save_path: saved_standard_challenging_context32_nocond_cont_cont_all_cont_eval model: base_learning_rate: 8.0e-05 target: ldm.models.diffusion.ddpm.LatentDiffusion params: linear_start: 0.0015 linear_end: 0.0195 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: image cond_stage_key: action_ scheduler_sampling_rate: 0.0 hybrid_key: c_concat image_size: [64, 48] channels: 3 cond_stage_trainable: false conditioning_key: hybrid monitor: val/loss_simple_ema unet_config: target: ldm.modules.diffusionmodules.openaimodel.UNetModel params: image_size: [64, 48] in_channels: 20 out_channels: 4 model_channels: 256 attention_resolutions: [] num_res_blocks: 2 channel_mult: - 1 - 2 num_head_channels: 32 use_spatial_transformer: false transformer_depth: 1 temporal_encoder_config: target: ldm.modules.encoders.temporal_encoder.TemporalEncoder params: input_channels: 6 hidden_size: 2048 num_layers: 1 dropout: 0.1 output_channels: 16 output_height: 48 output_width: 64 first_stage_config: target: ldm.models.autoencoder.AutoencoderKL params: embed_dim: 4 monitor: val/rec_loss ddconfig: double_z: true z_channels: 4 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 4 - 4 num_res_blocks: 2 attn_resolutions: [] dropout: 0.0 lossconfig: target: torch.nn.Identity cond_stage_config: __is_unconditional__ data: target: data.data_processing.datasets.DataModule params: batch_size: 8 num_workers: 1 wrap: false shuffle: True drop_last: True pin_memory: True prefetch_factor: 2 persistent_workers: True train: target: data.data_processing.datasets.ActionsData params: data_csv_path: desktop_sequences_filtered_with_desktop_1.5k.challenging.train.target_frames.csv normalization: standard context_length: 32 #validation: # target: data.data_processing.datasets.ActionsData # params: lightning: trainer: benchmark: False max_epochs: 6400 limit_val_batches: 0 accelerator: gpu gpus: 1 accumulate_grad_batches: 999999 gradient_clip_val: 1 checkpoint_callback: True