from fastapi import FastAPI from pydantic import BaseModel from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM import dateparser from datetime import datetime import re app = FastAPI() # Load classification model classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") # Load summarization model summarizer_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small") summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small") # Labels labels = ["task", "event", "reminder", "meeting", "relationship", "note", "journal", "memory", "other"] class TextInput(BaseModel): text: str def extract_dates(text): time_expressions = re.findall( r'\b(kal|aaj|parso|raat|subah|shaam|dopahar|[0-9]{1,2} baje|next week|tomorrow|today|yesterday|Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday|[\d]{1,2}/[\d]{1,2}/[\d]{2,4})\b', text, flags=re.IGNORECASE) parsed = [str(dateparser.parse(t)) for t in time_expressions if dateparser.parse(t)] return list(set(parsed)), list(set(time_expressions)) def detect_tense(parsed_dates): now = datetime.now() tenses = set() for d in parsed_dates: dt = dateparser.parse(d) if not dt: continue if dt < now: tenses.add("past") elif dt > now: tenses.add("future") else: tenses.add("present") return list(tenses) if tenses else ["unknown"] def generate_summary(text): input_ids = summarizer_tokenizer("summarize: " + text, return_tensors="pt").input_ids output_ids = summarizer_model.generate(input_ids, max_length=50, num_beams=4, early_stopping=True) return summarizer_tokenizer.decode(output_ids[0], skip_special_tokens=True) @app.post("/analyze") async def analyze(input: TextInput): text = input.text classification = classifier(text, labels) best_label = classification['labels'][0] scores = dict(zip(classification['labels'], classification['scores'])) parsed_dates, time_mentions = extract_dates(text) tenses = detect_tense(parsed_dates) summary = generate_summary(text) return { "type": best_label, "confidence_scores": scores, "time_mentions": time_mentions, "parsed_dates": parsed_dates, "tense": tenses, "summary": summary }