Spaces:
Runtime error
Runtime error
File size: 3,803 Bytes
b6fa3b6 c1ab599 b6fa3b6 4005ef3 d02b0d1 f04732f f4ce971 7377d18 0350d76 7377d18 4005ef3 7377d18 4005ef3 6a5acea 00979a8 6a5acea d02b0d1 6c67d55 b6fa3b6 f04732f 73e0a52 d5fb61d b6fa3b6 d5fb61d b6fa3b6 1117f0e 8eae1e0 c56aaaf 1117f0e 70f2766 c56aaaf b6fa3b6 73e0a52 70f2766 b6fa3b6 74d7dfe b6fa3b6 d5fb61d 70f2766 b6fa3b6 70f2766 58cf028 73e0a52 f04732f 7377d18 b6fa3b6 4005ef3 b6fa3b6 c1ab599 b6fa3b6 7377d18 910952c 7377d18 50def22 73e0a52 c56aaaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import gradio as gr
import torch
from threading import Thread
from PIL import Image
from transformers import TextIteratorStreamer
from transformers import LlavaNextForConditionalGeneration, LlavaNextProcessor
from PIL import Image
import spaces
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://raw.githubusercontent.com/huggingface/blog/09dbdfd196a3112ecbb533fc0b6c700571cbc753/assets/179_falcon2-11b/thumbnail.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Falcon2-11B-VLM</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Falcon2-11B-VLM is an 11B parameters causal decoder-only model built by TII</p>
</div>
"""
model_id = "tiiuae/falcon-11B-vlm"
processor = LlavaNextProcessor.from_pretrained("tiiuae/falcon-11B-vlm", tokenizer_class='PreTrainedTokenizerFast')
model = LlavaNextForConditionalGeneration.from_pretrained("tiiuae/falcon-11B-vlm",
torch_dtype=torch.bfloat16,
#torch_dtype=torch.float16,
low_cpu_mem_usage=True,)
model.to("cuda:0")
@spaces.GPU
def bot_streaming(message, history):
print(f'message is - {message}')
print(f'history is - {history}')
if message["files"]:
# message["files"][-1] is a Dict or just a string
if type(message["files"][-1]) == dict:
image = message["files"][-1]["path"]
else:
image = message["files"][-1]
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
try:
if image is None:
# Handle the case where image is None
raise gr.Error("You need to upload an image for FalconVLM to work. Close the error and try again with an Image.")
except NameError:
# Handle the case where 'image' is not defined at all
raise gr.Error("You need to upload an image for FalconVLM to work. Close the error and try again with an Image.")
prompt = f"""User:<image>\n{message['text']} Falcon:"""
image = Image.open(image)
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
with gr.Blocks(fill_height=True, ) as demo:
gr.ChatInterface(
fn=bot_streaming,
title="FalconVLM",
examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
{"text": "How to make this pastry?", "files": ["./baklava.png"]}],
description="Try [tiiuae/falcon-11B-VLM](https://huggingface.co/tiiuae/falcon-11B-vlm). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error. This is not the official demo.",
stop_btn="Stop Generation",
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
cache_examples=False,
)
demo.queue()
demo.launch() |