Spaces:
Sleeping
Sleeping
| import argparse | |
| import tensorflow as tf | |
| import model | |
| from dataset import get_dataset, preprocess_sentence | |
| def inference(hparams, chatbot, tokenizer, sentence): | |
| sentence = preprocess_sentence(sentence) | |
| sentence = tf.expand_dims( | |
| hparams.start_token + tokenizer.encode(sentence) + hparams.end_token, axis=0 | |
| ) | |
| output = tf.expand_dims(hparams.start_token, 0) | |
| for _ in range(hparams.max_length): | |
| predictions = chatbot(inputs=[sentence, output], training=False) | |
| predictions = predictions[:, -1:, :] | |
| predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32) | |
| if tf.equal(predicted_id, hparams.end_token[0]): | |
| break | |
| output = tf.concat([output, predicted_id], axis=-1) | |
| return tf.squeeze(output, axis=0) | |
| def predict(hparams, chatbot, tokenizer, sentence): | |
| prediction = inference(hparams, chatbot, tokenizer, sentence) | |
| predicted_sentence = tokenizer.decode( | |
| [i for i in prediction if i < tokenizer.vocab_size] | |
| ) | |
| return predicted_sentence | |
| def read_file(file_path): | |
| with open(file_path, 'r', encoding='utf-8') as file: | |
| lines = file.readlines() | |
| return lines | |
| def append_to_file(file_path, line): | |
| with open(file_path, 'a', encoding='utf-8') as file: | |
| file.write(f"{line}\n") | |
| def get_last_ids(lines_file, conversations_file): | |
| lines = read_file(lines_file) | |
| conversations = read_file(conversations_file) | |
| last_line = lines[-1] | |
| last_conversation = conversations[-1] | |
| last_line_id = int(last_line.split(" +++$+++ ")[0][1:]) | |
| last_user_id = int(last_conversation.split(" +++$+++ ")[1][1:]) | |
| last_movie_id = int(last_conversation.split(" +++$+++ ")[2][1:]) | |
| return last_line_id, last_user_id, last_movie_id | |
| def update_data_files(user_input, bot_response, lines_file='data/lines.txt', conversations_file='data/conversations.txt'): | |
| last_line_id, last_user_id, last_movie_id = get_last_ids(lines_file, conversations_file) | |
| new_line_id = f"L{last_line_id + 1}" | |
| new_bot_line_id = f"L{last_line_id + 2}" | |
| new_user_id = f"u{last_user_id + 1}" | |
| new_bot_user_id = f"u{last_user_id + 2}" | |
| new_movie_id = f"m{last_movie_id + 1}" | |
| append_to_file(lines_file, f"{new_line_id} +++$+++ {new_user_id} +++$+++ {new_movie_id} +++$+++ Ben +++$+++ {user_input}") | |
| append_to_file(lines_file, f"{new_bot_line_id} +++$+++ {new_bot_user_id} +++$+++ {new_movie_id} +++$+++ Bot +++$+++ {bot_response}") | |
| new_conversation = f"{new_user_id} +++$+++ {new_bot_user_id} +++$+++ {new_movie_id} +++$+++ ['{new_line_id}', '{new_bot_line_id}']" | |
| append_to_file(conversations_file, new_conversation) | |
| def get_feedback(): | |
| feedback = input("Bu cevap yardımcı oldu mu? (Evet/Hayır): ").lower() | |
| return feedback == "Evet" | |
| def chat(hparams, chatbot, tokenizer): | |
| print("\nCHATBOT") | |
| for _ in range(5): | |
| sentence = input("Sen: ") | |
| output = predict(hparams, chatbot, tokenizer, sentence) | |
| print(f"\nBOT: {output}") | |
| user_input = sentence | |
| bot_response = output | |
| feedback = get_feedback() | |
| if feedback: | |
| update_data_files(user_input, bot_response) | |
| else: | |
| pass | |
| def main(hparams): | |
| _, token = get_dataset(hparams) | |
| tf.keras.backend.clear_session() | |
| chatbot = tf.keras.models.load_model( | |
| hparams.save_model, | |
| custom_objects={ | |
| "PositionalEncoding": model.PositionalEncoding, | |
| "MultiHeadAttention": model.MultiHeadAttention, | |
| }, | |
| compile=False, | |
| ) | |
| chat(hparams, chatbot, token) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--save_model", default="model.h5", type=str, help="path save the model" | |
| ) | |
| parser.add_argument( | |
| "--max_samples", | |
| default=25000, | |
| type=int, | |
| help="maximum number of conversation pairs to use", | |
| ) | |
| parser.add_argument( | |
| "--max_length", default=40, type=int, help="maximum sentence length" | |
| ) | |
| parser.add_argument("--batch_size", default=64, type=int) | |
| parser.add_argument("--num_layers", default=2, type=int) | |
| parser.add_argument("--num_units", default=512, type=int) | |
| parser.add_argument("--d_model", default=256, type=int) | |
| parser.add_argument("--num_heads", default=8, type=int) | |
| parser.add_argument("--dropout", default=0.1, type=float) | |
| parser.add_argument("--activation", default="relu", type=str) | |
| parser.add_argument("--epochs", default=80, type=int) | |
| main(parser.parse_args()) | |