Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +152 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
4 |
+
from peft import PeftModel
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# --- 配置 (Configuration) ---
|
8 |
+
|
9 |
+
# 您上传到Hub的仓库ID (基础模型 + LoRA适配器)
|
10 |
+
# Your repository ID on the Hugging Face Hub (containing the LoRA adapter)
|
11 |
+
hub_repo_id = "yxccai/text-style"
|
12 |
+
|
13 |
+
# ==============================================================================
|
14 |
+
# !! 性能问题的核心原因与解决方案 !!
|
15 |
+
# !! CORE PERFORMANCE ISSUE & SOLUTIONS !!
|
16 |
+
#
|
17 |
+
# 您遇到的5分钟耗时问题,是因为在免费的Hugging Face Space (CPU环境)上运行了
|
18 |
+
# 一个1.8B参数的大模型。CPU进行这种规模的计算非常缓慢。
|
19 |
+
# The 5-minute delay is caused by running a large 1.8B parameter model on a
|
20 |
+
# free Hugging Face Space, which uses a CPU. CPU inference for a model of this
|
21 |
+
# size is inherently very slow.
|
22 |
+
#
|
23 |
+
# --- 解决方案 (Solutions) ---
|
24 |
+
#
|
25 |
+
# 1. (推荐/免费) 使用更小的基础模型 (Recommended/Free):
|
26 |
+
# 将下面的 `base_model_name` 从 "Qwen/Qwen1.5-1.8B-Chat"
|
27 |
+
# 更改为 "Qwen/Qwen1.5-0.5B-Chat"。这是最直接有效的免费解决方案。
|
28 |
+
# Change `base_model_name` below from "Qwen/Qwen1.5-1.8B-Chat" to
|
29 |
+
# "Qwen/Qwen1.5-0.5B-Chat". This is the most effective free solution.
|
30 |
+
#
|
31 |
+
# 2. (最佳性能) 升级到GPU硬件 (Best Performance):
|
32 |
+
# 在Hugging Face Spaces的设置中,将硬件从免费的CPU升级到付费的GPU
|
33 |
+
# (例如 T4 small)。这将提供数量级的速度提升。
|
34 |
+
# In your Hugging Face Space settings, upgrade the hardware from the free CPU
|
35 |
+
# to a paid GPU (e.g., T4 small). This will provide a massive speed-up.
|
36 |
+
#
|
37 |
+
# 3. (进阶) 使用量化 (Advanced):
|
38 |
+
# 加载模型时使用4位或8位量化可以减少内存占用并加速CPU推理,但这会略微
|
39 |
+
# 牺牲模型精度。这需要更复杂的代码,如下面的 quantization_config 所示。
|
40 |
+
# Using 4-bit or 8-bit quantization can reduce memory usage and speed up CPU
|
41 |
+
# inference, at a slight cost to model precision. This requires more complex
|
42 |
+
# code, like the `quantization_config` shown below.
|
43 |
+
# ==============================================================================
|
44 |
+
|
45 |
+
# --- 应用解决方案1:使用更小的模型 ---
|
46 |
+
# Applying Solution 1: Use a smaller model
|
47 |
+
base_model_name = "Qwen/Qwen1.5-0.5B-Chat" # <--- 已修改为0.5B版本以提速
|
48 |
+
|
49 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
50 |
+
print(f"Gradio App: Using device: {device}")
|
51 |
+
|
52 |
+
# --- (可选) 量化配置示例 (Optional) Quantization Config Example ---
|
53 |
+
# 如果您想尝试方案3,可以取消下面的注释。注意:这在CPU上可能仍然不够快。
|
54 |
+
# If you want to try Solution 3, you can uncomment the following lines.
|
55 |
+
# Note: This might still not be fast enough on a CPU.
|
56 |
+
# bnb_config = BitsAndBytesConfig(
|
57 |
+
# load_in_4bit=True,
|
58 |
+
# bnb_4bit_use_double_quant=True,
|
59 |
+
# bnb_4bit_quant_type="nf4",
|
60 |
+
# bnb_4bit_compute_dtype=torch.bfloat16
|
61 |
+
# )
|
62 |
+
|
63 |
+
# --- 加载模型和Tokenizer (Loading Model and Tokenizer) ---
|
64 |
+
print(f"Gradio App: Loading base model: {base_model_name}")
|
65 |
+
# 1. 加载基础模型 (Load base model)
|
66 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
67 |
+
base_model_name,
|
68 |
+
torch_dtype="auto",
|
69 |
+
device_map="auto", # 使用 "auto" 让transformers库自动处理设备映射
|
70 |
+
trust_remote_code=True
|
71 |
+
# quantization_config=bnb_config # 如果使用量化,请添加此行
|
72 |
+
)
|
73 |
+
# base_model.to(device) # device_map="auto" 时不需要手动 .to(device)
|
74 |
+
|
75 |
+
print(f"Gradio App: Loading tokenizer from: {hub_repo_id}")
|
76 |
+
# 2. 加载Tokenizer (Load Tokenizer)
|
77 |
+
tokenizer = AutoTokenizer.from_pretrained(hub_repo_id, trust_remote_code=True)
|
78 |
+
if tokenizer.pad_token is None:
|
79 |
+
print("Gradio App: Tokenizer does not have a pad_token, setting it to eos_token.")
|
80 |
+
tokenizer.pad_token = tokenizer.eos_token
|
81 |
+
base_model.config.pad_token_id = tokenizer.eos_token_id
|
82 |
+
|
83 |
+
print(f"Gradio App: Loading LoRA adapter from: {hub_repo_id}")
|
84 |
+
# 3. 加载并应用LoRA适配器 (Load and apply LoRA adapter)
|
85 |
+
model = PeftModel.from_pretrained(base_model, hub_repo_id)
|
86 |
+
|
87 |
+
model.eval() # 设置为评估模式 (Set to evaluation mode)
|
88 |
+
print("Gradio App: Model and tokenizer loaded successfully.")
|
89 |
+
|
90 |
+
# --- 推理函数 (Inference Function) ---
|
91 |
+
def chat(input_text):
|
92 |
+
if not input_text:
|
93 |
+
return "请输入一些文本。"
|
94 |
+
|
95 |
+
print(f"Gradio App: Received input: {input_text}")
|
96 |
+
# 构建符合Qwen Chat模板的输入
|
97 |
+
# Construct input according to the Qwen Chat template
|
98 |
+
messages = [
|
99 |
+
{"role": "system", "content": "你是一个文本风格转换助手。请严格按照要求,仅将以下书面文本转换为自然、口语化的简洁表达方式,不要添加任何额外的解释、扩展信息或重复原文。"},
|
100 |
+
{"role": "user", "content": input_text}
|
101 |
+
]
|
102 |
+
|
103 |
+
try:
|
104 |
+
prompt = tokenizer.apply_chat_template(
|
105 |
+
messages,
|
106 |
+
tokenize=False,
|
107 |
+
add_generation_prompt=True
|
108 |
+
)
|
109 |
+
except Exception as e:
|
110 |
+
print(f"Error applying chat template: {e}")
|
111 |
+
# 如果模板应用失败,提供一个明确的错误信息
|
112 |
+
return f"错误:无法应用聊天模板。{e}"
|
113 |
+
|
114 |
+
print(f"Gradio App: Formatted prompt for model:\n{prompt}")
|
115 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
116 |
+
|
117 |
+
# 生成时禁用梯度计算以节省资源
|
118 |
+
# Disable gradient calculations during generation to save resources
|
119 |
+
with torch.no_grad():
|
120 |
+
generated_ids = model.generate(
|
121 |
+
**inputs,
|
122 |
+
max_new_tokens=512, # 减少最大生成长度以加快响应
|
123 |
+
do_sample=True,
|
124 |
+
temperature=0.7,
|
125 |
+
top_p=0.95,
|
126 |
+
pad_token_id=tokenizer.eos_token_id
|
127 |
+
)
|
128 |
+
|
129 |
+
# 从生成结果中提取回复
|
130 |
+
# Extract the reply from the generated result
|
131 |
+
response_ids = generated_ids[0][inputs.input_ids.shape[-1]:]
|
132 |
+
result = tokenizer.decode(response_ids, skip_special_tokens=True).strip()
|
133 |
+
|
134 |
+
print(f"Gradio App: Extracted result: {result}")
|
135 |
+
return result
|
136 |
+
|
137 |
+
# --- 创建Gradio界面 (Create Gradio Interface) ---
|
138 |
+
iface = gr.Interface(
|
139 |
+
fn=chat,
|
140 |
+
inputs=gr.Textbox(lines=5, label="输入书面文本 (Input Formal Text)"),
|
141 |
+
outputs=gr.Textbox(lines=5, label="输出口语化文本 (Output Casual Text)"),
|
142 |
+
title="文本风格转换器 (Text Style Converter)",
|
143 |
+
description="输入一段书面化的中文文本,模型会尝试将其转换为更自然、口语化的表达方式。由Qwen-0.5B模型微调。(已优化速度)",
|
144 |
+
examples=[
|
145 |
+
["乙醇的检测方法包括以下几项: 1. 酸碱度检查:取20ml乙醇加20ml水,加2滴酚酞指示剂应无色,再加1ml 0.01mol/L氢氧化钠应显粉红色."],
|
146 |
+
["本公司今日发布了最新的财务业绩报告,数据显示本季度利润实现了显著增长。"]
|
147 |
+
],
|
148 |
+
allow_flagging="never" # 禁用flagging以简化界面
|
149 |
+
)
|
150 |
+
|
151 |
+
if __name__ == "__main__":
|
152 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
accelerate
|
4 |
+
peft
|
5 |
+
gradio
|
6 |
+
bitsandbytes # 如果您的基础Qwen模型加载时或PEFT需要,请取消注释
|
7 |
+
sentencepiece # Qwen tokenizer 可能需要
|