
|
531 |
+
cur_substr = substr
|
532 |
+
break
|
533 |
+
end -= 1
|
534 |
+
if cur_substr is None:
|
535 |
+
is_bad = True
|
536 |
+
break
|
537 |
+
sub_tokens.append(cur_substr)
|
538 |
+
start = end
|
539 |
+
|
540 |
+
if is_bad:
|
541 |
+
output_tokens.append(self.unk_token)
|
542 |
+
else:
|
543 |
+
output_tokens.extend(sub_tokens)
|
544 |
+
return output_tokens
|
545 |
+
|
elia/bert/tokenization_utils.py
ADDED
@@ -0,0 +1,723 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization classes for python tokenizers.
|
16 |
+
For fast tokenizers (provided by HuggingFace's tokenizers library) see tokenization_utils_fast.py
|
17 |
+
"""
|
18 |
+
|
19 |
+
import itertools
|
20 |
+
import logging
|
21 |
+
import re
|
22 |
+
import unicodedata
|
23 |
+
from typing import Dict, List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
from .file_utils import add_end_docstrings
|
26 |
+
from .tokenization_utils_base import (
|
27 |
+
ENCODE_KWARGS_DOCSTRING,
|
28 |
+
ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
|
29 |
+
AddedToken,
|
30 |
+
BatchEncoding,
|
31 |
+
EncodedInput,
|
32 |
+
EncodedInputPair,
|
33 |
+
PaddingStrategy,
|
34 |
+
PreTokenizedInput,
|
35 |
+
PreTokenizedInputPair,
|
36 |
+
PreTrainedTokenizerBase,
|
37 |
+
TensorType,
|
38 |
+
TextInput,
|
39 |
+
TextInputPair,
|
40 |
+
TruncationStrategy,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.getLogger(__name__)
|
45 |
+
|
46 |
+
|
47 |
+
def _is_whitespace(char):
|
48 |
+
"""Checks whether `chars` is a whitespace character."""
|
49 |
+
# \t, \n, and \r are technically contorl characters but we treat them
|
50 |
+
# as whitespace since they are generally considered as such.
|
51 |
+
if char == " " or char == "\t" or char == "\n" or char == "\r":
|
52 |
+
return True
|
53 |
+
cat = unicodedata.category(char)
|
54 |
+
if cat == "Zs":
|
55 |
+
return True
|
56 |
+
return False
|
57 |
+
|
58 |
+
|
59 |
+
def _is_control(char):
|
60 |
+
"""Checks whether `chars` is a control character."""
|
61 |
+
# These are technically control characters but we count them as whitespace
|
62 |
+
# characters.
|
63 |
+
if char == "\t" or char == "\n" or char == "\r":
|
64 |
+
return False
|
65 |
+
cat = unicodedata.category(char)
|
66 |
+
if cat.startswith("C"):
|
67 |
+
return True
|
68 |
+
return False
|
69 |
+
|
70 |
+
|
71 |
+
def _is_punctuation(char):
|
72 |
+
"""Checks whether `chars` is a punctuation character."""
|
73 |
+
cp = ord(char)
|
74 |
+
# We treat all non-letter/number ASCII as punctuation.
|
75 |
+
# Characters such as "^", "$", and "`" are not in the Unicode
|
76 |
+
# Punctuation class but we treat them as punctuation anyways, for
|
77 |
+
# consistency.
|
78 |
+
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
|
79 |
+
return True
|
80 |
+
cat = unicodedata.category(char)
|
81 |
+
if cat.startswith("P"):
|
82 |
+
return True
|
83 |
+
return False
|
84 |
+
|
85 |
+
|
86 |
+
def _is_end_of_word(text):
|
87 |
+
"""Checks whether the last character in text is one of a punctuation, control or whitespace character."""
|
88 |
+
last_char = text[-1]
|
89 |
+
return bool(_is_control(last_char) | _is_punctuation(last_char) | _is_whitespace(last_char))
|
90 |
+
|
91 |
+
|
92 |
+
def _is_start_of_word(text):
|
93 |
+
"""Checks whether the first character in text is one of a punctuation, control or whitespace character."""
|
94 |
+
first_char = text[0]
|
95 |
+
return bool(_is_control(first_char) | _is_punctuation(first_char) | _is_whitespace(first_char))
|
96 |
+
|
97 |
+
|
98 |
+
class PreTrainedTokenizer(PreTrainedTokenizerBase):
|
99 |
+
""" Base class for all slow tokenizers.
|
100 |
+
|
101 |
+
Handle all the shared methods for tokenization and special tokens as well as methods
|
102 |
+
downloading/caching/loading pretrained tokenizers as well as adding tokens to the vocabulary.
|
103 |
+
|
104 |
+
This class also contain the added tokens in a unified way on top of all tokenizers so we don't
|
105 |
+
have to handle the specific vocabulary augmentation methods of the various underlying
|
106 |
+
dictionary structures (BPE, sentencepiece...).
|
107 |
+
|
108 |
+
Class attributes (overridden by derived classes):
|
109 |
+
|
110 |
+
- ``vocab_files_names``: a python ``dict`` with, as keys, the ``__init__`` keyword name of each vocabulary file
|
111 |
+
required by the model, and as associated values, the filename for saving the associated file (string).
|
112 |
+
- ``pretrained_vocab_files_map``: a python ``dict of dict`` the high-level keys
|
113 |
+
being the ``__init__`` keyword name of each vocabulary file required by the model, the low-level being the
|
114 |
+
`short-cut-names` (string) of the pretrained models with, as associated values, the `url` (string) to the
|
115 |
+
associated pretrained vocabulary file.
|
116 |
+
- ``max_model_input_sizes``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained
|
117 |
+
models, and as associated values, the maximum length of the sequence inputs of this model, or None if the
|
118 |
+
model has no maximum input size.
|
119 |
+
- ``pretrained_init_configuration``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the
|
120 |
+
pretrained models, and as associated values, a dictionnary of specific arguments to pass to the
|
121 |
+
``__init__``method of the tokenizer class for this pretrained model when loading the tokenizer with the
|
122 |
+
``from_pretrained()`` method.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
- ``model_max_length``: (`Optional`) int: the maximum length in number of tokens for the inputs to the transformer model.
|
126 |
+
When the tokenizer is loaded with `from_pretrained`, this will be set to the value stored for the associated
|
127 |
+
model in ``max_model_input_sizes`` (see above). If no value is provided, will default to VERY_LARGE_INTEGER (`int(1e30)`).
|
128 |
+
no associated max_length can be found in ``max_model_input_sizes``.
|
129 |
+
- ``padding_side``: (`Optional`) string: the side on which the model should have padding applied.
|
130 |
+
Should be selected between ['right', 'left']
|
131 |
+
- ``model_input_names``: (`Optional`) List[string]: the list of the forward pass inputs accepted by the
|
132 |
+
model ("token_type_ids", "attention_mask"...).
|
133 |
+
- ``bos_token``: (`Optional`) string: a beginning of sentence token.
|
134 |
+
Will be associated to ``self.bos_token`` and ``self.bos_token_id``
|
135 |
+
- ``eos_token``: (`Optional`) string: an end of sentence token.
|
136 |
+
Will be associated to ``self.eos_token`` and ``self.eos_token_id``
|
137 |
+
- ``unk_token``: (`Optional`) string: an unknown token.
|
138 |
+
Will be associated to ``self.unk_token`` and ``self.unk_token_id``
|
139 |
+
- ``sep_token``: (`Optional`) string: a separation token (e.g. to separate context and query in an input sequence).
|
140 |
+
Will be associated to ``self.sep_token`` and ``self.sep_token_id``
|
141 |
+
- ``pad_token``: (`Optional`) string: a padding token.
|
142 |
+
Will be associated to ``self.pad_token`` and ``self.pad_token_id``
|
143 |
+
- ``cls_token``: (`Optional`) string: a classification token (e.g. to extract a summary of an input sequence
|
144 |
+
leveraging self-attention along the full depth of the model).
|
145 |
+
Will be associated to ``self.cls_token`` and ``self.cls_token_id``
|
146 |
+
- ``mask_token``: (`Optional`) string: a masking token (e.g. when training a model with masked-language
|
147 |
+
modeling). Will be associated to ``self.mask_token`` and ``self.mask_token_id``
|
148 |
+
- ``additional_special_tokens``: (`Optional`) list: a list of additional special tokens.
|
149 |
+
Adding all special tokens here ensure they won't be split by the tokenization process.
|
150 |
+
Will be associated to ``self.additional_special_tokens`` and ``self.additional_special_tokens_ids``
|
151 |
+
|
152 |
+
|
153 |
+
.. automethod:: __call__
|
154 |
+
"""
|
155 |
+
|
156 |
+
def __init__(self, **kwargs):
|
157 |
+
super().__init__(**kwargs)
|
158 |
+
|
159 |
+
# Added tokens - We store this for both slow and fast tokenizers
|
160 |
+
# until the serialization of Fast tokenizers is updated
|
161 |
+
self.added_tokens_encoder: Dict[str, int] = {}
|
162 |
+
self.added_tokens_decoder: Dict[int, str] = {}
|
163 |
+
self.unique_no_split_tokens: List[str] = []
|
164 |
+
|
165 |
+
@property
|
166 |
+
def is_fast(self) -> bool:
|
167 |
+
return False
|
168 |
+
|
169 |
+
@property
|
170 |
+
def vocab_size(self) -> int:
|
171 |
+
""" Size of the base vocabulary (without the added tokens) """
|
172 |
+
raise NotImplementedError
|
173 |
+
|
174 |
+
def get_vocab(self):
|
175 |
+
""" Returns the vocabulary as a dict of {token: index} pairs. `tokenizer.get_vocab()[token]` is equivalent to `tokenizer.convert_tokens_to_ids(token)` when `token` is in the vocab. """
|
176 |
+
raise NotImplementedError()
|
177 |
+
|
178 |
+
def get_added_vocab(self) -> Dict[str, int]:
|
179 |
+
return self.added_tokens_encoder
|
180 |
+
|
181 |
+
def __len__(self):
|
182 |
+
""" Size of the full vocabulary with the added tokens """
|
183 |
+
return self.vocab_size + len(self.added_tokens_encoder)
|
184 |
+
|
185 |
+
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens=False) -> int:
|
186 |
+
"""
|
187 |
+
Add a list of new tokens to the tokenizer class. If the new tokens are not in the
|
188 |
+
vocabulary, they are added to it with indices starting from length of the current vocabulary.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
new_tokens: string or list of string. Each string is a token to add. Tokens are only added if they are not
|
192 |
+
already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
Number of tokens added to the vocabulary.
|
196 |
+
|
197 |
+
Examples::
|
198 |
+
|
199 |
+
# Let's see how to increase the vocabulary of Bert model and tokenizer
|
200 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
201 |
+
model = BertModel.from_pretrained('bert-base-uncased')
|
202 |
+
|
203 |
+
num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2'])
|
204 |
+
print('We have added', num_added_toks, 'tokens')
|
205 |
+
model.resize_token_embeddings(len(tokenizer)) # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.
|
206 |
+
"""
|
207 |
+
new_tokens = [str(tok) for tok in new_tokens]
|
208 |
+
|
209 |
+
tokens_to_add = []
|
210 |
+
for token in new_tokens:
|
211 |
+
assert isinstance(token, str)
|
212 |
+
if not special_tokens and self.init_kwargs.get("do_lower_case", False):
|
213 |
+
token = token.lower()
|
214 |
+
if (
|
215 |
+
token != self.unk_token
|
216 |
+
and self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token)
|
217 |
+
and token not in tokens_to_add
|
218 |
+
):
|
219 |
+
tokens_to_add.append(token)
|
220 |
+
if self.verbose:
|
221 |
+
logger.info("Adding %s to the vocabulary", token)
|
222 |
+
|
223 |
+
added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(tokens_to_add))
|
224 |
+
added_tok_decoder = {v: k for k, v in added_tok_encoder.items()}
|
225 |
+
self.added_tokens_encoder.update(added_tok_encoder)
|
226 |
+
self.added_tokens_decoder.update(added_tok_decoder)
|
227 |
+
|
228 |
+
# Make sure we don't split on any special tokens (even they were already in the vocab before e.g. for Albert)
|
229 |
+
if special_tokens:
|
230 |
+
self.unique_no_split_tokens = list(set(self.unique_no_split_tokens).union(set(new_tokens)))
|
231 |
+
else:
|
232 |
+
# Or on the newly added tokens
|
233 |
+
self.unique_no_split_tokens = list(set(self.unique_no_split_tokens).union(set(tokens_to_add)))
|
234 |
+
|
235 |
+
return len(tokens_to_add)
|
236 |
+
|
237 |
+
def num_special_tokens_to_add(self, pair=False):
|
238 |
+
"""
|
239 |
+
Returns the number of added tokens when encoding a sequence with special tokens.
|
240 |
+
|
241 |
+
Note:
|
242 |
+
This encodes inputs and checks the number of added tokens, and is therefore not efficient. Do not put this
|
243 |
+
inside your training loop.
|
244 |
+
|
245 |
+
Args:
|
246 |
+
pair: Returns the number of added tokens in the case of a sequence pair if set to True, returns the
|
247 |
+
number of added tokens in the case of a single sequence if set to False.
|
248 |
+
|
249 |
+
Returns:
|
250 |
+
Number of tokens added to sequences
|
251 |
+
"""
|
252 |
+
token_ids_0 = []
|
253 |
+
token_ids_1 = []
|
254 |
+
return len(self.build_inputs_with_special_tokens(token_ids_0, token_ids_1 if pair else None))
|
255 |
+
|
256 |
+
def tokenize(self, text: TextInput, **kwargs):
|
257 |
+
""" Converts a string in a sequence of tokens (string), using the tokenizer.
|
258 |
+
Split in words for word-based vocabulary or sub-words for sub-word-based
|
259 |
+
vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
+
|
261 |
+
Take care of added tokens.
|
262 |
+
|
263 |
+
Args:
|
264 |
+
text (:obj:`string`): The sequence to be encoded.
|
265 |
+
**kwargs (:obj: `dict`): Arguments passed to the model-specific `prepare_for_tokenization` preprocessing method.
|
266 |
+
"""
|
267 |
+
# Simple mapping string => AddedToken for special tokens with specific tokenization behaviors
|
268 |
+
all_special_tokens_extended = dict(
|
269 |
+
(str(t), t) for t in self.all_special_tokens_extended if isinstance(t, AddedToken)
|
270 |
+
)
|
271 |
+
|
272 |
+
text, kwargs = self.prepare_for_tokenization(text, **kwargs)
|
273 |
+
|
274 |
+
if kwargs:
|
275 |
+
logger.warning(f"Keyword arguments {kwargs} not recognized.")
|
276 |
+
|
277 |
+
# TODO: should this be in the base class?
|
278 |
+
if self.init_kwargs.get("do_lower_case", False):
|
279 |
+
# convert non-special tokens to lowercase
|
280 |
+
escaped_special_toks = [re.escape(s_tok) for s_tok in self.all_special_tokens]
|
281 |
+
pattern = r"(" + r"|".join(escaped_special_toks) + r")|" + r"(.+?)"
|
282 |
+
text = re.sub(pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), text)
|
283 |
+
|
284 |
+
def split_on_token(tok, text):
|
285 |
+
result = []
|
286 |
+
tok_extended = all_special_tokens_extended.get(tok, None)
|
287 |
+
split_text = text.split(tok)
|
288 |
+
full_word = ""
|
289 |
+
for i, sub_text in enumerate(split_text):
|
290 |
+
# AddedToken can control whitespace stripping around them.
|
291 |
+
# We use them for GPT2 and Roberta to have different behavior depending on the special token
|
292 |
+
# Cf. https://github.com/huggingface/transformers/pull/2778
|
293 |
+
# and https://github.com/huggingface/transformers/issues/3788
|
294 |
+
if isinstance(tok_extended, AddedToken):
|
295 |
+
if tok_extended.single_word:
|
296 |
+
# Try to avoid splitting on token
|
297 |
+
if (
|
298 |
+
i < len(split_text) - 1
|
299 |
+
and not _is_end_of_word(sub_text)
|
300 |
+
and not _is_start_of_word(split_text[i + 1])
|
301 |
+
):
|
302 |
+
# Don't extract the special token
|
303 |
+
full_word += sub_text + tok
|
304 |
+
elif full_word:
|
305 |
+
full_word += sub_text
|
306 |
+
result += [full_word]
|
307 |
+
full_word = ""
|
308 |
+
continue
|
309 |
+
# Strip white spaces on the right
|
310 |
+
if tok_extended.rstrip and i > 0:
|
311 |
+
# A bit counter-intuitive but we strip the left of the string
|
312 |
+
# since tok_extended.rstrip means the special token is eating all white spaces on its right
|
313 |
+
sub_text = sub_text.lstrip()
|
314 |
+
# Strip white spaces on the left
|
315 |
+
if tok_extended.lstrip and i < len(split_text) - 1:
|
316 |
+
sub_text = sub_text.rstrip() # Opposite here
|
317 |
+
else:
|
318 |
+
# We strip left and right by default
|
319 |
+
if i < len(split_text) - 1:
|
320 |
+
sub_text = sub_text.rstrip()
|
321 |
+
if i > 0:
|
322 |
+
sub_text = sub_text.lstrip()
|
323 |
+
|
324 |
+
if i == 0 and not sub_text:
|
325 |
+
result += [tok]
|
326 |
+
elif i == len(split_text) - 1:
|
327 |
+
if sub_text:
|
328 |
+
result += [sub_text]
|
329 |
+
else:
|
330 |
+
pass
|
331 |
+
else:
|
332 |
+
if sub_text:
|
333 |
+
result += [sub_text]
|
334 |
+
result += [tok]
|
335 |
+
return result
|
336 |
+
|
337 |
+
def split_on_tokens(tok_list, text):
|
338 |
+
if not text.strip():
|
339 |
+
return []
|
340 |
+
if not tok_list:
|
341 |
+
return self._tokenize(text)
|
342 |
+
|
343 |
+
tokenized_text = []
|
344 |
+
text_list = [text]
|
345 |
+
for tok in tok_list:
|
346 |
+
tokenized_text = []
|
347 |
+
for sub_text in text_list:
|
348 |
+
if sub_text not in self.unique_no_split_tokens:
|
349 |
+
tokenized_text += split_on_token(tok, sub_text)
|
350 |
+
else:
|
351 |
+
tokenized_text += [sub_text]
|
352 |
+
text_list = tokenized_text
|
353 |
+
|
354 |
+
return list(
|
355 |
+
itertools.chain.from_iterable(
|
356 |
+
(
|
357 |
+
self._tokenize(token) if token not in self.unique_no_split_tokens else [token]
|
358 |
+
for token in tokenized_text
|
359 |
+
)
|
360 |
+
)
|
361 |
+
)
|
362 |
+
|
363 |
+
no_split_token = self.unique_no_split_tokens
|
364 |
+
tokenized_text = split_on_tokens(no_split_token, text)
|
365 |
+
return tokenized_text
|
366 |
+
|
367 |
+
def _tokenize(self, text, **kwargs):
|
368 |
+
""" Converts a string in a sequence of tokens (string), using the tokenizer.
|
369 |
+
Split in words for word-based vocabulary or sub-words for sub-word-based
|
370 |
+
vocabularies (BPE/SentencePieces/WordPieces).
|
371 |
+
|
372 |
+
Do NOT take care of added tokens.
|
373 |
+
"""
|
374 |
+
raise NotImplementedError
|
375 |
+
|
376 |
+
def convert_tokens_to_ids(self, tokens):
|
377 |
+
""" Converts a token string (or a sequence of tokens) in a single integer id
|
378 |
+
(or a sequence of ids), using the vocabulary.
|
379 |
+
"""
|
380 |
+
if tokens is None:
|
381 |
+
return None
|
382 |
+
|
383 |
+
if isinstance(tokens, str):
|
384 |
+
return self._convert_token_to_id_with_added_voc(tokens)
|
385 |
+
|
386 |
+
ids = []
|
387 |
+
for token in tokens:
|
388 |
+
ids.append(self._convert_token_to_id_with_added_voc(token))
|
389 |
+
return ids
|
390 |
+
|
391 |
+
def _convert_token_to_id_with_added_voc(self, token):
|
392 |
+
if token is None:
|
393 |
+
return None
|
394 |
+
|
395 |
+
if token in self.added_tokens_encoder:
|
396 |
+
return self.added_tokens_encoder[token]
|
397 |
+
return self._convert_token_to_id(token)
|
398 |
+
|
399 |
+
def _convert_token_to_id(self, token):
|
400 |
+
raise NotImplementedError
|
401 |
+
|
402 |
+
def _encode_plus(
|
403 |
+
self,
|
404 |
+
text: Union[TextInput, PreTokenizedInput, EncodedInput],
|
405 |
+
text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
|
406 |
+
add_special_tokens: bool = True,
|
407 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
408 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
409 |
+
max_length: Optional[int] = None,
|
410 |
+
stride: int = 0,
|
411 |
+
is_pretokenized: bool = False,
|
412 |
+
pad_to_multiple_of: Optional[int] = None,
|
413 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
414 |
+
return_token_type_ids: Optional[bool] = None,
|
415 |
+
return_attention_mask: Optional[bool] = None,
|
416 |
+
return_overflowing_tokens: bool = False,
|
417 |
+
return_special_tokens_mask: bool = False,
|
418 |
+
return_offsets_mapping: bool = False,
|
419 |
+
return_length: bool = False,
|
420 |
+
verbose: bool = True,
|
421 |
+
**kwargs
|
422 |
+
) -> BatchEncoding:
|
423 |
+
def get_input_ids(text):
|
424 |
+
if isinstance(text, str):
|
425 |
+
tokens = self.tokenize(text, **kwargs)
|
426 |
+
return self.convert_tokens_to_ids(tokens)
|
427 |
+
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
|
428 |
+
if is_pretokenized:
|
429 |
+
tokens = list(itertools.chain(*(self.tokenize(t, is_pretokenized=True, **kwargs) for t in text)))
|
430 |
+
return self.convert_tokens_to_ids(tokens)
|
431 |
+
else:
|
432 |
+
return self.convert_tokens_to_ids(text)
|
433 |
+
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
|
434 |
+
return text
|
435 |
+
else:
|
436 |
+
if is_pretokenized:
|
437 |
+
raise ValueError(
|
438 |
+
f"Input {text} is not valid. Should be a string or a list/tuple of strings when `is_pretokenized=True`."
|
439 |
+
)
|
440 |
+
else:
|
441 |
+
raise ValueError(
|
442 |
+
f"Input {text} is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
|
443 |
+
)
|
444 |
+
|
445 |
+
if return_offsets_mapping:
|
446 |
+
raise NotImplementedError(
|
447 |
+
"return_offset_mapping is not available when using Python tokenizers."
|
448 |
+
"To use this feature, change your tokenizer to one deriving from "
|
449 |
+
"transformers.PreTrainedTokenizerFast."
|
450 |
+
"More information on available tokenizers at "
|
451 |
+
"https://github.com/huggingface/transformers/pull/2674"
|
452 |
+
)
|
453 |
+
|
454 |
+
first_ids = get_input_ids(text)
|
455 |
+
second_ids = get_input_ids(text_pair) if text_pair is not None else None
|
456 |
+
|
457 |
+
return self.prepare_for_model(
|
458 |
+
first_ids,
|
459 |
+
pair_ids=second_ids,
|
460 |
+
add_special_tokens=add_special_tokens,
|
461 |
+
padding=padding_strategy.value,
|
462 |
+
truncation=truncation_strategy.value,
|
463 |
+
max_length=max_length,
|
464 |
+
stride=stride,
|
465 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
466 |
+
return_tensors=return_tensors,
|
467 |
+
prepend_batch_axis=True,
|
468 |
+
return_attention_mask=return_attention_mask,
|
469 |
+
return_token_type_ids=return_token_type_ids,
|
470 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
471 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
472 |
+
return_length=return_length,
|
473 |
+
verbose=verbose,
|
474 |
+
)
|
475 |
+
|
476 |
+
def _batch_encode_plus(
|
477 |
+
self,
|
478 |
+
batch_text_or_text_pairs: Union[
|
479 |
+
List[TextInput],
|
480 |
+
List[TextInputPair],
|
481 |
+
List[PreTokenizedInput],
|
482 |
+
List[PreTokenizedInputPair],
|
483 |
+
List[EncodedInput],
|
484 |
+
List[EncodedInputPair],
|
485 |
+
],
|
486 |
+
add_special_tokens: bool = True,
|
487 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
488 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
489 |
+
max_length: Optional[int] = None,
|
490 |
+
stride: int = 0,
|
491 |
+
is_pretokenized: bool = False,
|
492 |
+
pad_to_multiple_of: Optional[int] = None,
|
493 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
494 |
+
return_token_type_ids: Optional[bool] = None,
|
495 |
+
return_attention_mask: Optional[bool] = None,
|
496 |
+
return_overflowing_tokens: bool = False,
|
497 |
+
return_special_tokens_mask: bool = False,
|
498 |
+
return_offsets_mapping: bool = False,
|
499 |
+
return_length: bool = False,
|
500 |
+
verbose: bool = True,
|
501 |
+
**kwargs
|
502 |
+
) -> BatchEncoding:
|
503 |
+
def get_input_ids(text):
|
504 |
+
if isinstance(text, str):
|
505 |
+
tokens = self.tokenize(text, **kwargs)
|
506 |
+
return self.convert_tokens_to_ids(tokens)
|
507 |
+
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
|
508 |
+
if is_pretokenized:
|
509 |
+
tokens = list(itertools.chain(*(self.tokenize(t, is_pretokenized=True, **kwargs) for t in text)))
|
510 |
+
return self.convert_tokens_to_ids(tokens)
|
511 |
+
else:
|
512 |
+
return self.convert_tokens_to_ids(text)
|
513 |
+
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
|
514 |
+
return text
|
515 |
+
else:
|
516 |
+
raise ValueError(
|
517 |
+
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
|
518 |
+
)
|
519 |
+
|
520 |
+
if return_offsets_mapping:
|
521 |
+
raise NotImplementedError(
|
522 |
+
"return_offset_mapping is not available when using Python tokenizers."
|
523 |
+
"To use this feature, change your tokenizer to one deriving from "
|
524 |
+
"transformers.PreTrainedTokenizerFast."
|
525 |
+
)
|
526 |
+
|
527 |
+
input_ids = []
|
528 |
+
for ids_or_pair_ids in batch_text_or_text_pairs:
|
529 |
+
if not isinstance(ids_or_pair_ids, (list, tuple)):
|
530 |
+
ids, pair_ids = ids_or_pair_ids, None
|
531 |
+
elif is_pretokenized and not isinstance(ids_or_pair_ids[0], (list, tuple)):
|
532 |
+
ids, pair_ids = ids_or_pair_ids, None
|
533 |
+
else:
|
534 |
+
ids, pair_ids = ids_or_pair_ids
|
535 |
+
|
536 |
+
first_ids = get_input_ids(ids)
|
537 |
+
second_ids = get_input_ids(pair_ids) if pair_ids is not None else None
|
538 |
+
input_ids.append((first_ids, second_ids))
|
539 |
+
|
540 |
+
batch_outputs = self._batch_prepare_for_model(
|
541 |
+
input_ids,
|
542 |
+
add_special_tokens=add_special_tokens,
|
543 |
+
padding_strategy=padding_strategy,
|
544 |
+
truncation_strategy=truncation_strategy,
|
545 |
+
max_length=max_length,
|
546 |
+
stride=stride,
|
547 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
548 |
+
return_attention_mask=return_attention_mask,
|
549 |
+
return_token_type_ids=return_token_type_ids,
|
550 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
551 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
552 |
+
return_length=return_length,
|
553 |
+
return_tensors=return_tensors,
|
554 |
+
verbose=verbose,
|
555 |
+
)
|
556 |
+
|
557 |
+
return BatchEncoding(batch_outputs)
|
558 |
+
|
559 |
+
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
560 |
+
def _batch_prepare_for_model(
|
561 |
+
self,
|
562 |
+
batch_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]],
|
563 |
+
add_special_tokens: bool = True,
|
564 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
565 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
566 |
+
max_length: Optional[int] = None,
|
567 |
+
stride: int = 0,
|
568 |
+
pad_to_multiple_of: Optional[int] = None,
|
569 |
+
return_tensors: Optional[str] = None,
|
570 |
+
return_token_type_ids: Optional[bool] = None,
|
571 |
+
return_attention_mask: Optional[bool] = None,
|
572 |
+
return_overflowing_tokens: bool = False,
|
573 |
+
return_special_tokens_mask: bool = False,
|
574 |
+
return_length: bool = False,
|
575 |
+
verbose: bool = True,
|
576 |
+
) -> BatchEncoding:
|
577 |
+
""" Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model.
|
578 |
+
It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
|
579 |
+
manages a moving window (with user defined stride) for overflowing tokens
|
580 |
+
|
581 |
+
Args:
|
582 |
+
batch_ids_pairs: list of tokenized input ids or input ids pairs
|
583 |
+
"""
|
584 |
+
|
585 |
+
batch_outputs = {}
|
586 |
+
for first_ids, second_ids in batch_ids_pairs:
|
587 |
+
outputs = self.prepare_for_model(
|
588 |
+
first_ids,
|
589 |
+
second_ids,
|
590 |
+
add_special_tokens=add_special_tokens,
|
591 |
+
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
|
592 |
+
truncation=truncation_strategy.value,
|
593 |
+
max_length=max_length,
|
594 |
+
stride=stride,
|
595 |
+
pad_to_multiple_of=None, # we pad in batch afterward
|
596 |
+
return_attention_mask=False, # we pad in batch afterward
|
597 |
+
return_token_type_ids=return_token_type_ids,
|
598 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
599 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
600 |
+
return_length=return_length,
|
601 |
+
return_tensors=None, # We convert the whole batch to tensors at the end
|
602 |
+
prepend_batch_axis=False,
|
603 |
+
verbose=verbose,
|
604 |
+
)
|
605 |
+
|
606 |
+
for key, value in outputs.items():
|
607 |
+
if key not in batch_outputs:
|
608 |
+
batch_outputs[key] = []
|
609 |
+
batch_outputs[key].append(value)
|
610 |
+
|
611 |
+
batch_outputs = self.pad(
|
612 |
+
batch_outputs,
|
613 |
+
padding=padding_strategy.value,
|
614 |
+
max_length=max_length,
|
615 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
616 |
+
return_attention_mask=return_attention_mask,
|
617 |
+
)
|
618 |
+
|
619 |
+
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
620 |
+
|
621 |
+
return batch_outputs
|
622 |
+
|
623 |
+
def prepare_for_tokenization(self, text: str, is_pretokenized=False, **kwargs) -> (str, dict):
|
624 |
+
""" Performs any necessary transformations before tokenization.
|
625 |
+
|
626 |
+
This method should pop the arguments from kwargs and return kwargs as well.
|
627 |
+
We test kwargs at the end of the encoding process to be sure all the arguments have been used.
|
628 |
+
"""
|
629 |
+
return (text, kwargs)
|
630 |
+
|
631 |
+
def get_special_tokens_mask(
|
632 |
+
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
|
633 |
+
) -> List[int]:
|
634 |
+
"""
|
635 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
636 |
+
special tokens using the tokenizer ``prepare_for_model`` method.
|
637 |
+
|
638 |
+
Args:
|
639 |
+
token_ids_0: list of ids (must not contain special tokens)
|
640 |
+
token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids
|
641 |
+
for sequence pairs
|
642 |
+
already_has_special_tokens: (default False) Set to True if the token list is already formated with
|
643 |
+
special tokens for the model
|
644 |
+
|
645 |
+
Returns:
|
646 |
+
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
647 |
+
"""
|
648 |
+
return [0] * ((len(token_ids_1) if token_ids_1 else 0) + len(token_ids_0))
|
649 |
+
|
650 |
+
def convert_ids_to_tokens(
|
651 |
+
self, ids: Union[int, List[int]], skip_special_tokens: bool = False
|
652 |
+
) -> Union[str, List[str]]:
|
653 |
+
""" Converts a single index or a sequence of indices (integers) in a token "
|
654 |
+
(resp.) a sequence of tokens (str), using the vocabulary and added tokens.
|
655 |
+
|
656 |
+
Args:
|
657 |
+
skip_special_tokens: Don't decode special tokens (self.all_special_tokens). Default: False
|
658 |
+
"""
|
659 |
+
if isinstance(ids, int):
|
660 |
+
if ids in self.added_tokens_decoder:
|
661 |
+
return self.added_tokens_decoder[ids]
|
662 |
+
else:
|
663 |
+
return self._convert_id_to_token(ids)
|
664 |
+
tokens = []
|
665 |
+
for index in ids:
|
666 |
+
index = int(index)
|
667 |
+
if skip_special_tokens and index in self.all_special_ids:
|
668 |
+
continue
|
669 |
+
if index in self.added_tokens_decoder:
|
670 |
+
tokens.append(self.added_tokens_decoder[index])
|
671 |
+
else:
|
672 |
+
tokens.append(self._convert_id_to_token(index))
|
673 |
+
return tokens
|
674 |
+
|
675 |
+
def _convert_id_to_token(self, index: int) -> str:
|
676 |
+
raise NotImplementedError
|
677 |
+
|
678 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
679 |
+
""" Converts a sequence of tokens (string) in a single string.
|
680 |
+
The most simple way to do it is ' '.join(self.convert_ids_to_tokens(token_ids))
|
681 |
+
but we often want to remove sub-word tokenization artifacts at the same time.
|
682 |
+
"""
|
683 |
+
return " ".join(self.convert_ids_to_tokens(tokens))
|
684 |
+
|
685 |
+
def decode(
|
686 |
+
self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = True
|
687 |
+
) -> str:
|
688 |
+
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
|
689 |
+
|
690 |
+
# To avoid mixing byte-level and unicode for byte-level BPT
|
691 |
+
# we need to build string separatly for added tokens and byte-level tokens
|
692 |
+
# cf. https://github.com/huggingface/transformers/issues/1133
|
693 |
+
sub_texts = []
|
694 |
+
current_sub_text = []
|
695 |
+
for token in filtered_tokens:
|
696 |
+
if skip_special_tokens and token in self.all_special_ids:
|
697 |
+
continue
|
698 |
+
if token in self.added_tokens_encoder:
|
699 |
+
if current_sub_text:
|
700 |
+
sub_texts.append(self.convert_tokens_to_string(current_sub_text))
|
701 |
+
current_sub_text = []
|
702 |
+
sub_texts.append(token)
|
703 |
+
else:
|
704 |
+
current_sub_text.append(token)
|
705 |
+
if current_sub_text:
|
706 |
+
sub_texts.append(self.convert_tokens_to_string(current_sub_text))
|
707 |
+
text = " ".join(sub_texts)
|
708 |
+
|
709 |
+
if clean_up_tokenization_spaces:
|
710 |
+
clean_text = self.clean_up_tokenization(text)
|
711 |
+
return clean_text
|
712 |
+
else:
|
713 |
+
return text
|
714 |
+
|
715 |
+
def save_vocabulary(self, save_directory) -> Tuple[str]:
|
716 |
+
""" Save the tokenizer vocabulary to a directory. This method does *NOT* save added tokens
|
717 |
+
and special token mappings.
|
718 |
+
|
719 |
+
Please use :func:`~transformers.PreTrainedTokenizer.save_pretrained` `()` to save the full
|
720 |
+
Tokenizer state if you want to reload it using the :func:`~transformers.PreTrainedTokenizer.from_pretrained`
|
721 |
+
class method.
|
722 |
+
"""
|
723 |
+
raise NotImplementedError
|
elia/bert/tokenization_utils_base.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
elia/demo_inference.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
image_path = './image001.png'
|
2 |
+
sentence = 'spoon on the dish'
|
3 |
+
weights = '/cluster/nvme4/cyx/lavt/vis/model_best_refcoco_0508.pth'
|
4 |
+
device = 'cpu'
|
5 |
+
|
6 |
+
# pre-process the input image
|
7 |
+
from PIL import Image
|
8 |
+
import torchvision.transforms as T
|
9 |
+
import numpy as np
|
10 |
+
import datetime
|
11 |
+
import os
|
12 |
+
import time
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.utils.data
|
16 |
+
from torch import nn
|
17 |
+
|
18 |
+
from bert.multimodal_bert import MultiModalBert
|
19 |
+
import torchvision
|
20 |
+
|
21 |
+
from lib import multimodal_segmentation_ppm
|
22 |
+
#import transforms as T
|
23 |
+
import utils
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
from PIL import Image
|
27 |
+
import torch.nn.functional as F
|
28 |
+
|
29 |
+
from modeling.MaskFormerModel import MaskFormerHead
|
30 |
+
from addict import Dict
|
31 |
+
#from bert.modeling_bert import BertLMPredictionHead, BertEncoder
|
32 |
+
import cv2
|
33 |
+
import textwrap
|
34 |
+
|
35 |
+
class WrapperModel(nn.Module):
|
36 |
+
def __init__(self, image_model, language_model, classifier) :
|
37 |
+
super(WrapperModel, self).__init__()
|
38 |
+
self.image_model = image_model
|
39 |
+
self.language_model = language_model
|
40 |
+
self.classifier = classifier
|
41 |
+
|
42 |
+
config = Dict({
|
43 |
+
"architectures": [
|
44 |
+
"BertForMaskedLM"
|
45 |
+
],
|
46 |
+
"attention_probs_dropout_prob": 0.1,
|
47 |
+
"gradient_checkpointing": False,
|
48 |
+
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout_prob": 0.1,
|
50 |
+
"hidden_size": 512,
|
51 |
+
"initializer_range": 0.02,
|
52 |
+
"intermediate_size": 3072,
|
53 |
+
"layer_norm_eps": 1e-12,
|
54 |
+
#"max_position_embeddings": 16+20,
|
55 |
+
"model_type": "bert",
|
56 |
+
"num_attention_heads": 8,
|
57 |
+
"num_hidden_layers": 8,
|
58 |
+
"pad_token_id": 0,
|
59 |
+
"position_embedding_type": "absolute",
|
60 |
+
"transformers_version": "4.6.0.dev0",
|
61 |
+
"type_vocab_size": 2,
|
62 |
+
"use_cache": True,
|
63 |
+
"vocab_size": 30522
|
64 |
+
})
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
def _get_binary_mask(self, target):
|
69 |
+
# 返回每类的binary mask
|
70 |
+
y, x = target.size()
|
71 |
+
target_onehot = torch.zeros(self.num_classes + 1, y, x)
|
72 |
+
target_onehot = target_onehot.scatter(dim=0, index=target.unsqueeze(0), value=1)
|
73 |
+
return target_onehot[1:]
|
74 |
+
|
75 |
+
def semantic_inference(self, mask_cls, mask_pred):
|
76 |
+
mask_cls = F.softmax(mask_cls, dim=1)[...,1:]
|
77 |
+
mask_pred = mask_pred.sigmoid()
|
78 |
+
semseg = torch.einsum("bqc,bqhw->bchw", mask_cls, mask_pred)
|
79 |
+
return semseg
|
80 |
+
|
81 |
+
def forward(self, image, sentences, attentions):
|
82 |
+
print(image.sum(), sentences.sum(), attentions.sum())
|
83 |
+
input_shape = image.shape[-2:]
|
84 |
+
l_mask = attentions.unsqueeze(dim=-1)
|
85 |
+
|
86 |
+
i0, Wh, Ww = self.image_model.forward_stem(image)
|
87 |
+
l0, extended_attention_mask = self.language_model.forward_stem(sentences, attentions)
|
88 |
+
|
89 |
+
i1 = self.image_model.forward_stage1(i0, Wh, Ww)
|
90 |
+
l1 = self.language_model.forward_stage1(l0, extended_attention_mask)
|
91 |
+
i1_residual, H, W, i1_temp, Wh, Ww = self.image_model.forward_pwam1(i1, Wh, Ww, l1, l_mask)
|
92 |
+
l1_residual, l1 = self.language_model.forward_pwam1(i1, l1, extended_attention_mask)
|
93 |
+
i1 = i1_temp
|
94 |
+
|
95 |
+
i2 = self.image_model.forward_stage2(i1, Wh, Ww)
|
96 |
+
l2 = self.language_model.forward_stage2(l1, extended_attention_mask)
|
97 |
+
i2_residual, H, W, i2_temp, Wh, Ww = self.image_model.forward_pwam2(i2, Wh, Ww, l2, l_mask)
|
98 |
+
l2_residual, l2 = self.language_model.forward_pwam2(i2, l2, extended_attention_mask)
|
99 |
+
i2 = i2_temp
|
100 |
+
|
101 |
+
i3 = self.image_model.forward_stage3(i2, Wh, Ww)
|
102 |
+
l3 = self.language_model.forward_stage3(l2, extended_attention_mask)
|
103 |
+
i3_residual, H, W, i3_temp, Wh, Ww = self.image_model.forward_pwam3(i3, Wh, Ww, l3, l_mask)
|
104 |
+
l3_residual, l3 = self.language_model.forward_pwam3(i3, l3, extended_attention_mask)
|
105 |
+
i3 = i3_temp
|
106 |
+
|
107 |
+
i4 = self.image_model.forward_stage4(i3, Wh, Ww)
|
108 |
+
l4 = self.language_model.forward_stage4(l3, extended_attention_mask)
|
109 |
+
i4_residual, H, W, i4_temp, Wh, Ww = self.image_model.forward_pwam4(i4, Wh, Ww, l4, l_mask)
|
110 |
+
l4_residual, l4 = self.language_model.forward_pwam4(i4, l4, extended_attention_mask)
|
111 |
+
i4 = i4_temp
|
112 |
+
|
113 |
+
#i1_residual, i2_residual, i3_residual, i4_residual = features
|
114 |
+
#x = self.classifier(i4_residual, i3_residual, i2_residual, i1_residual)
|
115 |
+
#x = F.interpolate(x, size=input_shape, mode='bilinear', align_corners=True)
|
116 |
+
outputs = {}
|
117 |
+
outputs['s1'] = i1_residual
|
118 |
+
outputs['s2'] = i2_residual
|
119 |
+
outputs['s3'] = i3_residual
|
120 |
+
outputs['s4'] = i4_residual
|
121 |
+
|
122 |
+
predictions = self.classifier(outputs)
|
123 |
+
return predictions
|
124 |
+
|
125 |
+
#img = Image.open(image_path).convert("RGB")
|
126 |
+
img = Image.open(image_path).convert("RGB")
|
127 |
+
img_ndarray = np.array(img) # (orig_h, orig_w, 3); for visualization
|
128 |
+
original_w, original_h = img.size # PIL .size returns width first and height second
|
129 |
+
|
130 |
+
image_transforms = T.Compose(
|
131 |
+
[
|
132 |
+
T.Resize((480, 480)),
|
133 |
+
T.ToTensor(),
|
134 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
135 |
+
]
|
136 |
+
)
|
137 |
+
|
138 |
+
img = image_transforms(img).unsqueeze(0) # (1, 3, 480, 480)
|
139 |
+
img = img.to(device) # for inference (input)
|
140 |
+
|
141 |
+
# pre-process the raw sentence
|
142 |
+
from bert.tokenization_bert import BertTokenizer
|
143 |
+
import torch
|
144 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
145 |
+
sentence_tokenized = tokenizer.encode(text=sentence, add_special_tokens=True)
|
146 |
+
sentence_tokenized = sentence_tokenized[:20] # if the sentence is longer than 20, then this truncates it to 20 words
|
147 |
+
# pad the tokenized sentence
|
148 |
+
padded_sent_toks = [0] * 20
|
149 |
+
padded_sent_toks[:len(sentence_tokenized)] = sentence_tokenized
|
150 |
+
# create a sentence token mask: 1 for real words; 0 for padded tokens
|
151 |
+
attention_mask = [0] * 20
|
152 |
+
attention_mask[:len(sentence_tokenized)] = [1]*len(sentence_tokenized)
|
153 |
+
# convert lists to tensors
|
154 |
+
padded_sent_toks = torch.tensor(padded_sent_toks).unsqueeze(0) # (1, 20)
|
155 |
+
attention_mask = torch.tensor(attention_mask).unsqueeze(0) # (1, 20)
|
156 |
+
padded_sent_toks = padded_sent_toks.to(device) # for inference (input)
|
157 |
+
attention_mask = attention_mask.to(device) # for inference (input)
|
158 |
+
|
159 |
+
# initialize model and load weights
|
160 |
+
#from bert.modeling_bert import BertModel
|
161 |
+
#from lib import segmentation
|
162 |
+
|
163 |
+
# construct a mini args class; like from a config file
|
164 |
+
|
165 |
+
|
166 |
+
class args:
|
167 |
+
swin_type = 'base'
|
168 |
+
window12 = True
|
169 |
+
mha = ''
|
170 |
+
fusion_drop = 0.0
|
171 |
+
|
172 |
+
|
173 |
+
#single_model = segmentation.__dict__['lavt'](pretrained='', args=args)
|
174 |
+
single_model = multimodal_segmentation_ppm.__dict__['lavt'](pretrained='',args=args)
|
175 |
+
single_model.to(device)
|
176 |
+
model_class = MultiModalBert
|
177 |
+
single_bert_model = model_class.from_pretrained('bert-base-uncased', embed_dim=single_model.backbone.embed_dim)
|
178 |
+
single_bert_model.pooler = None
|
179 |
+
|
180 |
+
input_shape = dict()
|
181 |
+
input_shape['s1'] = Dict({'channel': 128, 'stride': 4})
|
182 |
+
input_shape['s2'] = Dict({'channel': 256, 'stride': 8})
|
183 |
+
input_shape['s3'] = Dict({'channel': 512, 'stride': 16})
|
184 |
+
input_shape['s4'] = Dict({'channel': 1024, 'stride': 32})
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
cfg = Dict()
|
189 |
+
cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE = 4
|
190 |
+
cfg.MODEL.MASK_FORMER.DROPOUT = 0.0
|
191 |
+
cfg.MODEL.MASK_FORMER.NHEADS = 8
|
192 |
+
cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 4
|
193 |
+
cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM = 256
|
194 |
+
cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
|
195 |
+
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["s1", "s2", "s3", "s4"]
|
196 |
+
|
197 |
+
cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 1
|
198 |
+
cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256
|
199 |
+
cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = 1
|
200 |
+
cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = 2048
|
201 |
+
cfg.MODEL.MASK_FORMER.DEC_LAYERS = 10
|
202 |
+
cfg.MODEL.MASK_FORMER.PRE_NORM = False
|
203 |
+
|
204 |
+
|
205 |
+
maskformer_head = MaskFormerHead(cfg, input_shape)
|
206 |
+
|
207 |
+
|
208 |
+
model = WrapperModel(single_model.backbone, single_bert_model, maskformer_head)
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
checkpoint = torch.load(weights, map_location='cpu')
|
213 |
+
|
214 |
+
model.load_state_dict(checkpoint['model'], strict=False)
|
215 |
+
model.to(device)
|
216 |
+
model.eval()
|
217 |
+
#single_bert_model.load_state_dict(checkpoint['bert_model'])
|
218 |
+
#single_model.load_state_dict(checkpoint['model'])
|
219 |
+
#model = single_model.to(device)
|
220 |
+
#bert_model = single_bert_model.to(device)
|
221 |
+
|
222 |
+
|
223 |
+
# inference
|
224 |
+
#import torch.nn.functional as F
|
225 |
+
#last_hidden_states = bert_model(padded_sent_toks, attention_mask=attention_mask)[0]
|
226 |
+
#embedding = last_hidden_states.permute(0, 2, 1)
|
227 |
+
#output = model(img, embedding, l_mask=attention_mask.unsqueeze(-1))
|
228 |
+
#output = output.argmax(1, keepdim=True) # (1, 1, 480, 480)
|
229 |
+
#output = F.interpolate(output.float(), (original_h, original_w)) # 'nearest'; resize to the original image size
|
230 |
+
#output = output.squeeze() # (orig_h, orig_w)
|
231 |
+
#output = output.cpu().data.numpy() # (orig_h, orig_w)
|
232 |
+
|
233 |
+
output = model(img, padded_sent_toks, attention_mask)[0]
|
234 |
+
#print(output[0].keys())
|
235 |
+
#print(output[1].shape)
|
236 |
+
mask_cls_results = output["pred_logits"]
|
237 |
+
mask_pred_results = output["pred_masks"]
|
238 |
+
|
239 |
+
target_shape = img_ndarray.shape[:2]
|
240 |
+
#print(target_shape, mask_pred_results.shape)
|
241 |
+
mask_pred_results = F.interpolate(mask_pred_results, size=(480,480), mode='bilinear', align_corners=True)
|
242 |
+
|
243 |
+
pred_masks = model.semantic_inference(mask_cls_results, mask_pred_results)
|
244 |
+
#output = pred_masks[0]
|
245 |
+
|
246 |
+
#output = output.cpu()
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
#print(output.shape)
|
251 |
+
#output_mask = output.argmax(1).data.numpy()
|
252 |
+
#output = (output > 0.5).data.cpu().numpy()
|
253 |
+
output = torch.nn.functional.interpolate(pred_masks, target_shape)
|
254 |
+
output = (output > 0.5).data.cpu().numpy()
|
255 |
+
|
256 |
+
|
257 |
+
# show/save results
|
258 |
+
def overlay_davis(image, mask, colors=[[0, 0, 0], [255, 0, 0]], cscale=1, alpha=0.4):
|
259 |
+
from scipy.ndimage.morphology import binary_dilation
|
260 |
+
|
261 |
+
colors = np.reshape(colors, (-1, 3))
|
262 |
+
colors = np.atleast_2d(colors) * cscale
|
263 |
+
|
264 |
+
im_overlay = image.copy()
|
265 |
+
object_ids = np.unique(mask)
|
266 |
+
|
267 |
+
for object_id in object_ids[1:]:
|
268 |
+
# Overlay color on binary mask
|
269 |
+
foreground = image*alpha + np.ones(image.shape)*(1-alpha) * np.array(colors[object_id])
|
270 |
+
binary_mask = mask == object_id
|
271 |
+
|
272 |
+
# Compose image
|
273 |
+
im_overlay[binary_mask] = foreground[binary_mask]
|
274 |
+
|
275 |
+
# countours = skimage.morphology.binary.binary_dilation(binary_mask) - binary_mask
|
276 |
+
countours = binary_dilation(binary_mask) ^ binary_mask
|
277 |
+
# countours = cv2.dilate(binary_mask, cv2.getStructuringElement(cv2.MORPH_CROSS,(3,3))) - binary_mask
|
278 |
+
im_overlay[countours, :] = 0
|
279 |
+
|
280 |
+
return im_overlay.astype(image.dtype)
|
281 |
+
|
282 |
+
|
283 |
+
output = output.astype(np.uint8) # (orig_h, orig_w), np.uint8
|
284 |
+
# Overlay the mask on the image
|
285 |
+
print(img_ndarray.shape, output.shape)
|
286 |
+
visualization = overlay_davis(img_ndarray, output[0][0]) # red
|
287 |
+
visualization = Image.fromarray(visualization)
|
288 |
+
# show the visualization
|
289 |
+
#visualization.show()
|
290 |
+
# Save the visualization
|
291 |
+
visualization.save('./demo/spoon_on_the_dish.jpg')
|
292 |
+
|
293 |
+
|
294 |
+
|
295 |
+
|
elia/requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
requests
|
2 |
+
filelock
|
3 |
+
tqdm
|
4 |
+
timm
|
5 |
+
mmcv-full==1.3.12
|
6 |
+
mmsegmentation==0.17.0
|
7 |
+
ftfy
|
8 |
+
regex
|
9 |
+
scipy
|
10 |
+
scikit-image
|
11 |
+
pycocotools==2.0.2
|
12 |
+
opencv-python==4.5.3.56
|
13 |
+
tokenizers==0.8.1rc1
|
14 |
+
h5py
|
elia/test_elia.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import datetime
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.utils.data
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from bert.multimodal_bert import MultiModalBert
|
11 |
+
import torchvision
|
12 |
+
|
13 |
+
from lib import multimodal_segmentation_ppm
|
14 |
+
import transforms as T
|
15 |
+
import utils
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
from PIL import Image
|
19 |
+
import torch.nn.functional as F
|
20 |
+
|
21 |
+
from modeling.MaskFormerModel import MaskFormerHead
|
22 |
+
from addict import Dict
|
23 |
+
from bert.modeling_bert import BertLMPredictionHead, BertEncoder
|
24 |
+
|
25 |
+
def get_dataset(image_set, transform, args):
|
26 |
+
from data.dataset_refer_bert import ReferDataset
|
27 |
+
ds = ReferDataset(args,
|
28 |
+
split=image_set,
|
29 |
+
image_transforms=transform,
|
30 |
+
target_transforms=None,
|
31 |
+
eval_mode=True
|
32 |
+
)
|
33 |
+
num_classes = 2
|
34 |
+
return ds, num_classes
|
35 |
+
|
36 |
+
|
37 |
+
def evaluate(model, data_loader, device):
|
38 |
+
model.eval()
|
39 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
40 |
+
|
41 |
+
# evaluation variables
|
42 |
+
cum_I, cum_U = 0, 0
|
43 |
+
eval_seg_iou_list = [.5, .6, .7, .8, .9]
|
44 |
+
seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
|
45 |
+
seg_total = 0
|
46 |
+
mean_IoU = []
|
47 |
+
header = 'Test:'
|
48 |
+
|
49 |
+
with torch.no_grad():
|
50 |
+
for data in metric_logger.log_every(data_loader, 100, header):
|
51 |
+
image, target, sentences, attentions = data
|
52 |
+
image, target, sentences, attentions = image.to(device), target.to(device), \
|
53 |
+
sentences.to(device), attentions.to(device)
|
54 |
+
sentences = sentences.squeeze(1)
|
55 |
+
attentions = attentions.squeeze(1)
|
56 |
+
target = target.cpu().data.numpy()
|
57 |
+
for j in range(sentences.size(-1)):
|
58 |
+
#if bert_model is not None:
|
59 |
+
# last_hidden_states = bert_model(sentences[:, :, j], attention_mask=attentions[:, :, j])[0]
|
60 |
+
# embedding = last_hidden_states.permute(0, 2, 1)
|
61 |
+
# output = model(image, embedding, l_mask=attentions[:, :, j].unsqueeze(-1))
|
62 |
+
#else:
|
63 |
+
output = model(image, sentences[:, :, j], attentions[:, :, j])
|
64 |
+
mask_cls_results = output["pred_logits"]
|
65 |
+
mask_pred_results = output["pred_masks"]
|
66 |
+
|
67 |
+
target_shape = target.shape[-2:]
|
68 |
+
mask_pred_results = F.interpolate(mask_pred_results, size=target_shape, mode='bilinear', align_corners=True)
|
69 |
+
|
70 |
+
pred_masks = model.semantic_inference(mask_cls_results, mask_pred_results)
|
71 |
+
output = pred_masks[0]
|
72 |
+
|
73 |
+
output = output.cpu()
|
74 |
+
#print(output.shape)
|
75 |
+
#output_mask = output.argmax(1).data.numpy()
|
76 |
+
output_mask = (output > 0.5).data.numpy()
|
77 |
+
I, U = computeIoU(output_mask, target)
|
78 |
+
if U == 0:
|
79 |
+
this_iou = 0.0
|
80 |
+
else:
|
81 |
+
this_iou = I*1.0/U
|
82 |
+
mean_IoU.append(this_iou)
|
83 |
+
cum_I += I
|
84 |
+
cum_U += U
|
85 |
+
for n_eval_iou in range(len(eval_seg_iou_list)):
|
86 |
+
eval_seg_iou = eval_seg_iou_list[n_eval_iou]
|
87 |
+
seg_correct[n_eval_iou] += (this_iou >= eval_seg_iou)
|
88 |
+
seg_total += 1
|
89 |
+
|
90 |
+
#del image, target, sentences, attentions, output, output_mask
|
91 |
+
#if bert_model is not None:
|
92 |
+
# del last_hidden_states, embedding
|
93 |
+
|
94 |
+
mean_IoU = np.array(mean_IoU)
|
95 |
+
mIoU = np.mean(mean_IoU)
|
96 |
+
print('Final results:')
|
97 |
+
print('Mean IoU is %.2f\n' % (mIoU*100.))
|
98 |
+
results_str = ''
|
99 |
+
for n_eval_iou in range(len(eval_seg_iou_list)):
|
100 |
+
results_str += ' precision@%s = %.2f\n' % \
|
101 |
+
(str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
|
102 |
+
results_str += ' overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
|
103 |
+
print(results_str)
|
104 |
+
|
105 |
+
|
106 |
+
def get_transform(args):
|
107 |
+
transforms = [T.Resize(args.img_size, args.img_size),
|
108 |
+
T.ToTensor(),
|
109 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
110 |
+
]
|
111 |
+
|
112 |
+
return T.Compose(transforms)
|
113 |
+
|
114 |
+
|
115 |
+
def computeIoU(pred_seg, gd_seg):
|
116 |
+
I = np.sum(np.logical_and(pred_seg, gd_seg))
|
117 |
+
U = np.sum(np.logical_or(pred_seg, gd_seg))
|
118 |
+
|
119 |
+
return I, U
|
120 |
+
|
121 |
+
class WrapperModel(nn.Module):
|
122 |
+
def __init__(self, image_model, language_model, classifier, args) :
|
123 |
+
super(WrapperModel, self).__init__()
|
124 |
+
self.image_model = image_model
|
125 |
+
self.language_model = language_model
|
126 |
+
self.classifier = classifier
|
127 |
+
self.lang_proj = nn.Linear(768,256)
|
128 |
+
|
129 |
+
config = Dict({
|
130 |
+
"architectures": [
|
131 |
+
"BertForMaskedLM"
|
132 |
+
],
|
133 |
+
"attention_probs_dropout_prob": 0.1,
|
134 |
+
"gradient_checkpointing": False,
|
135 |
+
"hidden_act": "gelu",
|
136 |
+
"hidden_dropout_prob": 0.1,
|
137 |
+
"hidden_size": 512,
|
138 |
+
"initializer_range": 0.02,
|
139 |
+
"intermediate_size": 3072,
|
140 |
+
"layer_norm_eps": 1e-12,
|
141 |
+
#"max_position_embeddings": 16+20,
|
142 |
+
"model_type": "bert",
|
143 |
+
"num_attention_heads": 8,
|
144 |
+
"num_hidden_layers": 8,
|
145 |
+
"pad_token_id": 0,
|
146 |
+
"position_embedding_type": "absolute",
|
147 |
+
"transformers_version": "4.6.0.dev0",
|
148 |
+
"type_vocab_size": 2,
|
149 |
+
"use_cache": True,
|
150 |
+
"vocab_size": 30522
|
151 |
+
})
|
152 |
+
self.mlm_transformer = BertEncoder(config)
|
153 |
+
|
154 |
+
self.lang_proj = nn.Linear(768,256)
|
155 |
+
self.mlm_vis_proj = nn.Conv2d(1024,512,1)
|
156 |
+
self.mlm_lang_proj = nn.Linear(768,512)
|
157 |
+
#print(vis_proj)
|
158 |
+
self.mlm_head = BertLMPredictionHead(config)
|
159 |
+
|
160 |
+
assert args.img_size % 4 == 0
|
161 |
+
num_img_tokens = 20 + ((args.img_size // 4)//8) ** 2
|
162 |
+
print(num_img_tokens)
|
163 |
+
self.mlm_pos_embeds = nn.Embedding(num_img_tokens+1, 512)
|
164 |
+
self.mlm_modal_embeds = nn.Embedding(3, 512)
|
165 |
+
|
166 |
+
self.mlm_mask_embed = nn.Embedding(1, 512)
|
167 |
+
self.mlm_pos_mlp = nn.Sequential(
|
168 |
+
nn.Linear(2, 512),
|
169 |
+
nn.LayerNorm(512),
|
170 |
+
nn.Linear(512,512),
|
171 |
+
nn.GELU()
|
172 |
+
)
|
173 |
+
|
174 |
+
def _get_binary_mask(self, target):
|
175 |
+
# 返回每类的binary mask
|
176 |
+
y, x = target.size()
|
177 |
+
target_onehot = torch.zeros(self.num_classes + 1, y, x)
|
178 |
+
target_onehot = target_onehot.scatter(dim=0, index=target.unsqueeze(0), value=1)
|
179 |
+
return target_onehot[1:]
|
180 |
+
|
181 |
+
def semantic_inference(self, mask_cls, mask_pred):
|
182 |
+
mask_cls = F.softmax(mask_cls, dim=1)[...,1:]
|
183 |
+
mask_pred = mask_pred.sigmoid()
|
184 |
+
semseg = torch.einsum("bqc,bqhw->bchw", mask_cls, mask_pred)
|
185 |
+
return semseg
|
186 |
+
|
187 |
+
def forward(self, image, sentences, attentions):
|
188 |
+
input_shape = image.shape[-2:]
|
189 |
+
l_mask = attentions.unsqueeze(dim=-1)
|
190 |
+
|
191 |
+
i0, Wh, Ww = self.image_model.forward_stem(image)
|
192 |
+
l0, extended_attention_mask = self.language_model.forward_stem(sentences, attentions)
|
193 |
+
|
194 |
+
i1 = self.image_model.forward_stage1(i0, Wh, Ww)
|
195 |
+
l1 = self.language_model.forward_stage1(l0, extended_attention_mask)
|
196 |
+
i1_residual, H, W, i1_temp, Wh, Ww = self.image_model.forward_pwam1(i1, Wh, Ww, l1, l_mask)
|
197 |
+
l1_residual, l1 = self.language_model.forward_pwam1(i1, l1, extended_attention_mask)
|
198 |
+
i1 = i1_temp
|
199 |
+
|
200 |
+
i2 = self.image_model.forward_stage2(i1, Wh, Ww)
|
201 |
+
l2 = self.language_model.forward_stage2(l1, extended_attention_mask)
|
202 |
+
i2_residual, H, W, i2_temp, Wh, Ww = self.image_model.forward_pwam2(i2, Wh, Ww, l2, l_mask)
|
203 |
+
l2_residual, l2 = self.language_model.forward_pwam2(i2, l2, extended_attention_mask)
|
204 |
+
i2 = i2_temp
|
205 |
+
|
206 |
+
i3 = self.image_model.forward_stage3(i2, Wh, Ww)
|
207 |
+
l3 = self.language_model.forward_stage3(l2, extended_attention_mask)
|
208 |
+
i3_residual, H, W, i3_temp, Wh, Ww = self.image_model.forward_pwam3(i3, Wh, Ww, l3, l_mask)
|
209 |
+
l3_residual, l3 = self.language_model.forward_pwam3(i3, l3, extended_attention_mask)
|
210 |
+
i3 = i3_temp
|
211 |
+
|
212 |
+
i4 = self.image_model.forward_stage4(i3, Wh, Ww)
|
213 |
+
l4 = self.language_model.forward_stage4(l3, extended_attention_mask)
|
214 |
+
i4_residual, H, W, i4_temp, Wh, Ww = self.image_model.forward_pwam4(i4, Wh, Ww, l4, l_mask)
|
215 |
+
l4_residual, l4 = self.language_model.forward_pwam4(i4, l4, extended_attention_mask)
|
216 |
+
i4 = i4_temp
|
217 |
+
|
218 |
+
#i1_residual, i2_residual, i3_residual, i4_residual = features
|
219 |
+
#x = self.classifier(i4_residual, i3_residual, i2_residual, i1_residual)
|
220 |
+
#x = F.interpolate(x, size=input_shape, mode='bilinear', align_corners=True)
|
221 |
+
outputs = {}
|
222 |
+
outputs['s1'] = i1_residual
|
223 |
+
outputs['s2'] = i2_residual
|
224 |
+
outputs['s3'] = i3_residual
|
225 |
+
outputs['s4'] = i4_residual
|
226 |
+
|
227 |
+
predictions, _ = self.classifier(outputs)
|
228 |
+
return predictions
|
229 |
+
|
230 |
+
def main(args):
|
231 |
+
#def main(local_rank, args):
|
232 |
+
|
233 |
+
#device = torch.device(args.device)
|
234 |
+
device = 'cuda'
|
235 |
+
dataset_test, _ = get_dataset(args.split, get_transform(args=args), args)
|
236 |
+
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
|
237 |
+
data_loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=1,
|
238 |
+
sampler=test_sampler, num_workers=args.workers)
|
239 |
+
print(args.model)
|
240 |
+
single_model = multimodal_segmentation_ppm.__dict__[args.model](pretrained='',args=args)
|
241 |
+
#single_model = MultiModalFocal(depths=[2, 2, 18, 2], embed_dim=128, focal_levels=[3, 3, 3, 3], focal_windows=[9,9,9,9], drop_path_rate=0.3)
|
242 |
+
#single_model.init_weights('./focalnet_base_lrf.pth')
|
243 |
+
checkpoint = torch.load(args.resume, map_location='cpu')
|
244 |
+
#single_model.load_state_dict(checkpoint['model'])
|
245 |
+
#model = single_model.to(device)
|
246 |
+
|
247 |
+
if args.model != 'lavt_one':
|
248 |
+
model_class = MultiModalBert
|
249 |
+
#single_bert_model = model_class.from_pretrained(args.ck_bert, embed_dim=128)
|
250 |
+
single_bert_model = model_class.from_pretrained(args.ck_bert, embed_dim=single_model.backbone.embed_dim)
|
251 |
+
# work-around for a transformers bug; need to update to a newer version of transformers to remove these two lines
|
252 |
+
if args.ddp_trained_weights:
|
253 |
+
single_bert_model.pooler = None
|
254 |
+
#single_bert_model.load_state_dict(checkpoint['bert_model'])
|
255 |
+
#bert_model = single_bert_model.to(device)
|
256 |
+
else:
|
257 |
+
bert_model = None
|
258 |
+
|
259 |
+
#model = WrapperModel(single_model.backbone, single_bert_model, single_model.classifier)
|
260 |
+
#model.load_state_dict(checkpoint['model'])
|
261 |
+
#model.to(device)
|
262 |
+
input_shape = dict()
|
263 |
+
input_shape['s1'] = Dict({'channel': 128, 'stride': 4})
|
264 |
+
input_shape['s2'] = Dict({'channel': 256, 'stride': 8})
|
265 |
+
input_shape['s3'] = Dict({'channel': 512, 'stride': 16})
|
266 |
+
input_shape['s4'] = Dict({'channel': 1024, 'stride': 32})
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
cfg = Dict()
|
271 |
+
cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE = 4
|
272 |
+
cfg.MODEL.MASK_FORMER.DROPOUT = 0.0
|
273 |
+
cfg.MODEL.MASK_FORMER.NHEADS = 8
|
274 |
+
cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 4
|
275 |
+
cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM = 256
|
276 |
+
cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
|
277 |
+
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["s1", "s2", "s3", "s4"]
|
278 |
+
|
279 |
+
cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 1
|
280 |
+
cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256
|
281 |
+
cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = 1
|
282 |
+
cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = 2048
|
283 |
+
cfg.MODEL.MASK_FORMER.DEC_LAYERS = 10
|
284 |
+
cfg.MODEL.MASK_FORMER.PRE_NORM = False
|
285 |
+
|
286 |
+
|
287 |
+
maskformer_head = MaskFormerHead(cfg, input_shape)
|
288 |
+
#maskformer_head = torch.nn.SyncBatchNorm.convert_sync_batchnorm(maskformer_head)
|
289 |
+
#maskformer_head.cuda()
|
290 |
+
#maskformer_head = torch.nn.parallel.DistributedDataParallel(maskformer_head, device_ids=[args.local_rank], find_unused_parameters=False)
|
291 |
+
#single_head = maskformer_head.module
|
292 |
+
#print(single_head)
|
293 |
+
|
294 |
+
model = WrapperModel(single_model.backbone, single_bert_model, maskformer_head, args)
|
295 |
+
model.load_state_dict(checkpoint['model'])
|
296 |
+
model.to(device)
|
297 |
+
#model.cuda()
|
298 |
+
#model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=True)
|
299 |
+
#single_model = model.module
|
300 |
+
#model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=True)
|
301 |
+
#single_model = model.module
|
302 |
+
evaluate(model, data_loader_test, device=device)
|
303 |
+
|
304 |
+
|
305 |
+
if __name__ == "__main__":
|
306 |
+
from args import get_parser
|
307 |
+
parser = get_parser()
|
308 |
+
args = parser.parse_args()
|
309 |
+
print('Image size: {}'.format(str(args.img_size)))
|
310 |
+
print(args)
|
311 |
+
main(args)
|
312 |
+
#mp.spawn(main, args=(args,), nprocs=torch.cuda.device_count())
|
elia/test_lavt.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.utils.data
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
from bert.modeling_bert import BertModel
|
10 |
+
import torchvision
|
11 |
+
|
12 |
+
from lib import segmentation
|
13 |
+
import transforms as T
|
14 |
+
import utils
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
from PIL import Image
|
18 |
+
import torch.nn.functional as F
|
19 |
+
|
20 |
+
|
21 |
+
def get_dataset(image_set, transform, args):
|
22 |
+
from data.dataset_refer_bert import ReferDataset
|
23 |
+
ds = ReferDataset(args,
|
24 |
+
split=image_set,
|
25 |
+
image_transforms=transform,
|
26 |
+
target_transforms=None,
|
27 |
+
eval_mode=True
|
28 |
+
)
|
29 |
+
num_classes = 2
|
30 |
+
return ds, num_classes
|
31 |
+
|
32 |
+
|
33 |
+
def evaluate(model, data_loader, bert_model, device):
|
34 |
+
model.eval()
|
35 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
36 |
+
|
37 |
+
# evaluation variables
|
38 |
+
cum_I, cum_U = 0, 0
|
39 |
+
eval_seg_iou_list = [.5, .6, .7, .8, .9]
|
40 |
+
seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
|
41 |
+
seg_total = 0
|
42 |
+
mean_IoU = []
|
43 |
+
header = 'Test:'
|
44 |
+
|
45 |
+
with torch.no_grad():
|
46 |
+
for data in metric_logger.log_every(data_loader, 100, header):
|
47 |
+
image, target, sentences, attentions = data
|
48 |
+
image, target, sentences, attentions = image.to(device), target.to(device), \
|
49 |
+
sentences.to(device), attentions.to(device)
|
50 |
+
sentences = sentences.squeeze(1)
|
51 |
+
attentions = attentions.squeeze(1)
|
52 |
+
target = target.cpu().data.numpy()
|
53 |
+
for j in range(sentences.size(-1)):
|
54 |
+
if bert_model is not None:
|
55 |
+
last_hidden_states = bert_model(sentences[:, :, j], attention_mask=attentions[:, :, j])[0]
|
56 |
+
embedding = last_hidden_states.permute(0, 2, 1)
|
57 |
+
output = model(image, embedding, l_mask=attentions[:, :, j].unsqueeze(-1))
|
58 |
+
else:
|
59 |
+
output = model(image, sentences[:, :, j], l_mask=attentions[:, :, j])
|
60 |
+
|
61 |
+
output = output.cpu()
|
62 |
+
output_mask = output.argmax(1).data.numpy()
|
63 |
+
I, U = computeIoU(output_mask, target)
|
64 |
+
if U == 0:
|
65 |
+
this_iou = 0.0
|
66 |
+
else:
|
67 |
+
this_iou = I*1.0/U
|
68 |
+
mean_IoU.append(this_iou)
|
69 |
+
cum_I += I
|
70 |
+
cum_U += U
|
71 |
+
for n_eval_iou in range(len(eval_seg_iou_list)):
|
72 |
+
eval_seg_iou = eval_seg_iou_list[n_eval_iou]
|
73 |
+
seg_correct[n_eval_iou] += (this_iou >= eval_seg_iou)
|
74 |
+
seg_total += 1
|
75 |
+
|
76 |
+
del image, target, sentences, attentions, output, output_mask
|
77 |
+
if bert_model is not None:
|
78 |
+
del last_hidden_states, embedding
|
79 |
+
|
80 |
+
mean_IoU = np.array(mean_IoU)
|
81 |
+
mIoU = np.mean(mean_IoU)
|
82 |
+
print('Final results:')
|
83 |
+
print('Mean IoU is %.2f\n' % (mIoU*100.))
|
84 |
+
results_str = ''
|
85 |
+
for n_eval_iou in range(len(eval_seg_iou_list)):
|
86 |
+
results_str += ' precision@%s = %.2f\n' % \
|
87 |
+
(str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
|
88 |
+
results_str += ' overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
|
89 |
+
print(results_str)
|
90 |
+
|
91 |
+
|
92 |
+
def get_transform(args):
|
93 |
+
transforms = [T.Resize(args.img_size, args.img_size),
|
94 |
+
T.ToTensor(),
|
95 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
96 |
+
]
|
97 |
+
|
98 |
+
return T.Compose(transforms)
|
99 |
+
|
100 |
+
|
101 |
+
def computeIoU(pred_seg, gd_seg):
|
102 |
+
I = np.sum(np.logical_and(pred_seg, gd_seg))
|
103 |
+
U = np.sum(np.logical_or(pred_seg, gd_seg))
|
104 |
+
|
105 |
+
return I, U
|
106 |
+
|
107 |
+
|
108 |
+
def main(args):
|
109 |
+
device = torch.device(args.device)
|
110 |
+
dataset_test, _ = get_dataset(args.split, get_transform(args=args), args)
|
111 |
+
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
|
112 |
+
data_loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=1,
|
113 |
+
sampler=test_sampler, num_workers=args.workers)
|
114 |
+
print(args.model)
|
115 |
+
single_model = segmentation.__dict__[args.model](pretrained='',args=args)
|
116 |
+
checkpoint = torch.load(args.resume, map_location='cpu')
|
117 |
+
single_model.load_state_dict(checkpoint['model'])
|
118 |
+
model = single_model.to(device)
|
119 |
+
|
120 |
+
if args.model != 'lavt_one':
|
121 |
+
model_class = BertModel
|
122 |
+
single_bert_model = model_class.from_pretrained(args.ck_bert)
|
123 |
+
# work-around for a transformers bug; need to update to a newer version of transformers to remove these two lines
|
124 |
+
if args.ddp_trained_weights:
|
125 |
+
single_bert_model.pooler = None
|
126 |
+
single_bert_model.load_state_dict(checkpoint['bert_model'])
|
127 |
+
bert_model = single_bert_model.to(device)
|
128 |
+
else:
|
129 |
+
bert_model = None
|
130 |
+
|
131 |
+
evaluate(model, data_loader_test, bert_model, device=device)
|
132 |
+
|
133 |
+
|
134 |
+
if __name__ == "__main__":
|
135 |
+
from args import get_parser
|
136 |
+
parser = get_parser()
|
137 |
+
args = parser.parse_args()
|
138 |
+
print('Image size: {}'.format(str(args.img_size)))
|
139 |
+
main(args)
|
elia/train_elia.py
ADDED
@@ -0,0 +1,812 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.utils.data
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
from functools import reduce
|
10 |
+
import operator
|
11 |
+
from bert.multimodal_bert import MultiModalBert
|
12 |
+
|
13 |
+
import torchvision
|
14 |
+
from lib import multimodal_segmentation_ppm
|
15 |
+
|
16 |
+
import transforms as T
|
17 |
+
import utils
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
+
import torch.nn.functional as F
|
21 |
+
|
22 |
+
import gc
|
23 |
+
from collections import OrderedDict
|
24 |
+
|
25 |
+
import torch.backends.cudnn as cudnn
|
26 |
+
|
27 |
+
#from ffrecord.torch import DataLoader,Dataset
|
28 |
+
from modeling.MaskFormerModel import MaskFormerHead
|
29 |
+
from addict import Dict
|
30 |
+
|
31 |
+
from mask2former_utils.criterion import SetCriterion, Criterion
|
32 |
+
from mask2former_utils.matcher import HungarianMatcher
|
33 |
+
from bert.modeling_bert import BertLMPredictionHead, BertEncoder
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
class WrapperModel(nn.Module):
|
39 |
+
def __init__(self, image_model, language_model, classifier, args) :
|
40 |
+
super(WrapperModel, self).__init__()
|
41 |
+
self.image_model = image_model
|
42 |
+
self.language_model = language_model
|
43 |
+
self.classifier = classifier
|
44 |
+
|
45 |
+
self.lang_proj = nn.Linear(768,256)
|
46 |
+
|
47 |
+
config = Dict({
|
48 |
+
"architectures": [
|
49 |
+
"BertForMaskedLM"
|
50 |
+
],
|
51 |
+
"attention_probs_dropout_prob": 0.1,
|
52 |
+
"gradient_checkpointing": False,
|
53 |
+
"hidden_act": "gelu",
|
54 |
+
"hidden_dropout_prob": 0.1,
|
55 |
+
"hidden_size": 512,
|
56 |
+
"initializer_range": 0.02,
|
57 |
+
"intermediate_size": 3072,
|
58 |
+
"layer_norm_eps": 1e-12,
|
59 |
+
#"max_position_embeddings": 16+20,
|
60 |
+
"model_type": "bert",
|
61 |
+
"num_attention_heads": 8,
|
62 |
+
"num_hidden_layers": 8,
|
63 |
+
"pad_token_id": 0,
|
64 |
+
"position_embedding_type": "absolute",
|
65 |
+
"transformers_version": "4.6.0.dev0",
|
66 |
+
"type_vocab_size": 2,
|
67 |
+
"use_cache": True,
|
68 |
+
"vocab_size": 30522
|
69 |
+
})
|
70 |
+
self.mlm_transformer = BertEncoder(config)
|
71 |
+
|
72 |
+
self.lang_proj = nn.Linear(768,256)
|
73 |
+
self.mlm_vis_proj = nn.Conv2d(1024,512,1)
|
74 |
+
self.mlm_lang_proj = nn.Linear(768,512)
|
75 |
+
#print(vis_proj)
|
76 |
+
self.mlm_head = BertLMPredictionHead(config)
|
77 |
+
|
78 |
+
assert args.img_size % 4 == 0
|
79 |
+
num_img_tokens = 20 + ((args.img_size // 4)//8) ** 2
|
80 |
+
print(num_img_tokens)
|
81 |
+
self.mlm_pos_embeds = nn.Embedding(num_img_tokens+1, 512)
|
82 |
+
self.mlm_modal_embeds = nn.Embedding(3, 512)
|
83 |
+
|
84 |
+
self.mlm_mask_embed = nn.Embedding(1, 512)
|
85 |
+
self.mlm_pos_mlp = nn.Sequential(
|
86 |
+
nn.Linear(2, 512),
|
87 |
+
nn.LayerNorm(512),
|
88 |
+
nn.Linear(512,512),
|
89 |
+
nn.GELU()
|
90 |
+
)
|
91 |
+
|
92 |
+
def _get_binary_mask(self, target):
|
93 |
+
# 返回每类的binary mask
|
94 |
+
y, x = target.size()
|
95 |
+
target_onehot = torch.zeros(self.num_classes + 1, y, x)
|
96 |
+
target_onehot = target_onehot.scatter(dim=0, index=target.unsqueeze(0), value=1)
|
97 |
+
return target_onehot[1:]
|
98 |
+
|
99 |
+
def semantic_inference(self, mask_cls, mask_pred):
|
100 |
+
mask_cls = F.softmax(mask_cls, dim=1)[...,1:]
|
101 |
+
mask_pred = mask_pred.sigmoid()
|
102 |
+
semseg = torch.einsum("bqc,bqhw->bchw", mask_cls, mask_pred)
|
103 |
+
return semseg
|
104 |
+
|
105 |
+
def forward(self, image, sentences, attentions, mlm_targets, mlm_masks, position):
|
106 |
+
input_shape = image.shape[-2:]
|
107 |
+
l_mask = attentions.unsqueeze(dim=-1)
|
108 |
+
|
109 |
+
i0, Wh, Ww = self.image_model.forward_stem(image)
|
110 |
+
l0, extended_attention_mask = self.language_model.forward_stem(mlm_targets.squeeze(1), attentions)
|
111 |
+
|
112 |
+
i1 = self.image_model.forward_stage1(i0, Wh, Ww)
|
113 |
+
l1 = self.language_model.forward_stage1(l0, extended_attention_mask)
|
114 |
+
i1_residual, H, W, i1_temp, Wh, Ww = self.image_model.forward_pwam1(i1, Wh, Ww, l1, l_mask)
|
115 |
+
l1_residual, l1 = self.language_model.forward_pwam1(i1, l1, extended_attention_mask)
|
116 |
+
i1 = i1_temp
|
117 |
+
|
118 |
+
i2 = self.image_model.forward_stage2(i1, Wh, Ww)
|
119 |
+
l2 = self.language_model.forward_stage2(l1, extended_attention_mask)
|
120 |
+
i2_residual, H, W, i2_temp, Wh, Ww = self.image_model.forward_pwam2(i2, Wh, Ww, l2, l_mask)
|
121 |
+
l2_residual, l2 = self.language_model.forward_pwam2(i2, l2, extended_attention_mask)
|
122 |
+
i2 = i2_temp
|
123 |
+
|
124 |
+
i3 = self.image_model.forward_stage3(i2, Wh, Ww)
|
125 |
+
l3 = self.language_model.forward_stage3(l2, extended_attention_mask)
|
126 |
+
i3_residual, H, W, i3_temp, Wh, Ww = self.image_model.forward_pwam3(i3, Wh, Ww, l3, l_mask)
|
127 |
+
l3_residual, l3 = self.language_model.forward_pwam3(i3, l3, extended_attention_mask)
|
128 |
+
i3 = i3_temp
|
129 |
+
|
130 |
+
i4 = self.image_model.forward_stage4(i3, Wh, Ww)
|
131 |
+
l4 = self.language_model.forward_stage4(l3, extended_attention_mask)
|
132 |
+
i4_residual, H, W, i4_temp, Wh, Ww = self.image_model.forward_pwam4(i4, Wh, Ww, l4, l_mask)
|
133 |
+
l4_residual, l4 = self.language_model.forward_pwam4(i4, l4, extended_attention_mask)
|
134 |
+
i4 = i4_temp
|
135 |
+
|
136 |
+
#i1_residual, i2_residual, i3_residual, i4_residual = features
|
137 |
+
#x = self.classifier(i4_residual, i3_residual, i2_residual, i1_residual)
|
138 |
+
#x = F.interpolate(x, size=input_shape, mode='bilinear', align_corners=True)
|
139 |
+
outputs = {}
|
140 |
+
outputs['s1'] = i1_residual
|
141 |
+
outputs['s2'] = i2_residual
|
142 |
+
outputs['s3'] = i3_residual
|
143 |
+
outputs['s4'] = i4_residual
|
144 |
+
|
145 |
+
predictions, mask_features = self.classifier(outputs)
|
146 |
+
|
147 |
+
#print(target_reshape.shape)
|
148 |
+
#tmp = np.argwhere(target_reshape[:, 0].detach().cpu().numpy()).reshape(-1, target_reshape.shape[2]*target_reshape[3], 3)
|
149 |
+
#centroid = tmp.mean(1)
|
150 |
+
#print(centroid)
|
151 |
+
#centroid_x, centroid_y = int(centroid[1]), int(centroid[0])
|
152 |
+
#last_hidden_states = brt_model(sentences, attention_mask=attentions)[0] # (6, 10, 768)
|
153 |
+
#embedding = last_hidden_states.permute(0, 2, 1) # (B, 768, N_l) to make Conv1d happy
|
154 |
+
|
155 |
+
|
156 |
+
l0, extended_attention_mask = self.language_model.forward_stem(sentences, attentions)
|
157 |
+
l1 = self.language_model.forward_stage1(l0, extended_attention_mask)
|
158 |
+
l2 = self.language_model.forward_stage2(l1, extended_attention_mask)
|
159 |
+
l3 = self.language_model.forward_stage3(l2, extended_attention_mask)
|
160 |
+
l4 = self.language_model.forward_stage4(l3, extended_attention_mask)
|
161 |
+
|
162 |
+
|
163 |
+
mlp_embed = self.mlm_pos_mlp(position)
|
164 |
+
#print(centroid_x, centroid_y)
|
165 |
+
|
166 |
+
mlm_targets = torch.where(
|
167 |
+
mlm_masks > 0,
|
168 |
+
mlm_targets,
|
169 |
+
torch.ones_like(mlm_targets) * (-1)
|
170 |
+
)
|
171 |
+
|
172 |
+
#print(x_c4[target_reshape[:, [0]].bool()].shape)
|
173 |
+
vis_features = self.mlm_vis_proj(i4_residual).flatten(2).permute(0,2,1)
|
174 |
+
#print(l4.shape)
|
175 |
+
lang_features = self.mlm_lang_proj(l4)
|
176 |
+
|
177 |
+
#print(lang_features.shape, vis_features.shape, mlp_embed.shape)
|
178 |
+
mm_features = torch.cat([lang_features, vis_features, mlp_embed.unsqueeze(1)], dim=1)
|
179 |
+
#print(mm_features.shape)
|
180 |
+
|
181 |
+
#print(mlm_modal_embeds.weight.shape)
|
182 |
+
modal_embeds = torch.cat([self.mlm_modal_embeds.weight[0].unsqueeze(0).repeat(1, lang_features.shape[1], 1), self.mlm_modal_embeds.weight[1].unsqueeze(0).repeat(1, vis_features.shape[1], 1), self.mlm_modal_embeds.weight[2].unsqueeze(0).repeat(1,1,1)], dim=1)
|
183 |
+
#print(modal_embeds.shape)
|
184 |
+
|
185 |
+
#print(mlm_transformer)
|
186 |
+
|
187 |
+
|
188 |
+
#print(attentions.shape)
|
189 |
+
mixed_attention_mask = torch.cat([attentions.unsqueeze(-1), torch.ones(attentions.shape[0], vis_features.shape[1]+1, 1).to(attentions.device)], dim=1)
|
190 |
+
mixed_attention_mask = mixed_attention_mask.permute(0,2,1).unsqueeze(1)
|
191 |
+
mixed_attention_mask = (1-mixed_attention_mask)* -10000.0
|
192 |
+
head_mask = [None] * 8
|
193 |
+
#extended_attention_mask = get_extended_attention_mask(mixed_attention_mask, mm_features.shape, mm_features.device)
|
194 |
+
#print(mm_features.shape, mixed_attention_mask.shape, head_mask)
|
195 |
+
#print(mm_features.shape, self.mlm_pos_embeds.weight.shape, self.mlm_modal_embeds.weight.shape)
|
196 |
+
head_features = self.mlm_transformer(mm_features + self.mlm_pos_embeds.weight.unsqueeze(0) + modal_embeds, mixed_attention_mask, head_mask)[0]
|
197 |
+
#print(head_features.shape, attentions.shape)
|
198 |
+
head_features = head_features[:, :20][attentions.bool()]
|
199 |
+
|
200 |
+
#print(embedding.shape, mask_features.shape)
|
201 |
+
mlm_predictions = self.mlm_head(head_features)
|
202 |
+
mlm_predictions = mlm_predictions.reshape(-1, self.language_model.config.vocab_size)
|
203 |
+
mlm_targets = mlm_targets.squeeze(1)[attentions.bool()]
|
204 |
+
#mlm_loss = mlm_weight * nn.CrossEntropyLoss(ignore_index=-1)(mlm_predictions, mlm_targets)
|
205 |
+
#loss += mlm_loss
|
206 |
+
#mlm_loss_print=mlm_loss.item()
|
207 |
+
|
208 |
+
return predictions, mask_features, self.lang_proj((l4_residual * l_mask).sum(1)/l_mask.sum(1)), mlm_predictions, mlm_targets
|
209 |
+
# IoU calculation for validation
|
210 |
+
def IoU(pred, gt):
|
211 |
+
#pred = pred.argmax(1)
|
212 |
+
pred = (pred > 0.5)
|
213 |
+
|
214 |
+
intersection = torch.sum(torch.mul(pred, gt))
|
215 |
+
union = torch.sum(torch.add(pred, gt)) - intersection
|
216 |
+
|
217 |
+
if intersection == 0 or union == 0:
|
218 |
+
iou = 0
|
219 |
+
else:
|
220 |
+
iou = float(intersection) / float(union)
|
221 |
+
|
222 |
+
return iou, intersection, union
|
223 |
+
|
224 |
+
def get_dataset(image_set, transform, args):
|
225 |
+
from data.dataset_refer_bert_mlm import ReferDataset
|
226 |
+
ds = ReferDataset(args,
|
227 |
+
split=image_set,
|
228 |
+
image_transforms=transform,
|
229 |
+
target_transforms=None
|
230 |
+
)
|
231 |
+
num_classes = 2
|
232 |
+
|
233 |
+
return ds, num_classes
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
def get_transform(args):
|
238 |
+
transforms = [T.Resize(args.img_size, args.img_size),
|
239 |
+
T.ToTensor(),
|
240 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
241 |
+
]
|
242 |
+
|
243 |
+
return T.Compose(transforms)
|
244 |
+
|
245 |
+
|
246 |
+
#def criterion(input, target):
|
247 |
+
# weight = torch.FloatTensor([0.9, 1.1]).cuda()
|
248 |
+
# return nn.functional.cross_entropy(input, target, weight=weight)
|
249 |
+
|
250 |
+
|
251 |
+
def evaluate(model, data_loader):
|
252 |
+
model.eval()
|
253 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
254 |
+
header = 'Test:'
|
255 |
+
total_its = 0
|
256 |
+
acc_ious = 0
|
257 |
+
|
258 |
+
# evaluation variables
|
259 |
+
cum_I, cum_U = 0, 0
|
260 |
+
eval_seg_iou_list = [.5, .6, .7, .8, .9]
|
261 |
+
seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
|
262 |
+
seg_total = 0
|
263 |
+
mean_IoU = []
|
264 |
+
|
265 |
+
with torch.no_grad():
|
266 |
+
for data in metric_logger.log_every(data_loader, 100, header):
|
267 |
+
total_its += 1
|
268 |
+
#image, target, sentences, attentions = data
|
269 |
+
#image, target, sentences, attentions = image.cuda(non_blocking=True),\
|
270 |
+
# target.cuda(non_blocking=True),\
|
271 |
+
# sentences.cuda(non_blocking=True),\
|
272 |
+
# attentions.cuda(non_blocking=True)
|
273 |
+
|
274 |
+
image, target, sentences, attentions, mlm_targets, mlm_masks, position = data
|
275 |
+
image, target, sentences, attentions, mlm_targets, mlm_masks, position = image.cuda(non_blocking=True),\
|
276 |
+
target.cuda(non_blocking=True),\
|
277 |
+
sentences.cuda(non_blocking=True),\
|
278 |
+
attentions.cuda(non_blocking=True), \
|
279 |
+
mlm_targets.cuda(non_blocking=True), \
|
280 |
+
mlm_masks.cuda(non_blocking=True), \
|
281 |
+
position.cuda(non_blocking=True)
|
282 |
+
|
283 |
+
sentences = sentences.squeeze(1)
|
284 |
+
attentions = attentions.squeeze(1)
|
285 |
+
#print("sentences", sentences.shape)
|
286 |
+
#print("attentions", attentions.shape)
|
287 |
+
|
288 |
+
|
289 |
+
output, mask_features, avg_lang_feature, mlm_predictions, mlm_targets = model(image, sentences, attentions, mlm_targets, mlm_masks, position)
|
290 |
+
mask_cls_results = output["pred_logits"]
|
291 |
+
mask_pred_results = output["pred_masks"]
|
292 |
+
|
293 |
+
target_shape = target.shape[-2:]
|
294 |
+
mask_pred_results = F.interpolate(mask_pred_results, size=target_shape, mode='bilinear', align_corners=True)
|
295 |
+
|
296 |
+
pred_masks = model.module.semantic_inference(mask_cls_results, mask_pred_results)
|
297 |
+
output = pred_masks[0]
|
298 |
+
|
299 |
+
|
300 |
+
iou, I, U = IoU(output, target)
|
301 |
+
acc_ious += iou
|
302 |
+
mean_IoU.append(iou)
|
303 |
+
cum_I += I
|
304 |
+
cum_U += U
|
305 |
+
for n_eval_iou in range(len(eval_seg_iou_list)):
|
306 |
+
eval_seg_iou = eval_seg_iou_list[n_eval_iou]
|
307 |
+
seg_correct[n_eval_iou] += (iou >= eval_seg_iou)
|
308 |
+
seg_total += 1
|
309 |
+
iou = acc_ious / total_its
|
310 |
+
|
311 |
+
mean_IoU = np.array(mean_IoU)
|
312 |
+
mIoU = np.mean(mean_IoU)
|
313 |
+
print('Final results:')
|
314 |
+
print('Mean IoU is %.2f\n' % (mIoU * 100.))
|
315 |
+
results_str = ''
|
316 |
+
for n_eval_iou in range(len(eval_seg_iou_list)):
|
317 |
+
results_str += ' precision@%s = %.2f\n' % \
|
318 |
+
(str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
|
319 |
+
results_str += ' overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
|
320 |
+
print(results_str)
|
321 |
+
|
322 |
+
return 100 * iou, 100 * cum_I / cum_U
|
323 |
+
|
324 |
+
|
325 |
+
def train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, epoch, print_freq,
|
326 |
+
iterations, args):
|
327 |
+
model.train()
|
328 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
329 |
+
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
|
330 |
+
header = 'Epoch: [{}]'.format(epoch)
|
331 |
+
train_loss = 0
|
332 |
+
total_its = 0
|
333 |
+
|
334 |
+
for data in metric_logger.log_every(data_loader, print_freq, header):
|
335 |
+
total_its += 1
|
336 |
+
#image, target, sentences, attentions = data
|
337 |
+
#image, target, sentences, attentions = image.cuda(non_blocking=True),\
|
338 |
+
# target.cuda(non_blocking=True),\
|
339 |
+
# sentences.cuda(non_blocking=True),\
|
340 |
+
# attentions.cuda(non_blocking=True)
|
341 |
+
image, target, sentences, attentions, mlm_targets, mlm_masks, position = data
|
342 |
+
image, target, sentences, attentions, mlm_targets, mlm_masks, position = image.cuda(non_blocking=True),\
|
343 |
+
target.cuda(non_blocking=True),\
|
344 |
+
sentences.cuda(non_blocking=True),\
|
345 |
+
attentions.cuda(non_blocking=True), \
|
346 |
+
mlm_targets.cuda(non_blocking=True), \
|
347 |
+
mlm_masks.cuda(non_blocking=True), \
|
348 |
+
position.cuda(non_blocking=True)
|
349 |
+
|
350 |
+
sentences = sentences.squeeze(1)
|
351 |
+
attentions = attentions.squeeze(1)
|
352 |
+
#l_mask = attentions.unsqueeze(dim=-1)
|
353 |
+
|
354 |
+
output, mask_features, avg_lang_feature, mlm_predictions, mlm_targets = model(image, sentences, attentions, mlm_targets, mlm_masks, position)
|
355 |
+
#print(avg_lang_feature.shape)
|
356 |
+
avg_lang_feature = torch.nn.functional.normalize(avg_lang_feature, dim=1)
|
357 |
+
#print("----")
|
358 |
+
#print(output.shape)
|
359 |
+
#print(mask_features.shape)
|
360 |
+
#print(avg_lang_feature.shape)
|
361 |
+
#print( mlm_predictions.shape)
|
362 |
+
#print(mlm_targets.shape)
|
363 |
+
#print("----")
|
364 |
+
|
365 |
+
target_shape = target.shape[-2:]
|
366 |
+
output['pred_masks'] = F.interpolate(output['pred_masks'], size=target_shape, mode='bilinear', align_corners=True)
|
367 |
+
|
368 |
+
if "aux_outputs" in output:
|
369 |
+
for i, aux_outputs in enumerate(output["aux_outputs"]):
|
370 |
+
output['aux_outputs'][i]['pred_masks'] = F.interpolate(output['aux_outputs'][i]['pred_masks'], size=target_shape, mode='bilinear', align_corners=True)
|
371 |
+
|
372 |
+
# pixel region
|
373 |
+
B, C, H, W = mask_features.shape
|
374 |
+
|
375 |
+
target_reshape = F.interpolate(target.unsqueeze(1).float(), size=mask_features.shape[-2:], mode='nearest').long()
|
376 |
+
|
377 |
+
target_reshape = target_reshape.repeat(1, mask_features.shape[1], 1, 1)
|
378 |
+
#print(avg_pos_feature.shape, avg_lang_feature.shape, avg_neg_feature.shape)
|
379 |
+
|
380 |
+
#cl_loss = 0.0
|
381 |
+
plic_lang_loss = 0.0
|
382 |
+
plic_pos_loss = 0.0
|
383 |
+
plic_neg_loss = 0.0
|
384 |
+
for i in range(B):
|
385 |
+
if ((target_reshape[[i]] == 0).sum() != 0 and (target_reshape[[i]] == 1).sum() != 0):
|
386 |
+
|
387 |
+
avg_pos_feature = (mask_features[[i]] * target_reshape[[i]]).sum(-1).sum(-1) / target_reshape[[i]].sum(-1).sum(-1)
|
388 |
+
avg_neg_feature = (mask_features[[i]] * (1.0-target_reshape[[i]])).sum(-1).sum(-1) / (1.0-target_reshape[[i]]).sum(-1).sum(-1)
|
389 |
+
avg_pos_feature = torch.nn.functional.normalize(avg_pos_feature, dim=1)
|
390 |
+
avg_neg_feature = torch.nn.functional.normalize(avg_neg_feature, dim=1)
|
391 |
+
|
392 |
+
#avg lang feature no normalize???
|
393 |
+
|
394 |
+
|
395 |
+
|
396 |
+
pos_features = mask_features[[i]][target_reshape[[i]]==1].view(1, C, -1)
|
397 |
+
neg_features = mask_features[[i]][target_reshape[[i]]==0].view(1, C, -1)
|
398 |
+
#inter_neg_features = mask_features[[B-i-1]][target_reshape[[B-i-1]]==1].view(1, C, -1)
|
399 |
+
#neg_features = torch.cat([intra_neg_features, inter_neg_features], dim=2)
|
400 |
+
|
401 |
+
pos_features = torch.nn.functional.normalize(pos_features, dim=1)
|
402 |
+
neg_features = torch.nn.functional.normalize(neg_features, dim=1)
|
403 |
+
|
404 |
+
#print(avg_lang_feature.shape, avg_lang_feature[[i]].shape, pos_features.shape)
|
405 |
+
lang_pos_scores = torch.einsum("bq,bqn->bn", avg_lang_feature[[i]], pos_features)
|
406 |
+
lang_neg_scores = torch.einsum("bq,bqn->bn", avg_lang_feature[[i]], neg_features)
|
407 |
+
|
408 |
+
lang_matrix = torch.cat([lang_pos_scores.unsqueeze(-1), lang_neg_scores.unsqueeze(1).repeat(1, lang_pos_scores.shape[1], 1)], dim=2)
|
409 |
+
lang_labels = torch.zeros(lang_matrix.shape[1], dtype=torch.long).cuda()
|
410 |
+
lang_labels = lang_labels.unsqueeze(0).repeat(lang_matrix.shape[0], 1)
|
411 |
+
|
412 |
+
lang_score = torch.softmax(lang_matrix, -1)
|
413 |
+
lang_score = 1.0 - lang_score[:, :, 0]
|
414 |
+
|
415 |
+
pos_pos_scores = torch.einsum("bq,bqn->bn", avg_pos_feature, pos_features)
|
416 |
+
pos_neg_scores = torch.einsum("bqn,bqm->bnm", pos_features, neg_features)
|
417 |
+
|
418 |
+
pos_matrix = torch.cat([pos_pos_scores.unsqueeze(-1), pos_neg_scores], dim=2)
|
419 |
+
pos_labels = torch.zeros(pos_matrix.shape[1], dtype=torch.long).cuda()
|
420 |
+
pos_labels = pos_labels.unsqueeze(0).repeat(pos_matrix.shape[0], 1)
|
421 |
+
|
422 |
+
pos_score = torch.softmax(pos_matrix, -1)
|
423 |
+
pos_score = 1.0 - pos_score[:, :, 0]
|
424 |
+
#pos_weight = pos_weight.view(-1, pos_weight.shape[-1])
|
425 |
+
|
426 |
+
#intra_neg_features = torch.nn.functional.normalize(intra_neg_features, dim=1)
|
427 |
+
neg_neg_scores = torch.einsum("bq,bqn->bn", avg_neg_feature, neg_features)
|
428 |
+
neg_pos_scores = torch.einsum("bqn,bqm->bnm", neg_features, pos_features)
|
429 |
+
|
430 |
+
neg_matrix = torch.cat([neg_neg_scores.unsqueeze(-1), neg_pos_scores], dim=2)
|
431 |
+
neg_labels = torch.zeros(neg_matrix.shape[1], dtype=torch.long).cuda()
|
432 |
+
neg_labels = neg_labels.unsqueeze(0).repeat(neg_matrix.shape[0], 1)
|
433 |
+
|
434 |
+
neg_score = torch.softmax(neg_matrix, -1)
|
435 |
+
neg_score = 1.0 - neg_score[:, :, 0]
|
436 |
+
#neg_weight = neg_weight.view(-1, neg_weight.shape[-1])
|
437 |
+
|
438 |
+
pos_loss = (torch.pow(pos_score, args.plic_pos_alpha) * torch.nn.functional.cross_entropy(pos_matrix.view(-1, pos_matrix.shape[-1])/args.plic_pos_temp, pos_labels.view(-1), reduction='none')).mean()
|
439 |
+
neg_loss = (torch.pow(neg_score, args.plic_neg_alpha) * torch.nn.functional.cross_entropy(neg_matrix.view(-1, neg_matrix.shape[-1])/args.plic_neg_temp, neg_labels.view(-1), reduction='none')).mean()
|
440 |
+
|
441 |
+
lang_loss = (torch.pow(lang_score, args.plic_lang_alpha) * torch.nn.functional.cross_entropy(lang_matrix.view(-1, lang_matrix.shape[-1])/args.plic_lang_temp, lang_labels.view(-1), reduction='none')).mean()
|
442 |
+
|
443 |
+
plic_pos_loss += pos_loss
|
444 |
+
plic_neg_loss += neg_loss
|
445 |
+
plic_lang_loss += lang_loss
|
446 |
+
#cl_loss += 0.5 * (torch.nn.functional.cross_entropy(pos_matrix.view(-1, pos_matrix.shape[-1])/cl_temp, pos_labels.view(-1))+torch.nn.functional.cross_entropy(neg_matrix.view(-1, neg_matrix.shape[-1])/cl_temp, neg_labels.view(-1)))
|
447 |
+
plic_pos_loss = (args.plic_pos_weight * plic_pos_loss) / B
|
448 |
+
plic_neg_loss = (args.plic_neg_weight * plic_neg_loss) / B
|
449 |
+
plic_lang_loss = (args.plic_lang_weight * plic_lang_loss) / B
|
450 |
+
plic_loss = plic_pos_loss + plic_neg_loss +plic_lang_loss
|
451 |
+
|
452 |
+
|
453 |
+
#print(output.device, target.device)
|
454 |
+
losses = criterion(output, target)
|
455 |
+
weight_dict = criterion.weight_dict
|
456 |
+
|
457 |
+
loss_ce = 0.0
|
458 |
+
loss_dice = 0.0
|
459 |
+
loss_mask = 0.0
|
460 |
+
for k in list(losses.keys()):
|
461 |
+
if k in weight_dict:
|
462 |
+
losses[k] *= criterion.weight_dict[k]
|
463 |
+
if '_ce' in k:
|
464 |
+
loss_ce += losses[k]
|
465 |
+
elif '_dice' in k:
|
466 |
+
loss_dice += losses[k]
|
467 |
+
else:
|
468 |
+
loss_mask += losses[k]
|
469 |
+
else:
|
470 |
+
# remove this loss if not specified in `weight_dict`
|
471 |
+
losses.pop(k)
|
472 |
+
#loss = 0.3 * loss_ce + 0.3 * loss_dice + 0.4 * loss_mask
|
473 |
+
smlm_loss = args.smlm_weight * nn.CrossEntropyLoss(ignore_index=-1)(mlm_predictions, mlm_targets)
|
474 |
+
loss = loss_ce + loss_dice + loss_mask + plic_loss + smlm_loss
|
475 |
+
|
476 |
+
|
477 |
+
#loss = criterion(output.squeeze(1), target.float())
|
478 |
+
optimizer.zero_grad() # set_to_none=True is only available in pytorch 1.6+
|
479 |
+
loss.backward()
|
480 |
+
optimizer.step()
|
481 |
+
lr_scheduler.step()
|
482 |
+
|
483 |
+
torch.cuda.synchronize()
|
484 |
+
train_loss += loss.item()
|
485 |
+
iterations += 1
|
486 |
+
#metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
|
487 |
+
metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"], loss_ce=loss_ce.item(), loss_dice=loss_dice.item(), loss_mask=loss_mask.item(), plic_loss=plic_loss.item(), plic_lang_loss=plic_lang_loss.item(), plic_pos_loss=plic_pos_loss.item(), plic_neg_loss=plic_neg_loss.item(), smlm_loss=smlm_loss.item())
|
488 |
+
#metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"], loss_ce=loss_ce.item(), loss_dice=loss_dice.item(), loss_mask=loss_mask.item(), cl_loss=cl_loss.item(), cl_lang_loss=cl_lang_loss_print, cl_pos_loss=cl_pos_loss_print, cl_neg_loss=cl_neg_loss_print)
|
489 |
+
|
490 |
+
#del image, target, sentences, attentions, loss, output, data
|
491 |
+
#if bert_model is not None:
|
492 |
+
# del last_hidden_states, embedding
|
493 |
+
|
494 |
+
#gc.collect()
|
495 |
+
#torch.cuda.empty_cache()
|
496 |
+
#del loss
|
497 |
+
#del cl_loss
|
498 |
+
#del cl_lang_loss
|
499 |
+
#del loss_ce
|
500 |
+
#del loss_dice
|
501 |
+
#del loss_mask
|
502 |
+
torch.cuda.synchronize()
|
503 |
+
|
504 |
+
|
505 |
+
def main(args):
|
506 |
+
#def main(local_rank, args):
|
507 |
+
#ip = os.environ['MASTER_IP']
|
508 |
+
#port = os.environ['MASTER_PORT']
|
509 |
+
#hosts = int(os.environ['WORLD_SIZE']) # 机器个数 1
|
510 |
+
#rank = int(os.environ['RANK']) # 当前机器编号
|
511 |
+
#gpus = torch.cuda.device_count() # 每台机器的GPU个数
|
512 |
+
#print(local_rank, rank, gpus) #3 0 8
|
513 |
+
#dist.init_process_group(backend='nccl', init_method=f'tcp://{ip}:{port}', world_size=hosts*gpus, rank=rank*gpus+local_rank)
|
514 |
+
#torch.cuda.set_device(local_rank)
|
515 |
+
#dist.barrier()
|
516 |
+
|
517 |
+
##utils.init_distributed_mode(args)
|
518 |
+
#args.distributed=True
|
519 |
+
#args.gpu = local_rank
|
520 |
+
#print(args)
|
521 |
+
##misc.init_distributed_mode(args)
|
522 |
+
|
523 |
+
#print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
|
524 |
+
#print("{}".format(args).replace(', ', ',\n'))
|
525 |
+
|
526 |
+
#device = torch.device(args.device)
|
527 |
+
|
528 |
+
# fix the seed for reproducibility
|
529 |
+
seed = args.seed + utils.get_rank()
|
530 |
+
print('seed', seed)
|
531 |
+
torch.manual_seed(seed)
|
532 |
+
np.random.seed(seed)
|
533 |
+
|
534 |
+
#cudnn.benchmark = True
|
535 |
+
|
536 |
+
dataset, num_classes = get_dataset("train",
|
537 |
+
get_transform(args=args),
|
538 |
+
args=args)
|
539 |
+
dataset_test, _ = get_dataset("val",
|
540 |
+
get_transform(args=args),
|
541 |
+
args=args)
|
542 |
+
|
543 |
+
# batch sampler
|
544 |
+
print(f"local rank {args.local_rank} / global rank {utils.get_rank()} successfully built train dataset.")
|
545 |
+
num_tasks = utils.get_world_size()
|
546 |
+
global_rank = utils.get_rank()
|
547 |
+
#num_tasks = hosts*gpus
|
548 |
+
#global_rank = rank*gpus+local_rank
|
549 |
+
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank,
|
550 |
+
shuffle=True)
|
551 |
+
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
|
552 |
+
|
553 |
+
# data loader
|
554 |
+
data_loader = torch.utils.data.DataLoader(
|
555 |
+
dataset, batch_size=args.batch_size,
|
556 |
+
sampler=train_sampler, num_workers=args.workers, pin_memory=True, drop_last=True)
|
557 |
+
|
558 |
+
data_loader_test = torch.utils.data.DataLoader(
|
559 |
+
dataset_test, batch_size=1, sampler=test_sampler, pin_memory=True, num_workers=args.workers)
|
560 |
+
|
561 |
+
# model initialization
|
562 |
+
print(args.model)
|
563 |
+
model = multimodal_segmentation_ppm.__dict__[args.model](pretrained=args.pretrained_swin_weights,
|
564 |
+
args=args)
|
565 |
+
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
|
566 |
+
#model.cuda()
|
567 |
+
#model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], find_unused_parameters=True)
|
568 |
+
#model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=False)
|
569 |
+
#single_model = model.module
|
570 |
+
|
571 |
+
if args.model != 'lavt_one':
|
572 |
+
model_class = MultiModalBert
|
573 |
+
bert_model = model_class.from_pretrained(args.ck_bert, embed_dim=model.backbone.embed_dim)
|
574 |
+
bert_model.pooler = None # a work-around for a bug in Transformers = 3.0.2 that appears for DistributedDataParallel
|
575 |
+
#bert_model.cuda()
|
576 |
+
bert_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(bert_model)
|
577 |
+
#bert_model = torch.nn.parallel.DistributedDataParallel(bert_model, device_ids=[local_rank])
|
578 |
+
#single_bert_model = bert_model.module
|
579 |
+
else:
|
580 |
+
bert_model = None
|
581 |
+
single_bert_model = None
|
582 |
+
|
583 |
+
input_shape = dict()
|
584 |
+
input_shape['s1'] = Dict({'channel': 128, 'stride': 4})
|
585 |
+
input_shape['s2'] = Dict({'channel': 256, 'stride': 8})
|
586 |
+
input_shape['s3'] = Dict({'channel': 512, 'stride': 16})
|
587 |
+
input_shape['s4'] = Dict({'channel': 1024, 'stride': 32})
|
588 |
+
|
589 |
+
|
590 |
+
|
591 |
+
cfg = Dict()
|
592 |
+
cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE = 4
|
593 |
+
cfg.MODEL.MASK_FORMER.DROPOUT = 0.0
|
594 |
+
cfg.MODEL.MASK_FORMER.NHEADS = 8
|
595 |
+
cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = args.transformer_enc_layers
|
596 |
+
cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM = 256
|
597 |
+
cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
|
598 |
+
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["s1", "s2", "s3", "s4"]
|
599 |
+
|
600 |
+
cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 1
|
601 |
+
cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256
|
602 |
+
cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = args.num_object_queries
|
603 |
+
cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = args.dim_feedforward
|
604 |
+
cfg.MODEL.MASK_FORMER.DEC_LAYERS = args.dec_layers
|
605 |
+
cfg.MODEL.MASK_FORMER.PRE_NORM = False
|
606 |
+
|
607 |
+
cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION = True
|
608 |
+
cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT = args.no_object_weight
|
609 |
+
cfg.MODEL.MASK_FORMER.CLASS_WEIGHT = args.class_weight
|
610 |
+
cfg.MODEL.MASK_FORMER.DICE_WEIGHT = args.dice_weight
|
611 |
+
cfg.MODEL.MASK_FORMER.MASK_WEIGHT = args.mask_weight
|
612 |
+
|
613 |
+
cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS = args.train_num_points
|
614 |
+
cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO = 3.0
|
615 |
+
cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO = 0.75
|
616 |
+
print(cfg)
|
617 |
+
|
618 |
+
maskformer_head = MaskFormerHead(cfg, input_shape)
|
619 |
+
maskformer_head = torch.nn.SyncBatchNorm.convert_sync_batchnorm(maskformer_head)
|
620 |
+
#maskformer_head.cuda()
|
621 |
+
#maskformer_head = torch.nn.parallel.DistributedDataParallel(maskformer_head, device_ids=[args.local_rank], find_unused_parameters=False)
|
622 |
+
#single_head = maskformer_head.module
|
623 |
+
#print(single_head)
|
624 |
+
|
625 |
+
model = WrapperModel(model.backbone, bert_model, maskformer_head, args)
|
626 |
+
model.cuda()
|
627 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=True)
|
628 |
+
single_model = model.module
|
629 |
+
|
630 |
+
# mask2former loss
|
631 |
+
deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
|
632 |
+
no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT
|
633 |
+
|
634 |
+
# loss weights
|
635 |
+
class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT
|
636 |
+
dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT
|
637 |
+
mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT
|
638 |
+
# self.criterion = Criterion(self.num_classes)
|
639 |
+
|
640 |
+
# building criterion
|
641 |
+
|
642 |
+
matcher = HungarianMatcher(
|
643 |
+
cost_class=class_weight,
|
644 |
+
cost_mask=mask_weight,
|
645 |
+
cost_dice=dice_weight,
|
646 |
+
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
|
647 |
+
)
|
648 |
+
|
649 |
+
weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight}
|
650 |
+
if deep_supervision:
|
651 |
+
dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS
|
652 |
+
aux_weight_dict = {}
|
653 |
+
for i in range(dec_layers - 1):
|
654 |
+
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
|
655 |
+
weight_dict.update(aux_weight_dict)
|
656 |
+
|
657 |
+
losses = ["labels", "masks"]
|
658 |
+
criterion = SetCriterion(
|
659 |
+
cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
|
660 |
+
matcher=matcher,
|
661 |
+
weight_dict=weight_dict,
|
662 |
+
eos_coef=no_object_weight,
|
663 |
+
losses=losses,
|
664 |
+
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
|
665 |
+
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
|
666 |
+
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
|
667 |
+
device='cuda'
|
668 |
+
)
|
669 |
+
|
670 |
+
if args.resume == "auto":
|
671 |
+
last_ckpt = ""
|
672 |
+
for e in range(args.epochs):
|
673 |
+
ckpt_path = os.path.join(args.output_dir, f'checkpoint-{e}.pth')
|
674 |
+
if os.path.exists(ckpt_path):
|
675 |
+
last_ckpt = ckpt_path
|
676 |
+
args.resume = last_ckpt
|
677 |
+
|
678 |
+
# resume training
|
679 |
+
if args.resume:
|
680 |
+
checkpoint = torch.load(args.resume, map_location='cpu')
|
681 |
+
single_model.load_state_dict(checkpoint['model'])
|
682 |
+
#if args.model != 'lavt_one':
|
683 |
+
# single_bert_model.load_state_dict(checkpoint['bert_model'])
|
684 |
+
|
685 |
+
# parameters to optimize
|
686 |
+
backbone_no_decay = list()
|
687 |
+
backbone_decay = list()
|
688 |
+
for name, m in single_model.image_model.named_parameters():
|
689 |
+
if 'norm' in name or 'absolute_pos_embed' in name or 'relative_position_bias_table' in name:
|
690 |
+
backbone_no_decay.append(m)
|
691 |
+
else:
|
692 |
+
backbone_decay.append(m)
|
693 |
+
|
694 |
+
params_to_optimize = [
|
695 |
+
{'params': backbone_no_decay, 'weight_decay': 0.0},
|
696 |
+
{'params': backbone_decay},
|
697 |
+
{"params": [p for p in single_model.classifier.parameters() if p.requires_grad]},
|
698 |
+
# the following are the parameters of bert
|
699 |
+
{"params": reduce(operator.concat,
|
700 |
+
[[p for p in single_model.language_model.encoder.layer[i].parameters()
|
701 |
+
if p.requires_grad] for i in range(10)])},
|
702 |
+
{"params": single_model.language_model.pwams.parameters()},
|
703 |
+
{"params": single_model.language_model.res_gates.parameters()},
|
704 |
+
{"params": single_model.language_model.norms.parameters()},
|
705 |
+
{"params": single_model.lang_proj.parameters()},
|
706 |
+
#{"params": single_model.language_model.parameters()},
|
707 |
+
{'params': single_model.mlm_head.parameters()},
|
708 |
+
{'params': single_model.mlm_vis_proj.parameters()},
|
709 |
+
{'params': single_model.mlm_lang_proj.parameters()},
|
710 |
+
{'params': single_model.mlm_transformer.parameters()},
|
711 |
+
{'params': single_model.mlm_pos_embeds.parameters()},
|
712 |
+
{'params': single_model.mlm_modal_embeds.parameters()},
|
713 |
+
{'params': single_model.mlm_mask_embed.parameters()},
|
714 |
+
{'params': single_model.mlm_pos_mlp.parameters()},
|
715 |
+
#{'params': mlm_head.parameters(), 'weight_decay': 0.0},
|
716 |
+
#{'params': mlm_vis_proj.parameters(), 'weight_decay': 0.0},
|
717 |
+
#{'params': mlm_lang_proj.parameters(), 'weight_decay': 0.0},
|
718 |
+
#{'params': mlm_transformer.parameters(), 'weight_decay': 0.0},
|
719 |
+
#{'params': mlm_pos_embeds.parameters(), 'weight_decay': 0.0},
|
720 |
+
#{'params': mlm_modal_embeds.parameters(), 'weight_decay': 0.0},
|
721 |
+
#{'params': mlm_mask_embed.parameters(), 'weight_decay': 0.0},
|
722 |
+
#{'params': mlm_pos_mlp.parameters(), 'weight_decay': 0.0},
|
723 |
+
]
|
724 |
+
|
725 |
+
|
726 |
+
# optimizer
|
727 |
+
optimizer = torch.optim.AdamW(params_to_optimize,
|
728 |
+
lr=args.lr,
|
729 |
+
weight_decay=args.weight_decay,
|
730 |
+
amsgrad=args.amsgrad
|
731 |
+
)
|
732 |
+
|
733 |
+
# learning rate scheduler
|
734 |
+
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
|
735 |
+
lambda x: (1 - x / (len(data_loader) * args.epochs)) ** 0.9)
|
736 |
+
|
737 |
+
# housekeeping
|
738 |
+
start_time = time.time()
|
739 |
+
iterations = 0
|
740 |
+
best_oIoU = -0.1
|
741 |
+
|
742 |
+
# resume training (optimizer, lr scheduler, and the epoch)
|
743 |
+
if args.resume:
|
744 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
745 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
746 |
+
resume_epoch = checkpoint['epoch']
|
747 |
+
else:
|
748 |
+
resume_epoch = -999
|
749 |
+
|
750 |
+
# training loops
|
751 |
+
for epoch in range(max(0, resume_epoch+1), args.epochs):
|
752 |
+
data_loader.sampler.set_epoch(epoch)
|
753 |
+
train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, epoch, args.print_freq,
|
754 |
+
iterations, args)
|
755 |
+
iou, overallIoU = evaluate(model, data_loader_test)
|
756 |
+
|
757 |
+
print('Average object IoU {}'.format(iou))
|
758 |
+
print('Overall IoU {}'.format(overallIoU))
|
759 |
+
|
760 |
+
|
761 |
+
dict_to_save = {'model': single_model.state_dict(),
|
762 |
+
'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
|
763 |
+
'lr_scheduler': lr_scheduler.state_dict()}
|
764 |
+
|
765 |
+
checkpoint_path = os.path.join(args.output_dir, 'checkpoint-{}.pth'.format(epoch))
|
766 |
+
utils.save_on_master(dict_to_save, str(checkpoint_path) + '_TEMP')
|
767 |
+
if utils.is_main_process():
|
768 |
+
os.rename(str(checkpoint_path) + '_TEMP', str(checkpoint_path))
|
769 |
+
|
770 |
+
if utils.is_main_process():
|
771 |
+
ckpt_paths = []
|
772 |
+
for e in range(args.epochs):
|
773 |
+
ckpt_path = os.path.join(args.output_dir, f'checkpoint-{e}.pth')
|
774 |
+
print(ckpt_path)
|
775 |
+
if os.path.exists(ckpt_path):
|
776 |
+
ckpt_paths.append(ckpt_path)
|
777 |
+
print(ckpt_paths)
|
778 |
+
for ckpt_path in ckpt_paths[:-args.max_ckpt]:
|
779 |
+
os.remove(ckpt_path)
|
780 |
+
print("remove {:s}".format(ckpt_path))
|
781 |
+
|
782 |
+
|
783 |
+
save_checkpoint = (best_oIoU < overallIoU)
|
784 |
+
if save_checkpoint:
|
785 |
+
print('Better epoch: {}\n'.format(epoch))
|
786 |
+
dict_to_save = {'model': single_model.state_dict(),
|
787 |
+
'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
|
788 |
+
'lr_scheduler': lr_scheduler.state_dict()}
|
789 |
+
|
790 |
+
checkpoint_path = os.path.join(args.output_dir, 'model_best_{}.pth'.format(args.model_id))
|
791 |
+
utils.save_on_master(dict_to_save, checkpoint_path + '_TEMP')
|
792 |
+
if utils.is_main_process():
|
793 |
+
os.rename(str(checkpoint_path) + '_TEMP', str(checkpoint_path))
|
794 |
+
best_oIoU = overallIoU
|
795 |
+
torch.cuda.empty_cache()
|
796 |
+
|
797 |
+
# summarize
|
798 |
+
total_time = time.time() - start_time
|
799 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
800 |
+
print('Training time {}'.format(total_time_str))
|
801 |
+
|
802 |
+
|
803 |
+
if __name__ == "__main__":
|
804 |
+
from args import get_parser
|
805 |
+
parser = get_parser()
|
806 |
+
args = parser.parse_args()
|
807 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
808 |
+
# set up distributed learning
|
809 |
+
utils.init_distributed_mode(args)
|
810 |
+
print('Image size: {}'.format(str(args.img_size)))
|
811 |
+
main(args)
|
812 |
+
#mp.spawn(main, args=(args,), nprocs=torch.cuda.device_count())
|
elia/train_lavt.py
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import haienv
|
2 |
+
haienv.set_env('lavt2')
|
3 |
+
import torch.multiprocessing as mp
|
4 |
+
import torch.distributed as dist
|
5 |
+
|
6 |
+
import datetime
|
7 |
+
import os
|
8 |
+
import time
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.utils.data
|
12 |
+
from torch import nn
|
13 |
+
|
14 |
+
from functools import reduce
|
15 |
+
import operator
|
16 |
+
from bert.modeling_bert import BertModel
|
17 |
+
|
18 |
+
import torchvision
|
19 |
+
from lib import segmentation
|
20 |
+
|
21 |
+
import transforms as T
|
22 |
+
import utils
|
23 |
+
import numpy as np
|
24 |
+
|
25 |
+
import torch.nn.functional as F
|
26 |
+
|
27 |
+
import gc
|
28 |
+
from collections import OrderedDict
|
29 |
+
|
30 |
+
import torch.backends.cudnn as cudnn
|
31 |
+
|
32 |
+
from ffrecord.torch import DataLoader,Dataset
|
33 |
+
def get_dataset(image_set, transform, args):
|
34 |
+
from data.dataset_refer_bert import ReferDataset
|
35 |
+
ds = ReferDataset(args,
|
36 |
+
split=image_set,
|
37 |
+
image_transforms=transform,
|
38 |
+
target_transforms=None
|
39 |
+
)
|
40 |
+
num_classes = 2
|
41 |
+
|
42 |
+
return ds, num_classes
|
43 |
+
|
44 |
+
|
45 |
+
# IoU calculation for validation
|
46 |
+
def IoU(pred, gt):
|
47 |
+
pred = pred.argmax(1)
|
48 |
+
|
49 |
+
intersection = torch.sum(torch.mul(pred, gt))
|
50 |
+
union = torch.sum(torch.add(pred, gt)) - intersection
|
51 |
+
|
52 |
+
if intersection == 0 or union == 0:
|
53 |
+
iou = 0
|
54 |
+
else:
|
55 |
+
iou = float(intersection) / float(union)
|
56 |
+
|
57 |
+
return iou, intersection, union
|
58 |
+
|
59 |
+
|
60 |
+
def get_transform(args):
|
61 |
+
transforms = [T.Resize(args.img_size, args.img_size),
|
62 |
+
T.ToTensor(),
|
63 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
64 |
+
]
|
65 |
+
|
66 |
+
return T.Compose(transforms)
|
67 |
+
|
68 |
+
|
69 |
+
def criterion(input, target):
|
70 |
+
weight = torch.FloatTensor([0.9, 1.1]).cuda()
|
71 |
+
return nn.functional.cross_entropy(input, target, weight=weight)
|
72 |
+
|
73 |
+
|
74 |
+
def evaluate(model, data_loader, bert_model):
|
75 |
+
model.eval()
|
76 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
77 |
+
header = 'Test:'
|
78 |
+
total_its = 0
|
79 |
+
acc_ious = 0
|
80 |
+
|
81 |
+
# evaluation variables
|
82 |
+
cum_I, cum_U = 0, 0
|
83 |
+
eval_seg_iou_list = [.5, .6, .7, .8, .9]
|
84 |
+
seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
|
85 |
+
seg_total = 0
|
86 |
+
mean_IoU = []
|
87 |
+
|
88 |
+
with torch.no_grad():
|
89 |
+
for data in metric_logger.log_every(data_loader, 100, header):
|
90 |
+
total_its += 1
|
91 |
+
image, target, sentences, attentions = data
|
92 |
+
image, target, sentences, attentions = image.cuda(non_blocking=True),\
|
93 |
+
target.cuda(non_blocking=True),\
|
94 |
+
sentences.cuda(non_blocking=True),\
|
95 |
+
attentions.cuda(non_blocking=True)
|
96 |
+
|
97 |
+
sentences = sentences.squeeze(1)
|
98 |
+
attentions = attentions.squeeze(1)
|
99 |
+
#print("sentences", sentences.shape)
|
100 |
+
#print("attentions", attentions.shape)
|
101 |
+
|
102 |
+
if bert_model is not None:
|
103 |
+
last_hidden_states = bert_model(sentences, attention_mask=attentions)[0]
|
104 |
+
#print("last hidden states", last_hidden_states.shape)
|
105 |
+
embedding = last_hidden_states.permute(0, 2, 1) # (B, 768, N_l) to make Conv1d happy
|
106 |
+
attentions = attentions.unsqueeze(dim=-1) # (B, N_l, 1)
|
107 |
+
output = model(image, embedding, l_mask=attentions)
|
108 |
+
else:
|
109 |
+
output = model(image, sentences, l_mask=attentions)
|
110 |
+
|
111 |
+
iou, I, U = IoU(output, target)
|
112 |
+
acc_ious += iou
|
113 |
+
mean_IoU.append(iou)
|
114 |
+
cum_I += I
|
115 |
+
cum_U += U
|
116 |
+
for n_eval_iou in range(len(eval_seg_iou_list)):
|
117 |
+
eval_seg_iou = eval_seg_iou_list[n_eval_iou]
|
118 |
+
seg_correct[n_eval_iou] += (iou >= eval_seg_iou)
|
119 |
+
seg_total += 1
|
120 |
+
iou = acc_ious / total_its
|
121 |
+
|
122 |
+
mean_IoU = np.array(mean_IoU)
|
123 |
+
mIoU = np.mean(mean_IoU)
|
124 |
+
print('Final results:')
|
125 |
+
print('Mean IoU is %.2f\n' % (mIoU * 100.))
|
126 |
+
results_str = ''
|
127 |
+
for n_eval_iou in range(len(eval_seg_iou_list)):
|
128 |
+
results_str += ' precision@%s = %.2f\n' % \
|
129 |
+
(str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
|
130 |
+
results_str += ' overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
|
131 |
+
print(results_str)
|
132 |
+
|
133 |
+
return 100 * iou, 100 * cum_I / cum_U
|
134 |
+
|
135 |
+
|
136 |
+
def train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, epoch, print_freq,
|
137 |
+
iterations, bert_model):
|
138 |
+
model.train()
|
139 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
140 |
+
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
|
141 |
+
header = 'Epoch: [{}]'.format(epoch)
|
142 |
+
train_loss = 0
|
143 |
+
total_its = 0
|
144 |
+
|
145 |
+
for data in metric_logger.log_every(data_loader, print_freq, header):
|
146 |
+
total_its += 1
|
147 |
+
image, target, sentences, attentions = data
|
148 |
+
image, target, sentences, attentions = image.cuda(non_blocking=True),\
|
149 |
+
target.cuda(non_blocking=True),\
|
150 |
+
sentences.cuda(non_blocking=True),\
|
151 |
+
attentions.cuda(non_blocking=True)
|
152 |
+
|
153 |
+
sentences = sentences.squeeze(1)
|
154 |
+
attentions = attentions.squeeze(1)
|
155 |
+
#print(sentences.shape, attentions.shape, target.shape)
|
156 |
+
#print(sentences)
|
157 |
+
#print('a', sentences.shape)
|
158 |
+
#print('b', attentions.shape)
|
159 |
+
|
160 |
+
if bert_model is not None:
|
161 |
+
last_hidden_states = bert_model(sentences, attention_mask=attentions)[0] # (6, 10, 768)
|
162 |
+
#print('c', last_hidden_states.shape)
|
163 |
+
|
164 |
+
embedding = last_hidden_states.permute(0, 2, 1) # (B, 768, N_l) to make Conv1d happy
|
165 |
+
#print('e', embedding.shape)
|
166 |
+
attentions = attentions.unsqueeze(dim=-1) # (batch, N_l, 1)
|
167 |
+
#print('f', attentions.shape)
|
168 |
+
output = model(image, embedding, l_mask=attentions)
|
169 |
+
else:
|
170 |
+
output = model(image, sentences, l_mask=attentions)
|
171 |
+
|
172 |
+
loss = criterion(output, target)
|
173 |
+
optimizer.zero_grad() # set_to_none=True is only available in pytorch 1.6+
|
174 |
+
loss.backward()
|
175 |
+
optimizer.step()
|
176 |
+
lr_scheduler.step()
|
177 |
+
|
178 |
+
torch.cuda.synchronize()
|
179 |
+
train_loss += loss.item()
|
180 |
+
iterations += 1
|
181 |
+
metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
|
182 |
+
|
183 |
+
del image, target, sentences, attentions, loss, output, data
|
184 |
+
if bert_model is not None:
|
185 |
+
del last_hidden_states, embedding
|
186 |
+
|
187 |
+
#gc.collect()
|
188 |
+
#torch.cuda.empty_cache()
|
189 |
+
torch.cuda.synchronize()
|
190 |
+
|
191 |
+
|
192 |
+
#def main(args):
|
193 |
+
def main(local_rank, args):
|
194 |
+
ip = os.environ['MASTER_IP']
|
195 |
+
port = os.environ['MASTER_PORT']
|
196 |
+
hosts = int(os.environ['WORLD_SIZE']) # 机器个数 1
|
197 |
+
rank = int(os.environ['RANK']) # 当前机器编号
|
198 |
+
gpus = torch.cuda.device_count() # 每台机器的GPU个数
|
199 |
+
print(local_rank, rank, gpus) #3 0 8
|
200 |
+
dist.init_process_group(backend='nccl', init_method=f'tcp://{ip}:{port}', world_size=hosts*gpus, rank=rank*gpus+local_rank)
|
201 |
+
torch.cuda.set_device(local_rank)
|
202 |
+
dist.barrier()
|
203 |
+
|
204 |
+
#utils.init_distributed_mode(args)
|
205 |
+
args.distributed=True
|
206 |
+
args.gpu = local_rank
|
207 |
+
print(args)
|
208 |
+
#misc.init_distributed_mode(args)
|
209 |
+
|
210 |
+
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
|
211 |
+
print("{}".format(args).replace(', ', ',\n'))
|
212 |
+
|
213 |
+
device = torch.device(args.device)
|
214 |
+
|
215 |
+
# fix the seed for reproducibility
|
216 |
+
seed = args.seed + utils.get_rank()
|
217 |
+
torch.manual_seed(seed)
|
218 |
+
np.random.seed(seed)
|
219 |
+
|
220 |
+
#cudnn.benchmark = True
|
221 |
+
|
222 |
+
dataset, num_classes = get_dataset("train",
|
223 |
+
get_transform(args=args),
|
224 |
+
args=args)
|
225 |
+
dataset_test, _ = get_dataset("val",
|
226 |
+
get_transform(args=args),
|
227 |
+
args=args)
|
228 |
+
|
229 |
+
# batch sampler
|
230 |
+
print(f"local rank {args.local_rank} / global rank {utils.get_rank()} successfully built train dataset.")
|
231 |
+
#num_tasks = utils.get_world_size()
|
232 |
+
#global_rank = utils.get_rank()
|
233 |
+
num_tasks = hosts*gpus
|
234 |
+
global_rank = rank*gpus+local_rank
|
235 |
+
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank,
|
236 |
+
shuffle=True)
|
237 |
+
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
|
238 |
+
|
239 |
+
# data loader
|
240 |
+
data_loader = DataLoader(
|
241 |
+
dataset, batch_size=args.batch_size,
|
242 |
+
sampler=train_sampler, num_workers=args.workers, pin_memory=True, drop_last=True)
|
243 |
+
|
244 |
+
data_loader_test = DataLoader(
|
245 |
+
dataset_test, batch_size=1, sampler=test_sampler, pin_memory=True, num_workers=args.workers)
|
246 |
+
|
247 |
+
# model initialization
|
248 |
+
print(args.model)
|
249 |
+
model = segmentation.__dict__[args.model](pretrained=args.pretrained_swin_weights,
|
250 |
+
args=args)
|
251 |
+
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
|
252 |
+
model.cuda()
|
253 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=True)
|
254 |
+
#model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=False)
|
255 |
+
single_model = model.module
|
256 |
+
|
257 |
+
if args.model != 'lavt_one':
|
258 |
+
model_class = BertModel
|
259 |
+
bert_model = model_class.from_pretrained(args.ck_bert)
|
260 |
+
bert_model.pooler = None # a work-around for a bug in Transformers = 3.0.2 that appears for DistributedDataParallel
|
261 |
+
bert_model.cuda()
|
262 |
+
bert_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(bert_model)
|
263 |
+
bert_model = torch.nn.parallel.DistributedDataParallel(bert_model, device_ids=[args.local_rank])
|
264 |
+
single_bert_model = bert_model.module
|
265 |
+
else:
|
266 |
+
bert_model = None
|
267 |
+
single_bert_model = None
|
268 |
+
|
269 |
+
input_shape = dict()
|
270 |
+
input_shape['s1'] = Dict({'channel': 128, 'stride': 4})
|
271 |
+
input_shape['s2'] = Dict({'channel': 256, 'stride': 8})
|
272 |
+
input_shape['s3'] = Dict({'channel': 512, 'stride': 16})
|
273 |
+
input_shape['s4'] = Dict({'channel': 1024, 'stride': 32})
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
cfg = Dict()
|
278 |
+
cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE = 4
|
279 |
+
cfg.MODEL.MASK_FORMER.DROPOUT = 0.0
|
280 |
+
cfg.MODEL.MASK_FORMER.NHEADS = 8
|
281 |
+
cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 4
|
282 |
+
cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM = 256
|
283 |
+
cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
|
284 |
+
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["s1", "s2", "s3", "s4"]
|
285 |
+
|
286 |
+
cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 1
|
287 |
+
cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256
|
288 |
+
cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = 1
|
289 |
+
cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = 2048
|
290 |
+
cfg.MODEL.MASK_FORMER.DEC_LAYERS = 10
|
291 |
+
cfg.MODEL.MASK_FORMER.PRE_NORM = False
|
292 |
+
|
293 |
+
|
294 |
+
maskformer_head = MaskFormerHead(cfg, input_shape)
|
295 |
+
maskformer_head = torch.nn.SyncBatchNorm.convert_sync_batchnorm(maskformer_head)
|
296 |
+
maskformer_head.cuda()
|
297 |
+
maskformer_head = torch.nn.parallel.DistributedDataParallel(maskformer_head, device_ids=[args.local_rank], find_unused_parameters=False)
|
298 |
+
single_head = maskformer_head.module
|
299 |
+
print(single_head)
|
300 |
+
|
301 |
+
|
302 |
+
if args.resume == "auto":
|
303 |
+
last_ckpt = ""
|
304 |
+
for e in range(args.epochs):
|
305 |
+
ckpt_path = os.path.join(args.output_dir, f'checkpoint-{e}.pth')
|
306 |
+
if os.path.exists(ckpt_path):
|
307 |
+
last_ckpt = ckpt_path
|
308 |
+
args.resume = last_ckpt
|
309 |
+
|
310 |
+
# resume training
|
311 |
+
if args.resume:
|
312 |
+
checkpoint = torch.load(args.resume, map_location='cpu')
|
313 |
+
single_model.load_state_dict(checkpoint['model'])
|
314 |
+
single_head.load_state_dict(checkpoint['head_model'])
|
315 |
+
if args.model != 'lavt_one':
|
316 |
+
single_bert_model.load_state_dict(checkpoint['bert_model'])
|
317 |
+
|
318 |
+
# parameters to optimize
|
319 |
+
backbone_no_decay = list()
|
320 |
+
backbone_decay = list()
|
321 |
+
for name, m in single_model.backbone.named_parameters():
|
322 |
+
if 'norm' in name or 'absolute_pos_embed' in name or 'relative_position_bias_table' in name:
|
323 |
+
backbone_no_decay.append(m)
|
324 |
+
else:
|
325 |
+
backbone_decay.append(m)
|
326 |
+
|
327 |
+
if args.model != 'lavt_one':
|
328 |
+
params_to_optimize = [
|
329 |
+
{'params': backbone_no_decay, 'weight_decay': 0.0},
|
330 |
+
{'params': backbone_decay},
|
331 |
+
{"params": [p for p in single_model.classifier.parameters() if p.requires_grad]},
|
332 |
+
# the following are the parameters of bert
|
333 |
+
{"params": reduce(operator.concat,
|
334 |
+
[[p for p in single_bert_model.encoder.layer[i].parameters()
|
335 |
+
if p.requires_grad] for i in range(10)])},
|
336 |
+
{"params": single_head.parameters()}
|
337 |
+
]
|
338 |
+
else:
|
339 |
+
params_to_optimize = [
|
340 |
+
{'params': backbone_no_decay, 'weight_decay': 0.0},
|
341 |
+
{'params': backbone_decay},
|
342 |
+
{"params": [p for p in single_model.classifier.parameters() if p.requires_grad]},
|
343 |
+
# the following are the parameters of bert
|
344 |
+
{"params": reduce(operator.concat,
|
345 |
+
[[p for p in single_model.text_encoder.encoder.layer[i].parameters()
|
346 |
+
if p.requires_grad] for i in range(10)])},
|
347 |
+
]
|
348 |
+
|
349 |
+
# optimizer
|
350 |
+
optimizer = torch.optim.AdamW(params_to_optimize,
|
351 |
+
lr=args.lr,
|
352 |
+
weight_decay=args.weight_decay,
|
353 |
+
amsgrad=args.amsgrad
|
354 |
+
)
|
355 |
+
|
356 |
+
# learning rate scheduler
|
357 |
+
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
|
358 |
+
lambda x: (1 - x / (len(data_loader) * args.epochs)) ** 0.9)
|
359 |
+
|
360 |
+
# housekeeping
|
361 |
+
start_time = time.time()
|
362 |
+
iterations = 0
|
363 |
+
best_oIoU = -0.1
|
364 |
+
|
365 |
+
# resume training (optimizer, lr scheduler, and the epoch)
|
366 |
+
if args.resume:
|
367 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
368 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
369 |
+
resume_epoch = checkpoint['epoch']
|
370 |
+
else:
|
371 |
+
resume_epoch = -999
|
372 |
+
|
373 |
+
# training loops
|
374 |
+
for epoch in range(max(0, resume_epoch+1), args.epochs):
|
375 |
+
data_loader.sampler.set_epoch(epoch)
|
376 |
+
train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, epoch, args.print_freq,
|
377 |
+
iterations, bert_model, single_head)
|
378 |
+
iou, overallIoU = evaluate(model, data_loader_test, bert_model, single_head)
|
379 |
+
|
380 |
+
print('Average object IoU {}'.format(iou))
|
381 |
+
print('Overall IoU {}'.format(overallIoU))
|
382 |
+
|
383 |
+
|
384 |
+
if single_bert_model is not None:
|
385 |
+
dict_to_save = {'model': single_model.state_dict(), 'bert_model': single_bert_model.state_dict(),
|
386 |
+
'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
|
387 |
+
'lr_scheduler': lr_scheduler.state_dict(), 'head_model': single_head.state_dict()}
|
388 |
+
else:
|
389 |
+
dict_to_save = {'model': single_model.state_dict(),
|
390 |
+
'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
|
391 |
+
'lr_scheduler': lr_scheduler.state_dict()}
|
392 |
+
|
393 |
+
checkpoint_path = os.path.join(args.output_dir, 'checkpoint-{}.pth'.format(epoch))
|
394 |
+
utils.save_on_master(dict_to_save, str(checkpoint_path) + '_TEMP')
|
395 |
+
if utils.is_main_process():
|
396 |
+
os.rename(str(checkpoint_path) + '_TEMP', str(checkpoint_path))
|
397 |
+
|
398 |
+
if utils.is_main_process():
|
399 |
+
ckpt_paths = []
|
400 |
+
for e in range(args.epochs):
|
401 |
+
ckpt_path = os.path.join(args.output_dir, f'checkpoint-{e}.pth')
|
402 |
+
print(ckpt_path)
|
403 |
+
if os.path.exists(ckpt_path):
|
404 |
+
ckpt_paths.append(ckpt_path)
|
405 |
+
print(ckpt_paths)
|
406 |
+
for ckpt_path in ckpt_paths[:-args.max_ckpt]:
|
407 |
+
os.remove(ckpt_path)
|
408 |
+
print("remove {:s}".format(ckpt_path))
|
409 |
+
|
410 |
+
|
411 |
+
save_checkpoint = (best_oIoU < overallIoU)
|
412 |
+
if save_checkpoint:
|
413 |
+
print('Better epoch: {}\n'.format(epoch))
|
414 |
+
if single_bert_model is not None:
|
415 |
+
dict_to_save = {'model': single_model.state_dict(), 'bert_model': single_bert_model.state_dict(),
|
416 |
+
'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
|
417 |
+
'lr_scheduler': lr_scheduler.state_dict()}
|
418 |
+
else:
|
419 |
+
dict_to_save = {'model': single_model.state_dict(),
|
420 |
+
'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
|
421 |
+
'lr_scheduler': lr_scheduler.state_dict()}
|
422 |
+
|
423 |
+
checkpoint_path = os.path.join(args.output_dir, 'model_best_{}.pth'.format(args.model_id))
|
424 |
+
utils.save_on_master(dict_to_save, checkpoint_path + '_TEMP')
|
425 |
+
if utils.is_main_process():
|
426 |
+
os.rename(str(checkpoint_path) + '_TEMP', str(checkpoint_path))
|
427 |
+
best_oIoU = overallIoU
|
428 |
+
|
429 |
+
# summarize
|
430 |
+
total_time = time.time() - start_time
|
431 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
432 |
+
print('Training time {}'.format(total_time_str))
|
433 |
+
|
434 |
+
|
435 |
+
if __name__ == "__main__":
|
436 |
+
from args import get_parser
|
437 |
+
parser = get_parser()
|
438 |
+
args = parser.parse_args()
|
439 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
440 |
+
# set up distributed learning
|
441 |
+
#utils.init_distributed_mode(args)
|
442 |
+
print('Image size: {}'.format(str(args.img_size)))
|
443 |
+
#main(args)
|
444 |
+
mp.spawn(main, args=(args,), nprocs=torch.cuda.device_count())
|