ysharma HF staff commited on
Commit
975f6d0
1 Parent(s): 0c3a426
Files changed (1) hide show
  1. autoencoder.py +443 -0
autoencoder.py ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import pytorch_lightning as pl
3
+ import torch.nn.functional as F
4
+ from contextlib import contextmanager
5
+
6
+ from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
7
+
8
+ from ldm.modules.diffusionmodules.model import Encoder, Decoder
9
+ from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
10
+
11
+ from ldm.util import instantiate_from_config
12
+
13
+
14
+ class VQModel(pl.LightningModule):
15
+ def __init__(self,
16
+ ddconfig,
17
+ lossconfig,
18
+ n_embed,
19
+ embed_dim,
20
+ ckpt_path=None,
21
+ ignore_keys=[],
22
+ image_key="image",
23
+ colorize_nlabels=None,
24
+ monitor=None,
25
+ batch_resize_range=None,
26
+ scheduler_config=None,
27
+ lr_g_factor=1.0,
28
+ remap=None,
29
+ sane_index_shape=False, # tell vector quantizer to return indices as bhw
30
+ use_ema=False
31
+ ):
32
+ super().__init__()
33
+ self.embed_dim = embed_dim
34
+ self.n_embed = n_embed
35
+ self.image_key = image_key
36
+ self.encoder = Encoder(**ddconfig)
37
+ self.decoder = Decoder(**ddconfig)
38
+ self.loss = instantiate_from_config(lossconfig)
39
+ self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
40
+ remap=remap,
41
+ sane_index_shape=sane_index_shape)
42
+ self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
43
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
44
+ if colorize_nlabels is not None:
45
+ assert type(colorize_nlabels)==int
46
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
47
+ if monitor is not None:
48
+ self.monitor = monitor
49
+ self.batch_resize_range = batch_resize_range
50
+ if self.batch_resize_range is not None:
51
+ print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
52
+
53
+ self.use_ema = use_ema
54
+ if self.use_ema:
55
+ self.model_ema = LitEma(self)
56
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
57
+
58
+ if ckpt_path is not None:
59
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
60
+ self.scheduler_config = scheduler_config
61
+ self.lr_g_factor = lr_g_factor
62
+
63
+ @contextmanager
64
+ def ema_scope(self, context=None):
65
+ if self.use_ema:
66
+ self.model_ema.store(self.parameters())
67
+ self.model_ema.copy_to(self)
68
+ if context is not None:
69
+ print(f"{context}: Switched to EMA weights")
70
+ try:
71
+ yield None
72
+ finally:
73
+ if self.use_ema:
74
+ self.model_ema.restore(self.parameters())
75
+ if context is not None:
76
+ print(f"{context}: Restored training weights")
77
+
78
+ def init_from_ckpt(self, path, ignore_keys=list()):
79
+ sd = torch.load(path, map_location="cpu")["state_dict"]
80
+ keys = list(sd.keys())
81
+ for k in keys:
82
+ for ik in ignore_keys:
83
+ if k.startswith(ik):
84
+ print("Deleting key {} from state_dict.".format(k))
85
+ del sd[k]
86
+ missing, unexpected = self.load_state_dict(sd, strict=False)
87
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
88
+ if len(missing) > 0:
89
+ print(f"Missing Keys: {missing}")
90
+ print(f"Unexpected Keys: {unexpected}")
91
+
92
+ def on_train_batch_end(self, *args, **kwargs):
93
+ if self.use_ema:
94
+ self.model_ema(self)
95
+
96
+ def encode(self, x):
97
+ h = self.encoder(x)
98
+ h = self.quant_conv(h)
99
+ quant, emb_loss, info = self.quantize(h)
100
+ return quant, emb_loss, info
101
+
102
+ def encode_to_prequant(self, x):
103
+ h = self.encoder(x)
104
+ h = self.quant_conv(h)
105
+ return h
106
+
107
+ def decode(self, quant):
108
+ quant = self.post_quant_conv(quant)
109
+ dec = self.decoder(quant)
110
+ return dec
111
+
112
+ def decode_code(self, code_b):
113
+ quant_b = self.quantize.embed_code(code_b)
114
+ dec = self.decode(quant_b)
115
+ return dec
116
+
117
+ def forward(self, input, return_pred_indices=False):
118
+ quant, diff, (_,_,ind) = self.encode(input)
119
+ dec = self.decode(quant)
120
+ if return_pred_indices:
121
+ return dec, diff, ind
122
+ return dec, diff
123
+
124
+ def get_input(self, batch, k):
125
+ x = batch[k]
126
+ if len(x.shape) == 3:
127
+ x = x[..., None]
128
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
129
+ if self.batch_resize_range is not None:
130
+ lower_size = self.batch_resize_range[0]
131
+ upper_size = self.batch_resize_range[1]
132
+ if self.global_step <= 4:
133
+ # do the first few batches with max size to avoid later oom
134
+ new_resize = upper_size
135
+ else:
136
+ new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
137
+ if new_resize != x.shape[2]:
138
+ x = F.interpolate(x, size=new_resize, mode="bicubic")
139
+ x = x.detach()
140
+ return x
141
+
142
+ def training_step(self, batch, batch_idx, optimizer_idx):
143
+ # https://github.com/pytorch/pytorch/issues/37142
144
+ # try not to fool the heuristics
145
+ x = self.get_input(batch, self.image_key)
146
+ xrec, qloss, ind = self(x, return_pred_indices=True)
147
+
148
+ if optimizer_idx == 0:
149
+ # autoencode
150
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
151
+ last_layer=self.get_last_layer(), split="train",
152
+ predicted_indices=ind)
153
+
154
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
155
+ return aeloss
156
+
157
+ if optimizer_idx == 1:
158
+ # discriminator
159
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
160
+ last_layer=self.get_last_layer(), split="train")
161
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
162
+ return discloss
163
+
164
+ def validation_step(self, batch, batch_idx):
165
+ log_dict = self._validation_step(batch, batch_idx)
166
+ with self.ema_scope():
167
+ log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
168
+ return log_dict
169
+
170
+ def _validation_step(self, batch, batch_idx, suffix=""):
171
+ x = self.get_input(batch, self.image_key)
172
+ xrec, qloss, ind = self(x, return_pred_indices=True)
173
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
174
+ self.global_step,
175
+ last_layer=self.get_last_layer(),
176
+ split="val"+suffix,
177
+ predicted_indices=ind
178
+ )
179
+
180
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
181
+ self.global_step,
182
+ last_layer=self.get_last_layer(),
183
+ split="val"+suffix,
184
+ predicted_indices=ind
185
+ )
186
+ rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
187
+ self.log(f"val{suffix}/rec_loss", rec_loss,
188
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
189
+ self.log(f"val{suffix}/aeloss", aeloss,
190
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
191
+ if version.parse(pl.__version__) >= version.parse('1.4.0'):
192
+ del log_dict_ae[f"val{suffix}/rec_loss"]
193
+ self.log_dict(log_dict_ae)
194
+ self.log_dict(log_dict_disc)
195
+ return self.log_dict
196
+
197
+ def configure_optimizers(self):
198
+ lr_d = self.learning_rate
199
+ lr_g = self.lr_g_factor*self.learning_rate
200
+ print("lr_d", lr_d)
201
+ print("lr_g", lr_g)
202
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
203
+ list(self.decoder.parameters())+
204
+ list(self.quantize.parameters())+
205
+ list(self.quant_conv.parameters())+
206
+ list(self.post_quant_conv.parameters()),
207
+ lr=lr_g, betas=(0.5, 0.9))
208
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
209
+ lr=lr_d, betas=(0.5, 0.9))
210
+
211
+ if self.scheduler_config is not None:
212
+ scheduler = instantiate_from_config(self.scheduler_config)
213
+
214
+ print("Setting up LambdaLR scheduler...")
215
+ scheduler = [
216
+ {
217
+ 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
218
+ 'interval': 'step',
219
+ 'frequency': 1
220
+ },
221
+ {
222
+ 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
223
+ 'interval': 'step',
224
+ 'frequency': 1
225
+ },
226
+ ]
227
+ return [opt_ae, opt_disc], scheduler
228
+ return [opt_ae, opt_disc], []
229
+
230
+ def get_last_layer(self):
231
+ return self.decoder.conv_out.weight
232
+
233
+ def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
234
+ log = dict()
235
+ x = self.get_input(batch, self.image_key)
236
+ x = x.to(self.device)
237
+ if only_inputs:
238
+ log["inputs"] = x
239
+ return log
240
+ xrec, _ = self(x)
241
+ if x.shape[1] > 3:
242
+ # colorize with random projection
243
+ assert xrec.shape[1] > 3
244
+ x = self.to_rgb(x)
245
+ xrec = self.to_rgb(xrec)
246
+ log["inputs"] = x
247
+ log["reconstructions"] = xrec
248
+ if plot_ema:
249
+ with self.ema_scope():
250
+ xrec_ema, _ = self(x)
251
+ if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
252
+ log["reconstructions_ema"] = xrec_ema
253
+ return log
254
+
255
+ def to_rgb(self, x):
256
+ assert self.image_key == "segmentation"
257
+ if not hasattr(self, "colorize"):
258
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
259
+ x = F.conv2d(x, weight=self.colorize)
260
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
261
+ return x
262
+
263
+
264
+ class VQModelInterface(VQModel):
265
+ def __init__(self, embed_dim, *args, **kwargs):
266
+ super().__init__(embed_dim=embed_dim, *args, **kwargs)
267
+ self.embed_dim = embed_dim
268
+
269
+ def encode(self, x):
270
+ h = self.encoder(x)
271
+ h = self.quant_conv(h)
272
+ return h
273
+
274
+ def decode(self, h, force_not_quantize=False):
275
+ # also go through quantization layer
276
+ if not force_not_quantize:
277
+ quant, emb_loss, info = self.quantize(h)
278
+ else:
279
+ quant = h
280
+ quant = self.post_quant_conv(quant)
281
+ dec = self.decoder(quant)
282
+ return dec
283
+
284
+
285
+ class AutoencoderKL(pl.LightningModule):
286
+ def __init__(self,
287
+ ddconfig,
288
+ lossconfig,
289
+ embed_dim,
290
+ ckpt_path=None,
291
+ ignore_keys=[],
292
+ image_key="image",
293
+ colorize_nlabels=None,
294
+ monitor=None,
295
+ ):
296
+ super().__init__()
297
+ self.image_key = image_key
298
+ self.encoder = Encoder(**ddconfig)
299
+ self.decoder = Decoder(**ddconfig)
300
+ self.loss = instantiate_from_config(lossconfig)
301
+ assert ddconfig["double_z"]
302
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
303
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
304
+ self.embed_dim = embed_dim
305
+ if colorize_nlabels is not None:
306
+ assert type(colorize_nlabels)==int
307
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
308
+ if monitor is not None:
309
+ self.monitor = monitor
310
+ if ckpt_path is not None:
311
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
312
+
313
+ def init_from_ckpt(self, path, ignore_keys=list()):
314
+ sd = torch.load(path, map_location="cpu")["state_dict"]
315
+ keys = list(sd.keys())
316
+ for k in keys:
317
+ for ik in ignore_keys:
318
+ if k.startswith(ik):
319
+ print("Deleting key {} from state_dict.".format(k))
320
+ del sd[k]
321
+ self.load_state_dict(sd, strict=False)
322
+ print(f"Restored from {path}")
323
+
324
+ def encode(self, x):
325
+ h = self.encoder(x)
326
+ moments = self.quant_conv(h)
327
+ posterior = DiagonalGaussianDistribution(moments)
328
+ return posterior
329
+
330
+ def decode(self, z):
331
+ z = self.post_quant_conv(z)
332
+ dec = self.decoder(z)
333
+ return dec
334
+
335
+ def forward(self, input, sample_posterior=True):
336
+ posterior = self.encode(input)
337
+ if sample_posterior:
338
+ z = posterior.sample()
339
+ else:
340
+ z = posterior.mode()
341
+ dec = self.decode(z)
342
+ return dec, posterior
343
+
344
+ def get_input(self, batch, k):
345
+ x = batch[k]
346
+ if len(x.shape) == 3:
347
+ x = x[..., None]
348
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
349
+ return x
350
+
351
+ def training_step(self, batch, batch_idx, optimizer_idx):
352
+ inputs = self.get_input(batch, self.image_key)
353
+ reconstructions, posterior = self(inputs)
354
+
355
+ if optimizer_idx == 0:
356
+ # train encoder+decoder+logvar
357
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
358
+ last_layer=self.get_last_layer(), split="train")
359
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
360
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
361
+ return aeloss
362
+
363
+ if optimizer_idx == 1:
364
+ # train the discriminator
365
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
366
+ last_layer=self.get_last_layer(), split="train")
367
+
368
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
369
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
370
+ return discloss
371
+
372
+ def validation_step(self, batch, batch_idx):
373
+ inputs = self.get_input(batch, self.image_key)
374
+ reconstructions, posterior = self(inputs)
375
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
376
+ last_layer=self.get_last_layer(), split="val")
377
+
378
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
379
+ last_layer=self.get_last_layer(), split="val")
380
+
381
+ self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
382
+ self.log_dict(log_dict_ae)
383
+ self.log_dict(log_dict_disc)
384
+ return self.log_dict
385
+
386
+ def configure_optimizers(self):
387
+ lr = self.learning_rate
388
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
389
+ list(self.decoder.parameters())+
390
+ list(self.quant_conv.parameters())+
391
+ list(self.post_quant_conv.parameters()),
392
+ lr=lr, betas=(0.5, 0.9))
393
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
394
+ lr=lr, betas=(0.5, 0.9))
395
+ return [opt_ae, opt_disc], []
396
+
397
+ def get_last_layer(self):
398
+ return self.decoder.conv_out.weight
399
+
400
+ @torch.no_grad()
401
+ def log_images(self, batch, only_inputs=False, **kwargs):
402
+ log = dict()
403
+ x = self.get_input(batch, self.image_key)
404
+ x = x.to(self.device)
405
+ if not only_inputs:
406
+ xrec, posterior = self(x)
407
+ if x.shape[1] > 3:
408
+ # colorize with random projection
409
+ assert xrec.shape[1] > 3
410
+ x = self.to_rgb(x)
411
+ xrec = self.to_rgb(xrec)
412
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
413
+ log["reconstructions"] = xrec
414
+ log["inputs"] = x
415
+ return log
416
+
417
+ def to_rgb(self, x):
418
+ assert self.image_key == "segmentation"
419
+ if not hasattr(self, "colorize"):
420
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
421
+ x = F.conv2d(x, weight=self.colorize)
422
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
423
+ return x
424
+
425
+
426
+ class IdentityFirstStage(torch.nn.Module):
427
+ def __init__(self, *args, vq_interface=False, **kwargs):
428
+ self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
429
+ super().__init__()
430
+
431
+ def encode(self, x, *args, **kwargs):
432
+ return x
433
+
434
+ def decode(self, x, *args, **kwargs):
435
+ return x
436
+
437
+ def quantize(self, x, *args, **kwargs):
438
+ if self.vq_interface:
439
+ return x, None, [None, None, None]
440
+ return x
441
+
442
+ def forward(self, x, *args, **kwargs):
443
+ return x