Spaces:
Runtime error
Runtime error
| import os | |
| from glob import glob | |
| import cv2 | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| from torchvision import transforms | |
| import gradio as gr | |
| import spaces | |
| from gradio_imageslider import ImageSlider | |
| torch.jit.script = lambda f: f | |
| from models.baseline import BiRefNet | |
| from config import Config | |
| config = Config() | |
| device = config.device | |
| def array_to_pil_image(image, size=(1024, 1024)): | |
| image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR) | |
| image = Image.fromarray(image).convert('RGB') | |
| return image | |
| class ImagePreprocessor(): | |
| def __init__(self, resolution=(1024, 1024)) -> None: | |
| self.transform_image = transforms.Compose([ | |
| # transforms.Resize(resolution), # 1. keep consistent with the cv2.resize used in training 2. redundant with that in path_to_image() | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ]) | |
| def proc(self, image): | |
| image = self.transform_image(image) | |
| return image | |
| model = BiRefNet(bb_pretrained=False) | |
| state_dict = './BiRefNet_ep580.pth' | |
| if os.path.exists(state_dict): | |
| birefnet_dict = torch.load(state_dict, map_location="cpu") | |
| unwanted_prefix = '_orig_mod.' | |
| for k, v in list(birefnet_dict.items()): | |
| if k.startswith(unwanted_prefix): | |
| birefnet_dict[k[len(unwanted_prefix):]] = birefnet_dict.pop(k) | |
| model.load_state_dict(birefnet_dict) | |
| model = model.to(device) | |
| model.eval() | |
| # def predict(image_1, image_2): | |
| # images = [image_1, image_2] | |
| def predict(image, resolution): | |
| resolution = f"{image.shape[1]}x{image.shape[0]}" if resolution == '' else resolution | |
| # Image is a RGB numpy array. | |
| resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')] | |
| images = [image] | |
| image_shapes = [image.shape[:2] for image in images] | |
| images = [array_to_pil_image(image, resolution) for image in images] | |
| image_preprocessor = ImagePreprocessor(resolution=resolution) | |
| images_proc = [] | |
| for image in images: | |
| images_proc.append(image_preprocessor.proc(image)) | |
| images_proc = torch.cat([image_proc.unsqueeze(0) for image_proc in images_proc]) | |
| with torch.no_grad(): | |
| scaled_preds_tensor = model(images_proc.to(device))[-1].sigmoid() # BiRefNet needs an sigmoid activation outside the forward. | |
| preds = [] | |
| for image_shape, pred_tensor in zip(image_shapes, scaled_preds_tensor): | |
| if device == 'cuda': | |
| pred_tensor = pred_tensor.cpu() | |
| preds.append(torch.nn.functional.interpolate(pred_tensor.unsqueeze(0), size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy()) | |
| image_preds = [] | |
| for image, pred in zip(images, preds): | |
| image = image.resize(pred.shape[::-1]) | |
| pred = np.repeat(np.expand_dims(pred, axis=-1), 3, axis=-1) | |
| image_preds.append((pred * image).astype(np.uint8)) | |
| return image, image_preds[0] | |
| examples = [[_] for _ in glob('materials/examples/*')][:] | |
| # Add the option of resolution in a text box. | |
| for idx_example, example in enumerate(examples): | |
| examples[idx_example].append('1024x1024') | |
| examples.append(examples[-1].copy()) | |
| examples[-1][1] = '512x512' | |
| demo = gr.Interface( | |
| fn=predict, | |
| inputs=['image', gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `512x512`. Higher resolutions can be much slower for inference.", label="Resolution")], | |
| outputs=ImageSlider(), | |
| examples=examples, | |
| title='Online demo for `Bilateral Reference for High-Resolution Dichotomous Image Segmentation`', | |
| description=('Upload a picture, our model will give you the binary maps of the highly accurate segmentation of the salient objects in it. :)' | |
| '\nThe resolution used in our training was `1024x1024`, which is too much burden for the huggingface free spaces like this one (cost nearly 40s). Please set resolution as more than `768x768` for images with many texture details to obtain good results!\n Ours codes can be found at https://github.com/ZhengPeng7/BiRefNet.') | |
| ) | |
| demo.launch(debug=True) | |