import torch from omegaconf import OmegaConf from ldm.util import instantiate_from_config from ldm.models.diffusion.ddpm import LatentDiffusion, DDIMSampler import numpy as np from PIL import Image from huggingface_hub import hf_hub_download import json import os import time DEBUG = False def load_model_from_config(config_path, model_name, device='cuda', load=True): # Load the config file config = OmegaConf.load(config_path) # Instantiate the model model = instantiate_from_config(config.model) # Download the model file from Hugging Face if load: model_file = hf_hub_download(repo_id=model_name, filename="model.safetensors", token=os.getenv('HF_TOKEN')) print(f"Loading model from {model_name}") # Load the state dict state_dict = torch.load(model_file, map_location='cpu') model.load_state_dict(state_dict, strict=False) model.to(device) model.eval() return model def sample_frame(model: LatentDiffusion, prompt: str, image_sequence: torch.Tensor, pos_maps=None, leftclick_maps=None): sampler = DDIMSampler(model) with torch.no_grad(): #u_dict = {'c_crossattn': "", 'c_concat': image_sequence} #uc = model.get_learned_conditioning(u_dict) #uc = model.enc_concat_seq(uc, u_dict, 'c_concat') #c_dict = {'c_crossattn': prompt, 'c_concat': image_sequence} model.eval() #c = model.get_learned_conditioning(c_dict) #print (c['c_crossattn'].shape) #print (c['c_crossattn'][0]) print (prompt) # reshape(B, L * C, H, W) #height, width, channels = image_sequence.shape # use einsum to reshape image_sequence = torch.einsum('hwc->chw', image_sequence).unsqueeze(0) c = {'c_concat': image_sequence} print (image_sequence.shape, c['c_concat'].shape) #c = model.enc_concat_seq(c, c_dict, 'c_concat') # Zero out the corresponding subtensors in c_concat for padding images #padding_mask = torch.isclose(image_sequence, torch.tensor(-1.0), rtol=1e-5, atol=1e-5).all(dim=(1, 2, 3)).unsqueeze(0) #print (padding_mask) #padding_mask = padding_mask.repeat(1, 4) # Repeat mask 4 times for each projected channel #print (image_sequence.shape, padding_mask.shape, c['c_concat'].shape) #c['c_concat'] = c['c_concat'] * (~padding_mask.unsqueeze(-1).unsqueeze(-1)) # Zero out the corresponding features if pos_maps is not None: pos_map = pos_maps[0] leftclick_map = torch.cat(leftclick_maps, dim=0) print (pos_maps[0].shape, c['c_concat'].shape, leftclick_map.shape) if False and DEBUG: c['c_concat'] = c['c_concat']*0 c['c_concat'] = torch.cat([c['c_concat'][:, :, :, :], pos_maps[0].to(c['c_concat'].device).unsqueeze(0), leftclick_map.to(c['c_concat'].device).unsqueeze(0)], dim=1) print ('sleeping') #time.sleep(120) print ('finished sleeping') DDPM = False DDPM = True DDPM = False if DEBUG: #c['c_concat'] = c['c_concat']*0 print ('utils prompt', prompt, c['c_concat'].shape, c.keys()) print (c['c_concat'].nonzero()) #print (c['c_concat'][0, 0, :, :]) if DDPM: samples_ddim = model.p_sample_loop(cond=c, shape=[1, 4, 48, 64], return_intermediates=False, verbose=True) else: samples_ddim, _ = sampler.sample(S=16, conditioning=c, batch_size=1, shape=[4, 48, 64], verbose=False) # unconditional_guidance_scale=5.0, # unconditional_conditioning=uc, # eta=0) print ('dfsf1') if False and DEBUG: print ('samples_ddim.shape', samples_ddim.shape) x_samples_ddim = samples_ddim[:, :3] # upsample to 512 x 384 x_samples_ddim = torch.nn.functional.interpolate(x_samples_ddim, size=(384, 512), mode='bilinear') # create a 512 x 384 image and paste the samples_ddim into the center #x_samples_ddim = torch.zeros((1, 3, 384, 512)) #x_samples_ddim[:, :, 128:128+48, 160:160+64] = samples_ddim[:, :3] else: print ('dfsf2') data_mean = -0.54 data_std = 6.78 data_min = -27.681446075439453 data_max = 30.854148864746094 x_samples_ddim = samples_ddim x_samples_ddim_feedback = x_samples_ddim x_samples_ddim = x_samples_ddim * data_std + data_mean x_samples_ddim = model.decode_first_stage(x_samples_ddim) print ('dfsf3') #x_samples_ddim = pos_map.to(c['c_concat'].device).unsqueeze(0).expand(-1, 3, -1, -1) #x_samples_ddim = model.decode_first_stage(x_samples_ddim) #x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) x_samples_ddim = torch.clamp(x_samples_ddim, min=-1.0, max=1.0) return x_samples_ddim.squeeze(0).cpu().numpy(), x_samples_ddim_feedback.squeeze(0) # Global variables for model and device #model = None #device = None def initialize_model(config_path, model_name): #global model, device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = load_model_from_config(config_path, model_name, device) return model