Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ PyTorch OPT model.""" | |
| import random | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
| from transformers.activations import ACT2FN | |
| # from ...activations import ACT2FN | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutputWithPast, | |
| CausalLMOutputWithPast, | |
| QuestionAnsweringModelOutput, | |
| SequenceClassifierOutputWithPast, | |
| ) | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.utils import ( | |
| add_code_sample_docstrings, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| logging, | |
| replace_return_docstrings, | |
| ) | |
| from transformers.models.opt.configuration_opt import OPTConfig | |
| # from .configuration_opt | |
| logger = logging.get_logger(__name__) | |
| _CHECKPOINT_FOR_DOC = "facebook/opt-350m" | |
| _CONFIG_FOR_DOC = "OPTConfig" | |
| # Base model docstring | |
| _EXPECTED_OUTPUT_SHAPE = [1, 8, 1024] | |
| # SequenceClassification docstring | |
| _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ArthurZ/opt-350m-dummy-sc" | |
| _SEQ_CLASS_EXPECTED_LOSS = 1.71 | |
| _SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'" | |
| OPT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "facebook/opt-125m", | |
| "facebook/opt-350m", | |
| "facebook/opt-1.3b", | |
| "facebook/opt-2.7b", | |
| "facebook/opt-6.7b", | |
| "facebook/opt-13b", | |
| "facebook/opt-30b", | |
| # See all OPT models at https://huggingface.co/models?filter=opt | |
| ] | |
| # Copied from transformers.models.bart.modeling_bart._make_causal_mask | |
| def _make_causal_mask( | |
| input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 | |
| ): | |
| """ | |
| Make causal mask used for bi-directional self-attention. | |
| """ | |
| bsz, tgt_len = input_ids_shape | |
| mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) | |
| mask_cond = torch.arange(mask.size(-1), device=device) | |
| mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
| mask = mask.to(dtype) | |
| if past_key_values_length > 0: | |
| mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | |
| return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | |
| def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
| """ | |
| Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
| """ | |
| bsz, src_len = mask.size() | |
| tgt_len = tgt_len if tgt_len is not None else src_len | |
| expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
| inverted_mask = 1.0 - expanded_mask | |
| return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | |
| class OPTLearnedPositionalEmbedding(nn.Embedding): | |
| """ | |
| This module learns positional embeddings up to a fixed maximum size. | |
| """ | |
| def __init__(self, num_embeddings: int, embedding_dim: int): | |
| # OPT is set up so that if padding_idx is specified then offset the embedding ids by 2 | |
| # and adjust num_embeddings appropriately. Other models don't have this hack | |
| self.offset = 2 | |
| super().__init__(num_embeddings + self.offset, embedding_dim) | |
| def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0): | |
| """`input_ids_shape` is expected to be [bsz x seqlen].""" | |
| attention_mask = attention_mask.long() | |
| # create positions depending on attention_mask | |
| positions = (torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask).long() - 1 | |
| # cut positions if `past_key_values_length` is > 0 | |
| positions = positions[:, past_key_values_length:] | |
| return super().forward(positions + self.offset) | |
| class OPTAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| def __init__( | |
| self, | |
| embed_dim: int, | |
| num_heads: int, | |
| dropout: float = 0.0, | |
| is_decoder: bool = False, | |
| bias: bool = True, | |
| ): | |
| super().__init__() | |
| self.embed_dim = embed_dim | |
| self.num_heads = num_heads | |
| self.dropout = dropout | |
| self.head_dim = embed_dim // num_heads | |
| if (self.head_dim * num_heads) != self.embed_dim: | |
| raise ValueError( | |
| f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
| f" and `num_heads`: {num_heads})." | |
| ) | |
| self.scaling = self.head_dim**-0.5 | |
| self.is_decoder = is_decoder | |
| self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
| return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| key_value_states: Optional[torch.Tensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| layer_head_mask: Optional[torch.Tensor] = None, | |
| output_attentions: bool = False, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| """Input shape: Batch x Time x Channel""" | |
| # if key_value_states are provided this layer is used as a cross-attention layer | |
| # for the decoder | |
| is_cross_attention = key_value_states is not None | |
| bsz, tgt_len, _ = hidden_states.size() | |
| # get query proj | |
| query_states = self.q_proj(hidden_states) * self.scaling | |
| # get key, value proj | |
| if is_cross_attention and past_key_value is not None: | |
| # reuse k,v, cross_attentions | |
| key_states = past_key_value[0] | |
| value_states = past_key_value[1] | |
| elif is_cross_attention: | |
| # cross_attentions | |
| key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
| elif past_key_value is not None: | |
| # reuse k, v, self_attention | |
| key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
| key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
| value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
| else: | |
| # self_attention | |
| key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
| if self.is_decoder: | |
| # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
| # Further calls to cross_attention layer can then reuse all cross-attention | |
| # key/value_states (first "if" case) | |
| # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
| # all previous decoder key/value_states. Further calls to uni-directional self-attention | |
| # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
| # if encoder bi-directional self-attention `past_key_value` is always `None` | |
| past_key_value = (key_states, value_states) | |
| proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
| query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
| key_states = key_states.view(*proj_shape) | |
| value_states = value_states.view(*proj_shape) | |
| src_len = key_states.size(1) | |
| attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
| if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
| f" {attn_weights.size()}" | |
| ) | |
| if attention_mask is not None: | |
| if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
| ) | |
| attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
| attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| # upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437 | |
| if attn_weights.dtype == torch.float16: | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16) | |
| else: | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
| if layer_head_mask is not None: | |
| if layer_head_mask.size() != (self.num_heads,): | |
| raise ValueError( | |
| f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
| f" {layer_head_mask.size()}" | |
| ) | |
| attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| if output_attentions: | |
| # this operation is a bit awkward, but it's required to | |
| # make sure that attn_weights keeps its gradient. | |
| # In order to do so, attn_weights have to be reshaped | |
| # twice and have to be reused in the following | |
| attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
| else: | |
| attn_weights_reshaped = None | |
| attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
| attn_output = torch.bmm(attn_probs, value_states) | |
| if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
| f" {attn_output.size()}" | |
| ) | |
| attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
| attn_output = attn_output.transpose(1, 2) | |
| # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
| # partitioned aross GPUs when using tensor-parallelism. | |
| attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
| attn_output = self.out_proj(attn_output) | |
| return attn_output, attn_weights_reshaped, past_key_value | |
| class OPTDecoderLayer(nn.Module): | |
| def __init__(self, config: OPTConfig): | |
| super().__init__() | |
| self.embed_dim = config.hidden_size | |
| self.self_attn = OPTAttention( | |
| embed_dim=self.embed_dim, | |
| num_heads=config.num_attention_heads, | |
| dropout=config.attention_dropout, | |
| is_decoder=True, | |
| bias=config.enable_bias, | |
| ) | |
| self.do_layer_norm_before = config.do_layer_norm_before | |
| self.dropout = config.dropout | |
| self.activation_fn = ACT2FN[config.activation_function] | |
| self.self_attn_layer_norm = nn.LayerNorm( | |
| self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine | |
| ) | |
| self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=config.enable_bias) | |
| self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=config.enable_bias) | |
| self.final_layer_norm = nn.LayerNorm(self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| layer_head_mask: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = False, | |
| use_cache: Optional[bool] = False, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size | |
| `(encoder_attention_heads,)`. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
| (see `past_key_values`). | |
| past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
| """ | |
| residual = hidden_states | |
| # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention | |
| if self.do_layer_norm_before: | |
| hidden_states = self.self_attn_layer_norm(hidden_states) | |
| # Self Attention | |
| hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
| hidden_states=hidden_states, | |
| past_key_value=past_key_value, | |
| attention_mask=attention_mask, | |
| layer_head_mask=layer_head_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = residual + hidden_states | |
| # 350m applies layer norm AFTER attention | |
| if not self.do_layer_norm_before: | |
| hidden_states = self.self_attn_layer_norm(hidden_states) | |
| # Fully Connected | |
| hidden_states_shape = hidden_states.shape | |
| hidden_states = hidden_states.reshape(-1, hidden_states.size(-1)) | |
| residual = hidden_states | |
| # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention | |
| if self.do_layer_norm_before: | |
| hidden_states = self.final_layer_norm(hidden_states) | |
| hidden_states = self.fc1(hidden_states) | |
| hidden_states = self.activation_fn(hidden_states) | |
| hidden_states = self.fc2(hidden_states) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = (residual + hidden_states).view(hidden_states_shape) | |
| # 350m applies layer norm AFTER attention | |
| if not self.do_layer_norm_before: | |
| hidden_states = self.final_layer_norm(hidden_states) | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (self_attn_weights,) | |
| if use_cache: | |
| outputs += (present_key_value,) | |
| return outputs | |
| OPT_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`OPTConfig`]): | |
| Model configuration class with all the parameters of the model. Initializing with a config file does not | |
| load the weights associated with the model, only the configuration. Check out the | |
| [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| class OPTPreTrainedModel(PreTrainedModel): | |
| config_class = OPTConfig | |
| base_model_prefix = "model" | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["OPTDecoderLayer"] | |
| _keys_to_ignore_on_load_unexpected = [r"decoder\.version"] | |
| def _init_weights(self, module): | |
| std = self.config.init_std | |
| if isinstance(module, nn.Linear): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, (OPTDecoder)): | |
| module.gradient_checkpointing = value | |
| OPT_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
| it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
| `past_key_values`). | |
| If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
| and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
| information on the default strategy. | |
| head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
| Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
| `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
| `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
| Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
| blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
| If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
| don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
| `decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
| is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
| model's internal embedding lookup matrix. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class OPTDecoder(OPTPreTrainedModel): | |
| """ | |
| Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OPTDecoderLayer`] | |
| Args: | |
| config: OPTConfig | |
| """ | |
| def __init__(self, config: OPTConfig): | |
| super().__init__(config) | |
| self.dropout = config.dropout | |
| self.layerdrop = config.layerdrop | |
| self.padding_idx = config.pad_token_id | |
| self.max_target_positions = config.max_position_embeddings | |
| self.vocab_size = config.vocab_size | |
| self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx) | |
| self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size) | |
| if config.word_embed_proj_dim != config.hidden_size: | |
| self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False) | |
| else: | |
| self.project_out = None | |
| if config.word_embed_proj_dim != config.hidden_size: | |
| self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False) | |
| else: | |
| self.project_in = None | |
| # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility | |
| # with checkpoints that have been fine-tuned before transformers v4.20.1 | |
| # see https://github.com/facebookresearch/metaseq/pull/164 | |
| if config.do_layer_norm_before and not config._remove_final_layer_norm: | |
| self.final_layer_norm = nn.LayerNorm( | |
| config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine | |
| ) | |
| else: | |
| self.final_layer_norm = None | |
| self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.embed_tokens = value | |
| # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask | |
| def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): | |
| # create causal mask | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| combined_attention_mask = None | |
| if input_shape[-1] > 1: | |
| combined_attention_mask = _make_causal_mask( | |
| input_shape, | |
| inputs_embeds.dtype, | |
| device=inputs_embeds.device, | |
| past_key_values_length=past_key_values_length, | |
| ) | |
| if attention_mask is not None: | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( | |
| inputs_embeds.device | |
| ) | |
| combined_attention_mask = ( | |
| expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask | |
| ) | |
| return combined_attention_mask | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPast]: | |
| r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
| provide it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
| Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
| shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of | |
| Contains pre-computed hidden-states (key and values in the self-attention blocks and in the | |
| cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
| If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those | |
| that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of | |
| all `decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
| than the model's internal embedding lookup matrix. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
| for more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # retrieve input_ids and inputs_embeds | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| input_shape = input_ids.size() | |
| input_ids = input_ids.view(-1, input_shape[-1]) | |
| elif inputs_embeds is not None: | |
| input_shape = inputs_embeds.size()[:-1] | |
| else: | |
| raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
| if inputs_embeds is None: | |
| inputs_embeds = self.embed_tokens(input_ids) | |
| batch_size, seq_length = input_shape | |
| past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
| # required mask seq length can be calculated via length of past | |
| mask_seq_length = past_key_values_length + seq_length | |
| # embed positions | |
| if attention_mask is None: | |
| attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) | |
| causal_attention_mask = self._prepare_decoder_attention_mask( | |
| attention_mask, input_shape, inputs_embeds, past_key_values_length | |
| ) | |
| pos_embeds = self.embed_positions(attention_mask, past_key_values_length) | |
| if self.project_in is not None: | |
| inputs_embeds = self.project_in(inputs_embeds) | |
| hidden_states = inputs_embeds + pos_embeds | |
| if self.gradient_checkpointing and self.training: | |
| if use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| # decoder layers | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attns = () if output_attentions else None | |
| next_decoder_cache = () if use_cache else None | |
| # check if head_mask has a correct number of layers specified if desired | |
| for attn_mask, mask_name in zip([head_mask], ["head_mask"]): | |
| if attn_mask is not None: | |
| if attn_mask.size()[0] != (len(self.layers)): | |
| raise ValueError( | |
| f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" | |
| f" {head_mask.size()[0]}." | |
| ) | |
| for idx, decoder_layer in enumerate(self.layers): | |
| # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| dropout_probability = random.uniform(0, 1) | |
| if self.training and (dropout_probability < self.layerdrop): | |
| continue | |
| past_key_value = past_key_values[idx] if past_key_values is not None else None | |
| if self.gradient_checkpointing and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| # None for past_key_value | |
| return module(*inputs, output_attentions, None) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(decoder_layer), | |
| hidden_states, | |
| causal_attention_mask, | |
| head_mask[idx] if head_mask is not None else None, | |
| None, | |
| ) | |
| else: | |
| layer_outputs = decoder_layer( | |
| hidden_states, | |
| attention_mask=causal_attention_mask, | |
| layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if use_cache: | |
| next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) | |
| if output_attentions: | |
| all_self_attns += (layer_outputs[1],) | |
| if self.final_layer_norm is not None: | |
| hidden_states = self.final_layer_norm(hidden_states) | |
| if self.project_out is not None: | |
| hidden_states = self.project_out(hidden_states) | |
| # add hidden states from the last decoder layer | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| next_cache = next_decoder_cache if use_cache else None | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
| return BaseModelOutputWithPast( | |
| last_hidden_state=hidden_states, | |
| past_key_values=next_cache, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attns, | |
| ) | |
| class OPTModel(OPTPreTrainedModel): | |
| def __init__(self, config: OPTConfig): | |
| super().__init__(config) | |
| self.decoder = OPTDecoder(config) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.decoder.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.decoder.embed_tokens = value | |
| def get_decoder(self): | |
| return self.decoder | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPast]: | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) | |
| decoder_outputs = self.decoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| if not return_dict: | |
| return decoder_outputs | |
| return BaseModelOutputWithPast( | |
| last_hidden_state=decoder_outputs.last_hidden_state, | |
| past_key_values=decoder_outputs.past_key_values, | |
| hidden_states=decoder_outputs.hidden_states, | |
| attentions=decoder_outputs.attentions, | |
| ) | |
| class OPTForCausalLM(OPTPreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [r"lm_head.weight"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.model = OPTModel(config) | |
| # the lm_head weight is automatically tied to the embed tokens weight | |
| self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.model.decoder.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.model.decoder.embed_tokens = value | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def set_decoder(self, decoder): | |
| self.model.decoder = decoder | |
| def get_decoder(self): | |
| return self.model.decoder | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, CausalLMOutputWithPast]: | |
| r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
| provide it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
| Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
| shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of | |
| shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional | |
| tensors are only required when the model is used as a decoder in a Sequence to Sequence model. | |
| Contains pre-computed hidden-states (key and values in the self-attention blocks and in the | |
| cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
| If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those | |
| that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of | |
| all `decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
| than the model's internal embedding lookup matrix. | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
| config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
| (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
| (see `past_key_values`). | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
| for more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| Returns: | |
| Example: | |
| ```python | |
| >>> from transformers import AutoTokenizer, OPTForCausalLM | |
| >>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m") | |
| >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") | |
| >>> prompt = "Hey, are you consciours? Can you talk to me?" | |
| >>> inputs = tokenizer(prompt, return_tensors="pt") | |
| >>> # Generate | |
| >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
| >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
| "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." | |
| ```""" | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
| outputs = self.model.decoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| logits = self.lm_head(outputs[0]).contiguous() | |
| loss = None | |
| if labels is not None: | |
| # Shift so that tokens < n predict n | |
| shift_logits = logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous() | |
| # Flatten the tokens | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) | |
| if not return_dict: | |
| output = (logits,) + outputs[1:] | |
| return (loss,) + output if loss is not None else output | |
| return CausalLMOutputWithPast( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=outputs.past_key_values, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| def prepare_inputs_for_generation( | |
| self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | |
| ): | |
| if past_key_values: | |
| input_ids = input_ids[:, -1:] | |
| # if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
| if inputs_embeds is not None and past_key_values is None: | |
| model_inputs = {"inputs_embeds": inputs_embeds} | |
| else: | |
| model_inputs = {"input_ids": input_ids} | |
| model_inputs.update( | |
| { | |
| "past_key_values": past_key_values, | |
| "use_cache": kwargs.get("use_cache"), | |
| "attention_mask": attention_mask, | |
| } | |
| ) | |
| return model_inputs | |
| def _reorder_cache(past_key_values, beam_idx): | |
| reordered_past = () | |
| for layer_past in past_key_values: | |
| reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) | |
| return reordered_past | |
| class OPTForSequenceClassification(OPTPreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [r"lm_head.weight"] | |
| def __init__(self, config: OPTConfig): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.model = OPTModel(config) | |
| self.score = nn.Linear(config.word_embed_proj_dim, self.num_labels, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| transformer_outputs = self.model( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, # shape = [B, max_len] | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| logits = self.score(hidden_states) # shape = [B, max_len, D] | |
| denom = torch.sum(attention_mask, -1, keepdim=True) # shape = [B, 1] | |
| pooled_logits = torch.sum(logits * attention_mask.unsqueeze(-1), dim=1) # shape = [B, D] | |
| pooled_logits = pooled_logits / denom | |
| loss = None | |
| return SequenceClassifierOutputWithPast( | |
| loss=loss, | |
| logits=pooled_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |
| def get_input_embeddings(self): | |
| return self.model.decoder.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.model.decoder.embed_tokens = value | |
| class OPTForQuestionAnswering(OPTPreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [r"lm_head.weight"] | |
| def __init__(self, config: OPTConfig): | |
| super().__init__(config) | |
| self.model = OPTModel(config) | |
| self.qa_outputs = nn.Linear(config.word_embed_proj_dim, 2) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| start_positions: Optional[torch.LongTensor] = None, | |
| end_positions: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, QuestionAnsweringModelOutput]: | |
| r""" | |
| start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
| are not taken into account for computing the loss. | |
| end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
| are not taken into account for computing the loss. | |
| Returns: | |
| Example: | |
| ```python | |
| >>> from transformers import AutoTokenizer, OPTForQuestionAnswering | |
| >>> import torch | |
| >>> torch.manual_seed(4) # doctest: +IGNORE_RESULT | |
| >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") | |
| >>> # note: we are loading a OPTForQuestionAnswering from the hub here, | |
| >>> # so the head will be randomly initialized, hence the predictions will be random | |
| >>> model = OPTForQuestionAnswering.from_pretrained("facebook/opt-350m") | |
| >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" | |
| >>> inputs = tokenizer(question, text, return_tensors="pt") | |
| >>> with torch.no_grad(): | |
| ... outputs = model(**inputs) | |
| >>> answer_start_index = outputs.start_logits.argmax() | |
| >>> answer_end_index = outputs.end_logits.argmax() | |
| >>> answer_offset = len(tokenizer(question)[0]) | |
| >>> predict_answer_tokens = inputs.input_ids[ | |
| ... 0, answer_offset + answer_start_index : answer_offset + answer_end_index + 1 | |
| ... ] | |
| >>> predicted = tokenizer.decode(predict_answer_tokens) | |
| >>> predicted | |
| ' a nice puppet' | |
| ```""" | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| transformer_outputs = self.model( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| logits = self.qa_outputs(hidden_states) | |
| start_logits, end_logits = logits.split(1, dim=-1) | |
| start_logits = start_logits.squeeze(-1).contiguous() | |
| end_logits = end_logits.squeeze(-1).contiguous() | |
| total_loss = None | |
| if start_positions is not None and end_positions is not None: | |
| # If we are on multi-GPU, split add a dimension | |
| if len(start_positions.size()) > 1: | |
| start_positions = start_positions.squeeze(-1) | |
| if len(end_positions.size()) > 1: | |
| end_positions = end_positions.squeeze(-1) | |
| # sometimes the start/end positions are outside our model inputs, we ignore these terms | |
| ignored_index = start_logits.size(1) | |
| start_positions = start_positions.clamp(0, ignored_index) | |
| end_positions = end_positions.clamp(0, ignored_index) | |
| loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
| start_loss = loss_fct(start_logits, start_positions) | |
| end_loss = loss_fct(end_logits, end_positions) | |
| total_loss = (start_loss + end_loss) / 2 | |
| if not return_dict: | |
| output = (start_logits, end_logits) + transformer_outputs[2:] | |
| return ((total_loss,) + output) if total_loss is not None else output | |
| return QuestionAnsweringModelOutput( | |
| loss=total_loss, | |
| start_logits=start_logits, | |
| end_logits=end_logits, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |
| def get_input_embeddings(self): | |
| return self.model.decoder.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.model.decoder.embed_tokens = value | |