model: base_learning_rate: 8.0e-05 target: ldm.models.diffusion.ddpm.LatentDiffusion params: linear_start: 0.0015 linear_end: 0.0195 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: image cond_stage_key: caption hybrid_key: c_concat image_size: 64 channels: 3 cond_stage_trainable: true conditioning_key: hybrid monitor: val/loss_simple_ema unet_config: target: ldm.modules.diffusionmodules.openaimodel.UNetModel params: image_size: 64 in_channels: 24 out_channels: 3 model_channels: 192 attention_resolutions: - 8 - 4 - 2 num_res_blocks: 2 channel_mult: - 1 - 2 - 3 - 5 num_head_channels: 32 use_spatial_transformer: true transformer_depth: 1 context_dim: 768 first_stage_config: target: ldm.models.autoencoder.VQModelInterface params: embed_dim: 3 n_embed: 8192 monitor: val/rec_loss ddconfig: double_z: false z_channels: 3 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 4 num_res_blocks: 2 attn_resolutions: [] dropout: 0.0 lossconfig: target: torch.nn.Identity cond_stage_config: target: ldm.modules.encoders.modules.GPTEmbedder params: n_embed: 768 n_layer: 12 data: target: data.datasets.CsllmTrainSeq params: batch_size: 8 num_workers: 12 wrap: false train: target: data.datasets.CsllmTrainSeq params: config: size: 256 lightning: trainer: benchmark: False max_epochs: 200 accelerator: gpu gpus: 1 gradient_clip_val: 1 checkpoint_callback: False callbacks: []