File size: 3,803 Bytes
b6fa3b6
 
c1ab599
 
b6fa3b6
 
4005ef3
 
d02b0d1
f04732f
f4ce971
7377d18
 
0350d76
 
 
7377d18
 
4005ef3
7377d18
4005ef3
6a5acea
00979a8
 
6a5acea
d02b0d1
6c67d55
b6fa3b6
f04732f
 
73e0a52
 
d5fb61d
b6fa3b6
 
 
 
 
d5fb61d
 
 
 
b6fa3b6
 
1117f0e
8eae1e0
 
c56aaaf
1117f0e
70f2766
c56aaaf
b6fa3b6
73e0a52
70f2766
 
b6fa3b6
74d7dfe
b6fa3b6
d5fb61d
70f2766
 
b6fa3b6
70f2766
 
58cf028
73e0a52
f04732f
 
7377d18
 
 
 
b6fa3b6
4005ef3
b6fa3b6
 
c1ab599
b6fa3b6
7377d18
 
 
910952c
7377d18
50def22
73e0a52
c56aaaf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import gradio as gr
import torch

from threading import Thread
from PIL import Image
from transformers import TextIteratorStreamer
from transformers import LlavaNextForConditionalGeneration, LlavaNextProcessor
from PIL import Image

import spaces

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <img src="https://raw.githubusercontent.com/huggingface/blog/09dbdfd196a3112ecbb533fc0b6c700571cbc753/assets/179_falcon2-11b/thumbnail.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55;  "> 
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Falcon2-11B-VLM</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Falcon2-11B-VLM is an 11B parameters causal decoder-only model built by TII</p>
</div>
"""
model_id = "tiiuae/falcon-11B-vlm"

processor = LlavaNextProcessor.from_pretrained("tiiuae/falcon-11B-vlm", tokenizer_class='PreTrainedTokenizerFast')
model = LlavaNextForConditionalGeneration.from_pretrained("tiiuae/falcon-11B-vlm", 
                                                          torch_dtype=torch.bfloat16,
                                                          #torch_dtype=torch.float16,
                                                          low_cpu_mem_usage=True,)

model.to("cuda:0")

@spaces.GPU
def bot_streaming(message, history):
    print(f'message is - {message}')
    print(f'history is - {history}')
    if message["files"]:
        # message["files"][-1] is a Dict or just a string
        if type(message["files"][-1]) == dict:
            image = message["files"][-1]["path"]
        else:
            image = message["files"][-1]
    else:
        # if there's no image uploaded for this turn, look for images in the past turns
        # kept inside tuples, take the last one
        for hist in history:
            if type(hist[0]) == tuple:
                image = hist[0][0]
    try:
        if image is None:
            # Handle the case where image is None
            raise gr.Error("You need to upload an image for FalconVLM to work. Close the error and try again with an Image.")
    except NameError:
        # Handle the case where 'image' is not defined at all
        raise gr.Error("You need to upload an image for FalconVLM to work. Close the error and try again with an Image.")

    prompt = f"""User:<image>\n{message['text']} Falcon:"""
    image = Image.open(image)
    inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)

    streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True})
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer


chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
with gr.Blocks(fill_height=True, ) as demo:
    gr.ChatInterface(
    fn=bot_streaming,
    title="FalconVLM",
    examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
              {"text": "How to make this pastry?", "files": ["./baklava.png"]}],
    description="Try [tiiuae/falcon-11B-VLM](https://huggingface.co/tiiuae/falcon-11B-vlm). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error. This is not the official demo.",
    stop_btn="Stop Generation",
    multimodal=True,
    textbox=chat_input,
    chatbot=chatbot,
    cache_examples=False,
    )

demo.queue()
demo.launch()