Spaces:
Runtime error
Runtime error
## **** below codelines are borrowed from multimodalart space | |
from pydoc import describe | |
import gradio as gr | |
import torch | |
from omegaconf import OmegaConf | |
import sys | |
sys.path.append(".") | |
sys.path.append('./taming-transformers') | |
#sys.path.append('./latent-diffusion') | |
from taming.models import vqgan | |
from util import instantiate_from_config | |
from huggingface_hub import hf_hub_download | |
model_path_e = hf_hub_download(repo_id="multimodalart/compvis-latent-diffusion-text2img-large", filename="txt2img-f8-large.ckpt") | |
#@title Import stuff | |
import argparse, os, sys, glob | |
import numpy as np | |
from PIL import Image | |
from einops import rearrange | |
from torchvision.utils import make_grid | |
import transformers | |
import gc | |
from util import instantiate_from_config | |
from ddim import DDIMSampler | |
from plms import PLMSSampler | |
from open_clip import tokenizer | |
import open_clip | |
def load_model_from_config(config, ckpt, verbose=False): | |
print(f"Loading model from {ckpt}") | |
#pl_sd = torch.load(ckpt, map_location="cuda") | |
#please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU. | |
pl_sd = torch.load(ckpt, map_location=torch.device('cpu')) | |
sd = pl_sd["state_dict"] | |
model = instantiate_from_config(config.model) | |
m, u = model.load_state_dict(sd, strict=False) | |
if len(m) > 0 and verbose: | |
print("missing keys:") | |
print(m) | |
if len(u) > 0 and verbose: | |
print("unexpected keys:") | |
print(u) | |
#model = model.half() #.cuda() | |
model.eval() | |
return model | |
def load_safety_model(clip_model): | |
"""load the safety model""" | |
import autokeras as ak # pylint: disable=import-outside-toplevel | |
from tensorflow.keras.models import load_model # pylint: disable=import-outside-toplevel | |
from os.path import expanduser # pylint: disable=import-outside-toplevel | |
home = expanduser("~") | |
cache_folder = home + "/.cache/clip_retrieval/" + clip_model.replace("/", "_") | |
if clip_model == "ViT-L/14": | |
model_dir = cache_folder + "/clip_autokeras_binary_nsfw" | |
dim = 768 | |
elif clip_model == "ViT-B/32": | |
model_dir = cache_folder + "/clip_autokeras_nsfw_b32" | |
dim = 512 | |
else: | |
raise ValueError("Unknown clip model") | |
if not os.path.exists(model_dir): | |
os.makedirs(cache_folder, exist_ok=True) | |
from urllib.request import urlretrieve # pylint: disable=import-outside-toplevel | |
path_to_zip_file = cache_folder + "/clip_autokeras_binary_nsfw.zip" | |
if clip_model == "ViT-L/14": | |
url_model = "https://raw.githubusercontent.com/LAION-AI/CLIP-based-NSFW-Detector/main/clip_autokeras_binary_nsfw.zip" | |
elif clip_model == "ViT-B/32": | |
url_model = ( | |
"https://raw.githubusercontent.com/LAION-AI/CLIP-based-NSFW-Detector/main/clip_autokeras_nsfw_b32.zip" | |
) | |
else: | |
raise ValueError("Unknown model {}".format(clip_model)) | |
urlretrieve(url_model, path_to_zip_file) | |
import zipfile # pylint: disable=import-outside-toplevel | |
with zipfile.ZipFile(path_to_zip_file, "r") as zip_ref: | |
zip_ref.extractall(cache_folder) | |
loaded_model = load_model(model_dir, custom_objects=ak.CUSTOM_OBJECTS) | |
loaded_model.predict(np.random.rand(10 ** 3, dim).astype("float32"), batch_size=10 ** 3) | |
return loaded_model | |
def is_unsafe(safety_model, embeddings, threshold=0.5): | |
"""find unsafe embeddings""" | |
nsfw_values = safety_model.predict(embeddings, batch_size=embeddings.shape[0]) | |
x = np.array([e[0] for e in nsfw_values]) | |
return True if x > threshold else False | |
config = OmegaConf.load("./txt2img-1p4B-eval.yaml") | |
model = load_model_from_config(config,model_path_e) | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = model.to(device) | |
#NSFW CLIP Filter | |
safety_model = load_safety_model("ViT-B/32") | |
clip_model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='openai') | |
def run(prompt, steps, width, height, images, scale): | |
opt = argparse.Namespace( | |
prompt = prompt, | |
###outdir='./outputs', | |
ddim_steps = int(steps), | |
ddim_eta = 1, | |
n_iter = 1, | |
W=int(width), | |
H=int(height), | |
n_samples=int(images), | |
scale=scale, | |
plms=False | |
) | |
if opt.plms: | |
opt.ddim_eta = 0 | |
sampler = PLMSSampler(model) | |
else: | |
sampler = DDIMSampler(model) | |
###os.makedirs(opt.outdir, exist_ok=True) | |
###outpath = opt.outdir | |
prompt = opt.prompt | |
###sample_path = os.path.join(outpath, "samples") | |
###os.makedirs(sample_path, exist_ok=True) | |
###base_count = len(os.listdir(sample_path)) | |
all_samples=list() | |
all_samples_images=list() | |
with torch.no_grad(): | |
with torch.cuda.amp.autocast(): | |
with model.ema_scope(): | |
uc = None | |
if opt.scale > 0: | |
uc = model.get_learned_conditioning(opt.n_samples * [""]) | |
for n in range(opt.n_iter): | |
c = model.get_learned_conditioning(opt.n_samples * [prompt]) | |
shape = [4, opt.H//8, opt.W//8] | |
samples_ddim, _ = sampler.sample(S=opt.ddim_steps, | |
conditioning=c, | |
batch_size=opt.n_samples, | |
shape=shape, | |
verbose=False, | |
unconditional_guidance_scale=opt.scale, | |
unconditional_conditioning=uc, | |
eta=opt.ddim_eta) | |
x_samples_ddim = model.decode_first_stage(samples_ddim) | |
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) | |
for x_sample in x_samples_ddim: | |
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') | |
image_vector = Image.fromarray(x_sample.astype(np.uint8)) | |
image_preprocess = preprocess(image_vector).unsqueeze(0) | |
with torch.no_grad(): | |
image_features = clip_model.encode_image(image_preprocess) | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
query = image_features.cpu().detach().numpy().astype("float32") | |
unsafe = is_unsafe(safety_model,query,0.5) | |
if(not unsafe): | |
all_samples_images.append(image_vector) | |
else: | |
return(None,None,"Sorry, potential NSFW content was detected on your outputs by our NSFW detection model. Try again with different prompts. If you feel your prompt was not supposed to give NSFW outputs, this may be due to a bias in the model. Read more about biases in the Biases Acknowledgment section below.") | |
#Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:04}.png")) | |
###base_count += 1 | |
all_samples.append(x_samples_ddim) | |
# additionally, save as grid | |
grid = torch.stack(all_samples, 0) | |
grid = rearrange(grid, 'n b c h w -> (n b) c h w') | |
grid = make_grid(grid, nrow=2) | |
# to image | |
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() | |
###Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'{prompt.replace(" ", "-")}.png')) | |
#return(Image.fromarray(grid.astype(np.uint8)),all_samples_images,None) | |
return Image.fromarray(grid.astype(np.uint8)) | |
## **** above codelines are borrowed from multimodalart space | |
import gradio as gr | |
fastspeech = gr.Interface.load("huggingface/facebook/fastspeech2-en-ljspeech") | |
def text2speech(text): | |
return fastspeech(text) | |
def engine(text_input): | |
#ner = gr.Interface.load("huggingface/flair/ner-english-ontonotes-large") | |
#entities = ner(text_input) | |
#entities = [tupl for tupl in entities if None not in tupl] | |
#entities_num = len(entities) | |
img = run(text_input,'50','256','256','1',10) #entities[0][0] | |
#img_intfc = gr.Interface.load("spaces/multimodalart/latentdiffusion") | |
#img_intfc = gr.Interface.load("spaces/multimodalart/latentdiffusion", inputs=[gr.inputs.Textbox(lines=1, label="Input Text"), gr.inputs.Textbox(lines=1, label="Input Text"), gr.inputs.Textbox(lines=1, label="Input Text"), gr.inputs.Textbox(lines=1, label="Input Text"), gr.inputs.Textbox(lines=1, label="Input Text"), gr.inputs.Textbox(lines=1, label="Input Text")], | |
#outputs=[gr.outputs.Image(type="pil", label="output image"),gr.outputs.Carousel(label="Individual images",components=["image"]),gr.outputs.Textbox(label="Error")], ) | |
#title="Convert text to image") | |
#img = img_intfc[0] | |
#img = img_intfc('George','50','256','256','1','10') | |
#img = img[0] | |
#inputs=['George',50,256,256,1,10] | |
#run(prompt, steps, width, height, images, scale) | |
#speech = text2speech(text_input) | |
return img #entities, speech, img | |
app = gr.Interface(fn=engine, | |
inputs=gr.inputs.Textbox(lines=5, label="Input Text"), | |
#live=True, | |
description="Takes a text as input and reads it out to you.", | |
outputs=image, | |
#outputs=[#gr.outputs.Textbox(type="auto", label="Text"),gr.outputs.Audio(type="file", label="Speech Answer"), | |
# gr.outputs.Image(type="auto", label="output image")], | |
examples=["On April 17th Sunday George celebrated Easter. He is staying at Empire State building with his parents. He is a citizen of Canada and speaks English and French fluently. His role model is former president Obama. He got 1000 dollar from his mother to visit Disney World and to buy new iPhone mobile. George likes watching Game of Thrones."] | |
).launch(debug=True) | |
#get_audio = gr.Button("generate audio") | |
#get_audio.click(text2speech, inputs=text, outputs=speech) | |
#def greet(name): | |
# return "Hello " + name + "!!" | |
#iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
#iface.launch() |