Spaces:
Runtime error
Runtime error
util.py
Browse files
util.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from inspect import isfunction
|
7 |
+
from PIL import Image, ImageDraw, ImageFont
|
8 |
+
|
9 |
+
|
10 |
+
def log_txt_as_img(wh, xc, size=10):
|
11 |
+
# wh a tuple of (width, height)
|
12 |
+
# xc a list of captions to plot
|
13 |
+
b = len(xc)
|
14 |
+
txts = list()
|
15 |
+
for bi in range(b):
|
16 |
+
txt = Image.new("RGB", wh, color="white")
|
17 |
+
draw = ImageDraw.Draw(txt)
|
18 |
+
font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
|
19 |
+
nc = int(40 * (wh[0] / 256))
|
20 |
+
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
21 |
+
|
22 |
+
try:
|
23 |
+
draw.text((0, 0), lines, fill="black", font=font)
|
24 |
+
except UnicodeEncodeError:
|
25 |
+
print("Cant encode string for logging. Skipping.")
|
26 |
+
|
27 |
+
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
28 |
+
txts.append(txt)
|
29 |
+
txts = np.stack(txts)
|
30 |
+
txts = torch.tensor(txts)
|
31 |
+
return txts
|
32 |
+
|
33 |
+
|
34 |
+
def ismap(x):
|
35 |
+
if not isinstance(x, torch.Tensor):
|
36 |
+
return False
|
37 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
38 |
+
|
39 |
+
|
40 |
+
def isimage(x):
|
41 |
+
if not isinstance(x,torch.Tensor):
|
42 |
+
return False
|
43 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
44 |
+
|
45 |
+
|
46 |
+
def exists(x):
|
47 |
+
return x is not None
|
48 |
+
|
49 |
+
|
50 |
+
def default(val, d):
|
51 |
+
if exists(val):
|
52 |
+
return val
|
53 |
+
return d() if isfunction(d) else d
|
54 |
+
|
55 |
+
|
56 |
+
def mean_flat(tensor):
|
57 |
+
"""
|
58 |
+
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
59 |
+
Take the mean over all non-batch dimensions.
|
60 |
+
"""
|
61 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
62 |
+
|
63 |
+
|
64 |
+
def count_params(model, verbose=False):
|
65 |
+
total_params = sum(p.numel() for p in model.parameters())
|
66 |
+
if verbose:
|
67 |
+
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
68 |
+
return total_params
|
69 |
+
|
70 |
+
|
71 |
+
def instantiate_from_config(config):
|
72 |
+
if not "target" in config:
|
73 |
+
if config == '__is_first_stage__':
|
74 |
+
return None
|
75 |
+
elif config == "__is_unconditional__":
|
76 |
+
return None
|
77 |
+
raise KeyError("Expected key `target` to instantiate.")
|
78 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
79 |
+
|
80 |
+
|
81 |
+
def get_obj_from_str(string, reload=False):
|
82 |
+
module, cls = string.rsplit(".", 1)
|
83 |
+
if reload:
|
84 |
+
module_imp = importlib.import_module(module)
|
85 |
+
importlib.reload(module_imp)
|
86 |
+
return getattr(importlib.import_module(module, package=None), cls)
|