|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Utility functions to load from the checkpoints. |
|
Each checkpoint is a torch.saved dict with the following keys: |
|
- 'xp.cfg': the hydra config as dumped during training. This should be used |
|
to rebuild the object using the audiocraft.models.builders functions, |
|
- 'model_best_state': a readily loadable best state for the model, including |
|
the conditioner. The model obtained from `xp.cfg` should be compatible |
|
with this state dict. In the case of a LM, the encodec model would not be |
|
bundled along but instead provided separately. |
|
|
|
Those functions also support loading from a remote location with the Torch Hub API. |
|
They also support overriding some parameters, in particular the device and dtype |
|
of the returned model. |
|
""" |
|
|
|
from pathlib import Path |
|
from huggingface_hub import hf_hub_download |
|
import typing as tp |
|
import os |
|
|
|
from omegaconf import OmegaConf |
|
import torch |
|
|
|
from . import builders |
|
|
|
|
|
HF_MODEL_CHECKPOINTS_MAP = { |
|
"small": "GrandaddyShmax/musicgen-small", |
|
"medium": "GrandaddyShmax/musicgen-medium", |
|
"large": "GrandaddyShmax/musicgen-large", |
|
"melody": "GrandaddyShmax/musicgen-melody", |
|
} |
|
|
|
|
|
def _get_state_dict( |
|
file_or_url_or_id: tp.Union[Path, str], |
|
filename: tp.Optional[str] = None, |
|
device='cpu', |
|
cache_dir: tp.Optional[str] = None, |
|
): |
|
|
|
file_or_url_or_id = str(file_or_url_or_id) |
|
assert isinstance(file_or_url_or_id, str) |
|
|
|
if os.path.isfile(file_or_url_or_id): |
|
return torch.load(file_or_url_or_id, map_location=device) |
|
|
|
elif file_or_url_or_id.startswith('https://'): |
|
return torch.hub.load_state_dict_from_url(file_or_url_or_id, map_location=device, check_hash=True) |
|
|
|
elif file_or_url_or_id in HF_MODEL_CHECKPOINTS_MAP: |
|
assert filename is not None, "filename needs to be defined if using HF checkpoints" |
|
|
|
repo_id = HF_MODEL_CHECKPOINTS_MAP[file_or_url_or_id] |
|
file = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=cache_dir) |
|
return torch.load(file, map_location=device) |
|
|
|
else: |
|
raise ValueError(f"{file_or_url_or_id} is not a valid name, path or link that can be loaded.") |
|
|
|
|
|
def load_compression_model(file_or_url_or_id: tp.Union[Path, str], device='cpu', cache_dir: tp.Optional[str] = None): |
|
pkg = _get_state_dict(file_or_url_or_id, filename="compression_state_dict.bin", cache_dir=cache_dir) |
|
cfg = OmegaConf.create(pkg['xp.cfg']) |
|
cfg.device = str(device) |
|
model = builders.get_compression_model(cfg) |
|
model.load_state_dict(pkg['best_state']) |
|
model.eval() |
|
return model |
|
|
|
|
|
def load_lm_model(file_or_url_or_id: tp.Union[Path, str], device='cpu', cache_dir: tp.Optional[str] = None): |
|
pkg = _get_state_dict(file_or_url_or_id, filename="state_dict.bin", cache_dir=cache_dir) |
|
cfg = OmegaConf.create(pkg['xp.cfg']) |
|
cfg.device = str(device) |
|
if cfg.device == 'cpu': |
|
cfg.dtype = 'float32' |
|
else: |
|
cfg.dtype = 'float16' |
|
model = builders.get_lm_model(cfg) |
|
model.load_state_dict(pkg['best_state']) |
|
model.eval() |
|
model.cfg = cfg |
|
return model |
|
|