Spaces:
Runtime error
Runtime error
- autoencoder.py +443 -0
autoencoder.py
ADDED
|
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import pytorch_lightning as pl
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from contextlib import contextmanager
|
| 5 |
+
|
| 6 |
+
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
| 7 |
+
|
| 8 |
+
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
| 9 |
+
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
| 10 |
+
|
| 11 |
+
from ldm.util import instantiate_from_config
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class VQModel(pl.LightningModule):
|
| 15 |
+
def __init__(self,
|
| 16 |
+
ddconfig,
|
| 17 |
+
lossconfig,
|
| 18 |
+
n_embed,
|
| 19 |
+
embed_dim,
|
| 20 |
+
ckpt_path=None,
|
| 21 |
+
ignore_keys=[],
|
| 22 |
+
image_key="image",
|
| 23 |
+
colorize_nlabels=None,
|
| 24 |
+
monitor=None,
|
| 25 |
+
batch_resize_range=None,
|
| 26 |
+
scheduler_config=None,
|
| 27 |
+
lr_g_factor=1.0,
|
| 28 |
+
remap=None,
|
| 29 |
+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
| 30 |
+
use_ema=False
|
| 31 |
+
):
|
| 32 |
+
super().__init__()
|
| 33 |
+
self.embed_dim = embed_dim
|
| 34 |
+
self.n_embed = n_embed
|
| 35 |
+
self.image_key = image_key
|
| 36 |
+
self.encoder = Encoder(**ddconfig)
|
| 37 |
+
self.decoder = Decoder(**ddconfig)
|
| 38 |
+
self.loss = instantiate_from_config(lossconfig)
|
| 39 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
| 40 |
+
remap=remap,
|
| 41 |
+
sane_index_shape=sane_index_shape)
|
| 42 |
+
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
| 43 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
| 44 |
+
if colorize_nlabels is not None:
|
| 45 |
+
assert type(colorize_nlabels)==int
|
| 46 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
| 47 |
+
if monitor is not None:
|
| 48 |
+
self.monitor = monitor
|
| 49 |
+
self.batch_resize_range = batch_resize_range
|
| 50 |
+
if self.batch_resize_range is not None:
|
| 51 |
+
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
| 52 |
+
|
| 53 |
+
self.use_ema = use_ema
|
| 54 |
+
if self.use_ema:
|
| 55 |
+
self.model_ema = LitEma(self)
|
| 56 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
| 57 |
+
|
| 58 |
+
if ckpt_path is not None:
|
| 59 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
| 60 |
+
self.scheduler_config = scheduler_config
|
| 61 |
+
self.lr_g_factor = lr_g_factor
|
| 62 |
+
|
| 63 |
+
@contextmanager
|
| 64 |
+
def ema_scope(self, context=None):
|
| 65 |
+
if self.use_ema:
|
| 66 |
+
self.model_ema.store(self.parameters())
|
| 67 |
+
self.model_ema.copy_to(self)
|
| 68 |
+
if context is not None:
|
| 69 |
+
print(f"{context}: Switched to EMA weights")
|
| 70 |
+
try:
|
| 71 |
+
yield None
|
| 72 |
+
finally:
|
| 73 |
+
if self.use_ema:
|
| 74 |
+
self.model_ema.restore(self.parameters())
|
| 75 |
+
if context is not None:
|
| 76 |
+
print(f"{context}: Restored training weights")
|
| 77 |
+
|
| 78 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
| 79 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
| 80 |
+
keys = list(sd.keys())
|
| 81 |
+
for k in keys:
|
| 82 |
+
for ik in ignore_keys:
|
| 83 |
+
if k.startswith(ik):
|
| 84 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 85 |
+
del sd[k]
|
| 86 |
+
missing, unexpected = self.load_state_dict(sd, strict=False)
|
| 87 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
| 88 |
+
if len(missing) > 0:
|
| 89 |
+
print(f"Missing Keys: {missing}")
|
| 90 |
+
print(f"Unexpected Keys: {unexpected}")
|
| 91 |
+
|
| 92 |
+
def on_train_batch_end(self, *args, **kwargs):
|
| 93 |
+
if self.use_ema:
|
| 94 |
+
self.model_ema(self)
|
| 95 |
+
|
| 96 |
+
def encode(self, x):
|
| 97 |
+
h = self.encoder(x)
|
| 98 |
+
h = self.quant_conv(h)
|
| 99 |
+
quant, emb_loss, info = self.quantize(h)
|
| 100 |
+
return quant, emb_loss, info
|
| 101 |
+
|
| 102 |
+
def encode_to_prequant(self, x):
|
| 103 |
+
h = self.encoder(x)
|
| 104 |
+
h = self.quant_conv(h)
|
| 105 |
+
return h
|
| 106 |
+
|
| 107 |
+
def decode(self, quant):
|
| 108 |
+
quant = self.post_quant_conv(quant)
|
| 109 |
+
dec = self.decoder(quant)
|
| 110 |
+
return dec
|
| 111 |
+
|
| 112 |
+
def decode_code(self, code_b):
|
| 113 |
+
quant_b = self.quantize.embed_code(code_b)
|
| 114 |
+
dec = self.decode(quant_b)
|
| 115 |
+
return dec
|
| 116 |
+
|
| 117 |
+
def forward(self, input, return_pred_indices=False):
|
| 118 |
+
quant, diff, (_,_,ind) = self.encode(input)
|
| 119 |
+
dec = self.decode(quant)
|
| 120 |
+
if return_pred_indices:
|
| 121 |
+
return dec, diff, ind
|
| 122 |
+
return dec, diff
|
| 123 |
+
|
| 124 |
+
def get_input(self, batch, k):
|
| 125 |
+
x = batch[k]
|
| 126 |
+
if len(x.shape) == 3:
|
| 127 |
+
x = x[..., None]
|
| 128 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
| 129 |
+
if self.batch_resize_range is not None:
|
| 130 |
+
lower_size = self.batch_resize_range[0]
|
| 131 |
+
upper_size = self.batch_resize_range[1]
|
| 132 |
+
if self.global_step <= 4:
|
| 133 |
+
# do the first few batches with max size to avoid later oom
|
| 134 |
+
new_resize = upper_size
|
| 135 |
+
else:
|
| 136 |
+
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
| 137 |
+
if new_resize != x.shape[2]:
|
| 138 |
+
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
| 139 |
+
x = x.detach()
|
| 140 |
+
return x
|
| 141 |
+
|
| 142 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
| 143 |
+
# https://github.com/pytorch/pytorch/issues/37142
|
| 144 |
+
# try not to fool the heuristics
|
| 145 |
+
x = self.get_input(batch, self.image_key)
|
| 146 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
| 147 |
+
|
| 148 |
+
if optimizer_idx == 0:
|
| 149 |
+
# autoencode
|
| 150 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
| 151 |
+
last_layer=self.get_last_layer(), split="train",
|
| 152 |
+
predicted_indices=ind)
|
| 153 |
+
|
| 154 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
| 155 |
+
return aeloss
|
| 156 |
+
|
| 157 |
+
if optimizer_idx == 1:
|
| 158 |
+
# discriminator
|
| 159 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
| 160 |
+
last_layer=self.get_last_layer(), split="train")
|
| 161 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
| 162 |
+
return discloss
|
| 163 |
+
|
| 164 |
+
def validation_step(self, batch, batch_idx):
|
| 165 |
+
log_dict = self._validation_step(batch, batch_idx)
|
| 166 |
+
with self.ema_scope():
|
| 167 |
+
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
| 168 |
+
return log_dict
|
| 169 |
+
|
| 170 |
+
def _validation_step(self, batch, batch_idx, suffix=""):
|
| 171 |
+
x = self.get_input(batch, self.image_key)
|
| 172 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
| 173 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
| 174 |
+
self.global_step,
|
| 175 |
+
last_layer=self.get_last_layer(),
|
| 176 |
+
split="val"+suffix,
|
| 177 |
+
predicted_indices=ind
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
| 181 |
+
self.global_step,
|
| 182 |
+
last_layer=self.get_last_layer(),
|
| 183 |
+
split="val"+suffix,
|
| 184 |
+
predicted_indices=ind
|
| 185 |
+
)
|
| 186 |
+
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
| 187 |
+
self.log(f"val{suffix}/rec_loss", rec_loss,
|
| 188 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
| 189 |
+
self.log(f"val{suffix}/aeloss", aeloss,
|
| 190 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
| 191 |
+
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
| 192 |
+
del log_dict_ae[f"val{suffix}/rec_loss"]
|
| 193 |
+
self.log_dict(log_dict_ae)
|
| 194 |
+
self.log_dict(log_dict_disc)
|
| 195 |
+
return self.log_dict
|
| 196 |
+
|
| 197 |
+
def configure_optimizers(self):
|
| 198 |
+
lr_d = self.learning_rate
|
| 199 |
+
lr_g = self.lr_g_factor*self.learning_rate
|
| 200 |
+
print("lr_d", lr_d)
|
| 201 |
+
print("lr_g", lr_g)
|
| 202 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
| 203 |
+
list(self.decoder.parameters())+
|
| 204 |
+
list(self.quantize.parameters())+
|
| 205 |
+
list(self.quant_conv.parameters())+
|
| 206 |
+
list(self.post_quant_conv.parameters()),
|
| 207 |
+
lr=lr_g, betas=(0.5, 0.9))
|
| 208 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
| 209 |
+
lr=lr_d, betas=(0.5, 0.9))
|
| 210 |
+
|
| 211 |
+
if self.scheduler_config is not None:
|
| 212 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
| 213 |
+
|
| 214 |
+
print("Setting up LambdaLR scheduler...")
|
| 215 |
+
scheduler = [
|
| 216 |
+
{
|
| 217 |
+
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
| 218 |
+
'interval': 'step',
|
| 219 |
+
'frequency': 1
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
| 223 |
+
'interval': 'step',
|
| 224 |
+
'frequency': 1
|
| 225 |
+
},
|
| 226 |
+
]
|
| 227 |
+
return [opt_ae, opt_disc], scheduler
|
| 228 |
+
return [opt_ae, opt_disc], []
|
| 229 |
+
|
| 230 |
+
def get_last_layer(self):
|
| 231 |
+
return self.decoder.conv_out.weight
|
| 232 |
+
|
| 233 |
+
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
| 234 |
+
log = dict()
|
| 235 |
+
x = self.get_input(batch, self.image_key)
|
| 236 |
+
x = x.to(self.device)
|
| 237 |
+
if only_inputs:
|
| 238 |
+
log["inputs"] = x
|
| 239 |
+
return log
|
| 240 |
+
xrec, _ = self(x)
|
| 241 |
+
if x.shape[1] > 3:
|
| 242 |
+
# colorize with random projection
|
| 243 |
+
assert xrec.shape[1] > 3
|
| 244 |
+
x = self.to_rgb(x)
|
| 245 |
+
xrec = self.to_rgb(xrec)
|
| 246 |
+
log["inputs"] = x
|
| 247 |
+
log["reconstructions"] = xrec
|
| 248 |
+
if plot_ema:
|
| 249 |
+
with self.ema_scope():
|
| 250 |
+
xrec_ema, _ = self(x)
|
| 251 |
+
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
| 252 |
+
log["reconstructions_ema"] = xrec_ema
|
| 253 |
+
return log
|
| 254 |
+
|
| 255 |
+
def to_rgb(self, x):
|
| 256 |
+
assert self.image_key == "segmentation"
|
| 257 |
+
if not hasattr(self, "colorize"):
|
| 258 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
| 259 |
+
x = F.conv2d(x, weight=self.colorize)
|
| 260 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
| 261 |
+
return x
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
class VQModelInterface(VQModel):
|
| 265 |
+
def __init__(self, embed_dim, *args, **kwargs):
|
| 266 |
+
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
| 267 |
+
self.embed_dim = embed_dim
|
| 268 |
+
|
| 269 |
+
def encode(self, x):
|
| 270 |
+
h = self.encoder(x)
|
| 271 |
+
h = self.quant_conv(h)
|
| 272 |
+
return h
|
| 273 |
+
|
| 274 |
+
def decode(self, h, force_not_quantize=False):
|
| 275 |
+
# also go through quantization layer
|
| 276 |
+
if not force_not_quantize:
|
| 277 |
+
quant, emb_loss, info = self.quantize(h)
|
| 278 |
+
else:
|
| 279 |
+
quant = h
|
| 280 |
+
quant = self.post_quant_conv(quant)
|
| 281 |
+
dec = self.decoder(quant)
|
| 282 |
+
return dec
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
class AutoencoderKL(pl.LightningModule):
|
| 286 |
+
def __init__(self,
|
| 287 |
+
ddconfig,
|
| 288 |
+
lossconfig,
|
| 289 |
+
embed_dim,
|
| 290 |
+
ckpt_path=None,
|
| 291 |
+
ignore_keys=[],
|
| 292 |
+
image_key="image",
|
| 293 |
+
colorize_nlabels=None,
|
| 294 |
+
monitor=None,
|
| 295 |
+
):
|
| 296 |
+
super().__init__()
|
| 297 |
+
self.image_key = image_key
|
| 298 |
+
self.encoder = Encoder(**ddconfig)
|
| 299 |
+
self.decoder = Decoder(**ddconfig)
|
| 300 |
+
self.loss = instantiate_from_config(lossconfig)
|
| 301 |
+
assert ddconfig["double_z"]
|
| 302 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
| 303 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
| 304 |
+
self.embed_dim = embed_dim
|
| 305 |
+
if colorize_nlabels is not None:
|
| 306 |
+
assert type(colorize_nlabels)==int
|
| 307 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
| 308 |
+
if monitor is not None:
|
| 309 |
+
self.monitor = monitor
|
| 310 |
+
if ckpt_path is not None:
|
| 311 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
| 312 |
+
|
| 313 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
| 314 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
| 315 |
+
keys = list(sd.keys())
|
| 316 |
+
for k in keys:
|
| 317 |
+
for ik in ignore_keys:
|
| 318 |
+
if k.startswith(ik):
|
| 319 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 320 |
+
del sd[k]
|
| 321 |
+
self.load_state_dict(sd, strict=False)
|
| 322 |
+
print(f"Restored from {path}")
|
| 323 |
+
|
| 324 |
+
def encode(self, x):
|
| 325 |
+
h = self.encoder(x)
|
| 326 |
+
moments = self.quant_conv(h)
|
| 327 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 328 |
+
return posterior
|
| 329 |
+
|
| 330 |
+
def decode(self, z):
|
| 331 |
+
z = self.post_quant_conv(z)
|
| 332 |
+
dec = self.decoder(z)
|
| 333 |
+
return dec
|
| 334 |
+
|
| 335 |
+
def forward(self, input, sample_posterior=True):
|
| 336 |
+
posterior = self.encode(input)
|
| 337 |
+
if sample_posterior:
|
| 338 |
+
z = posterior.sample()
|
| 339 |
+
else:
|
| 340 |
+
z = posterior.mode()
|
| 341 |
+
dec = self.decode(z)
|
| 342 |
+
return dec, posterior
|
| 343 |
+
|
| 344 |
+
def get_input(self, batch, k):
|
| 345 |
+
x = batch[k]
|
| 346 |
+
if len(x.shape) == 3:
|
| 347 |
+
x = x[..., None]
|
| 348 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
| 349 |
+
return x
|
| 350 |
+
|
| 351 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
| 352 |
+
inputs = self.get_input(batch, self.image_key)
|
| 353 |
+
reconstructions, posterior = self(inputs)
|
| 354 |
+
|
| 355 |
+
if optimizer_idx == 0:
|
| 356 |
+
# train encoder+decoder+logvar
|
| 357 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
| 358 |
+
last_layer=self.get_last_layer(), split="train")
|
| 359 |
+
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
| 360 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
| 361 |
+
return aeloss
|
| 362 |
+
|
| 363 |
+
if optimizer_idx == 1:
|
| 364 |
+
# train the discriminator
|
| 365 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
| 366 |
+
last_layer=self.get_last_layer(), split="train")
|
| 367 |
+
|
| 368 |
+
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
| 369 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
| 370 |
+
return discloss
|
| 371 |
+
|
| 372 |
+
def validation_step(self, batch, batch_idx):
|
| 373 |
+
inputs = self.get_input(batch, self.image_key)
|
| 374 |
+
reconstructions, posterior = self(inputs)
|
| 375 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
| 376 |
+
last_layer=self.get_last_layer(), split="val")
|
| 377 |
+
|
| 378 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
| 379 |
+
last_layer=self.get_last_layer(), split="val")
|
| 380 |
+
|
| 381 |
+
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
| 382 |
+
self.log_dict(log_dict_ae)
|
| 383 |
+
self.log_dict(log_dict_disc)
|
| 384 |
+
return self.log_dict
|
| 385 |
+
|
| 386 |
+
def configure_optimizers(self):
|
| 387 |
+
lr = self.learning_rate
|
| 388 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
| 389 |
+
list(self.decoder.parameters())+
|
| 390 |
+
list(self.quant_conv.parameters())+
|
| 391 |
+
list(self.post_quant_conv.parameters()),
|
| 392 |
+
lr=lr, betas=(0.5, 0.9))
|
| 393 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
| 394 |
+
lr=lr, betas=(0.5, 0.9))
|
| 395 |
+
return [opt_ae, opt_disc], []
|
| 396 |
+
|
| 397 |
+
def get_last_layer(self):
|
| 398 |
+
return self.decoder.conv_out.weight
|
| 399 |
+
|
| 400 |
+
@torch.no_grad()
|
| 401 |
+
def log_images(self, batch, only_inputs=False, **kwargs):
|
| 402 |
+
log = dict()
|
| 403 |
+
x = self.get_input(batch, self.image_key)
|
| 404 |
+
x = x.to(self.device)
|
| 405 |
+
if not only_inputs:
|
| 406 |
+
xrec, posterior = self(x)
|
| 407 |
+
if x.shape[1] > 3:
|
| 408 |
+
# colorize with random projection
|
| 409 |
+
assert xrec.shape[1] > 3
|
| 410 |
+
x = self.to_rgb(x)
|
| 411 |
+
xrec = self.to_rgb(xrec)
|
| 412 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
| 413 |
+
log["reconstructions"] = xrec
|
| 414 |
+
log["inputs"] = x
|
| 415 |
+
return log
|
| 416 |
+
|
| 417 |
+
def to_rgb(self, x):
|
| 418 |
+
assert self.image_key == "segmentation"
|
| 419 |
+
if not hasattr(self, "colorize"):
|
| 420 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
| 421 |
+
x = F.conv2d(x, weight=self.colorize)
|
| 422 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
| 423 |
+
return x
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
class IdentityFirstStage(torch.nn.Module):
|
| 427 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
| 428 |
+
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
| 429 |
+
super().__init__()
|
| 430 |
+
|
| 431 |
+
def encode(self, x, *args, **kwargs):
|
| 432 |
+
return x
|
| 433 |
+
|
| 434 |
+
def decode(self, x, *args, **kwargs):
|
| 435 |
+
return x
|
| 436 |
+
|
| 437 |
+
def quantize(self, x, *args, **kwargs):
|
| 438 |
+
if self.vq_interface:
|
| 439 |
+
return x, None, [None, None, None]
|
| 440 |
+
return x
|
| 441 |
+
|
| 442 |
+
def forward(self, x, *args, **kwargs):
|
| 443 |
+
return x
|