|
from torchvision.datasets.utils import download_url
|
|
from ldm.util import instantiate_from_config
|
|
import torch
|
|
import os
|
|
|
|
from google.colab import files
|
|
from IPython.display import Image as ipyimg
|
|
import ipywidgets as widgets
|
|
from PIL import Image
|
|
from numpy import asarray
|
|
from einops import rearrange, repeat
|
|
import torch, torchvision
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
from ldm.util import ismap
|
|
import time
|
|
from omegaconf import OmegaConf
|
|
|
|
|
|
def download_models(mode):
|
|
|
|
if mode == "superresolution":
|
|
|
|
url_conf = 'https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1'
|
|
url_ckpt = 'https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1'
|
|
|
|
path_conf = 'logs/diffusion/superresolution_bsr/configs/project.yaml'
|
|
path_ckpt = 'logs/diffusion/superresolution_bsr/checkpoints/last.ckpt'
|
|
|
|
download_url(url_conf, path_conf)
|
|
download_url(url_ckpt, path_ckpt)
|
|
|
|
path_conf = path_conf + '/?dl=1'
|
|
path_ckpt = path_ckpt + '/?dl=1'
|
|
return path_conf, path_ckpt
|
|
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
|
|
def load_model_from_config(config, ckpt):
|
|
print(f"Loading model from {ckpt}")
|
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
|
global_step = pl_sd["global_step"]
|
|
sd = pl_sd["state_dict"]
|
|
model = instantiate_from_config(config.model)
|
|
m, u = model.load_state_dict(sd, strict=False)
|
|
model.cuda()
|
|
model.eval()
|
|
return {"model": model}, global_step
|
|
|
|
|
|
def get_model(mode):
|
|
path_conf, path_ckpt = download_models(mode)
|
|
config = OmegaConf.load(path_conf)
|
|
model, step = load_model_from_config(config, path_ckpt)
|
|
return model
|
|
|
|
|
|
def get_custom_cond(mode):
|
|
dest = "data/example_conditioning"
|
|
|
|
if mode == "superresolution":
|
|
uploaded_img = files.upload()
|
|
filename = next(iter(uploaded_img))
|
|
name, filetype = filename.split(".")
|
|
os.rename(f"{filename}", f"{dest}/{mode}/custom_{name}.{filetype}")
|
|
|
|
elif mode == "text_conditional":
|
|
w = widgets.Text(value='A cake with cream!', disabled=True)
|
|
display(w)
|
|
|
|
with open(f"{dest}/{mode}/custom_{w.value[:20]}.txt", 'w') as f:
|
|
f.write(w.value)
|
|
|
|
elif mode == "class_conditional":
|
|
w = widgets.IntSlider(min=0, max=1000)
|
|
display(w)
|
|
with open(f"{dest}/{mode}/custom.txt", 'w') as f:
|
|
f.write(w.value)
|
|
|
|
else:
|
|
raise NotImplementedError(f"cond not implemented for mode{mode}")
|
|
|
|
|
|
def get_cond_options(mode):
|
|
path = "data/example_conditioning"
|
|
path = os.path.join(path, mode)
|
|
onlyfiles = [f for f in sorted(os.listdir(path))]
|
|
return path, onlyfiles
|
|
|
|
|
|
def select_cond_path(mode):
|
|
path = "data/example_conditioning"
|
|
path = os.path.join(path, mode)
|
|
onlyfiles = [f for f in sorted(os.listdir(path))]
|
|
|
|
selected = widgets.RadioButtons(
|
|
options=onlyfiles,
|
|
description='Select conditioning:',
|
|
disabled=False
|
|
)
|
|
display(selected)
|
|
selected_path = os.path.join(path, selected.value)
|
|
return selected_path
|
|
|
|
|
|
def get_cond(mode, selected_path):
|
|
example = dict()
|
|
if mode == "superresolution":
|
|
up_f = 4
|
|
visualize_cond_img(selected_path)
|
|
|
|
c = Image.open(selected_path)
|
|
c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0)
|
|
c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]], antialias=True)
|
|
c_up = rearrange(c_up, '1 c h w -> 1 h w c')
|
|
c = rearrange(c, '1 c h w -> 1 h w c')
|
|
c = 2. * c - 1.
|
|
|
|
c = c.to(torch.device("cuda"))
|
|
example["LR_image"] = c
|
|
example["image"] = c_up
|
|
|
|
return example
|
|
|
|
|
|
def visualize_cond_img(path):
|
|
display(ipyimg(filename=path))
|
|
|
|
|
|
def run(model, selected_path, task, custom_steps, resize_enabled=False, classifier_ckpt=None, global_step=None):
|
|
|
|
example = get_cond(task, selected_path)
|
|
|
|
save_intermediate_vid = False
|
|
n_runs = 1
|
|
masked = False
|
|
guider = None
|
|
ckwargs = None
|
|
mode = 'ddim'
|
|
ddim_use_x0_pred = False
|
|
temperature = 1.
|
|
eta = 1.
|
|
make_progrow = True
|
|
custom_shape = None
|
|
|
|
height, width = example["image"].shape[1:3]
|
|
split_input = height >= 128 and width >= 128
|
|
|
|
if split_input:
|
|
ks = 128
|
|
stride = 64
|
|
vqf = 4
|
|
model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride),
|
|
"vqf": vqf,
|
|
"patch_distributed_vq": True,
|
|
"tie_braker": False,
|
|
"clip_max_weight": 0.5,
|
|
"clip_min_weight": 0.01,
|
|
"clip_max_tie_weight": 0.5,
|
|
"clip_min_tie_weight": 0.01}
|
|
else:
|
|
if hasattr(model, "split_input_params"):
|
|
delattr(model, "split_input_params")
|
|
|
|
invert_mask = False
|
|
|
|
x_T = None
|
|
for n in range(n_runs):
|
|
if custom_shape is not None:
|
|
x_T = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device)
|
|
x_T = repeat(x_T, '1 c h w -> b c h w', b=custom_shape[0])
|
|
|
|
logs = make_convolutional_sample(example, model,
|
|
mode=mode, custom_steps=custom_steps,
|
|
eta=eta, swap_mode=False , masked=masked,
|
|
invert_mask=invert_mask, quantize_x0=False,
|
|
custom_schedule=None, decode_interval=10,
|
|
resize_enabled=resize_enabled, custom_shape=custom_shape,
|
|
temperature=temperature, noise_dropout=0.,
|
|
corrector=guider, corrector_kwargs=ckwargs, x_T=x_T, save_intermediate_vid=save_intermediate_vid,
|
|
make_progrow=make_progrow,ddim_use_x0_pred=ddim_use_x0_pred
|
|
)
|
|
return logs
|
|
|
|
|
|
@torch.no_grad()
|
|
def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None,
|
|
mask=None, x0=None, quantize_x0=False, img_callback=None,
|
|
temperature=1., noise_dropout=0., score_corrector=None,
|
|
corrector_kwargs=None, x_T=None, log_every_t=None
|
|
):
|
|
|
|
ddim = DDIMSampler(model)
|
|
bs = shape[0]
|
|
shape = shape[1:]
|
|
print(f"Sampling with eta = {eta}; steps: {steps}")
|
|
samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback,
|
|
normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta,
|
|
mask=mask, x0=x0, temperature=temperature, verbose=False,
|
|
score_corrector=score_corrector,
|
|
corrector_kwargs=corrector_kwargs, x_T=x_T)
|
|
|
|
return samples, intermediates
|
|
|
|
|
|
@torch.no_grad()
|
|
def make_convolutional_sample(batch, model, mode="vanilla", custom_steps=None, eta=1.0, swap_mode=False, masked=False,
|
|
invert_mask=True, quantize_x0=False, custom_schedule=None, decode_interval=1000,
|
|
resize_enabled=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None,
|
|
corrector_kwargs=None, x_T=None, save_intermediate_vid=False, make_progrow=True,ddim_use_x0_pred=False):
|
|
log = dict()
|
|
|
|
z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key,
|
|
return_first_stage_outputs=True,
|
|
force_c_encode=not (hasattr(model, 'split_input_params')
|
|
and model.cond_stage_key == 'coordinates_bbox'),
|
|
return_original_cond=True)
|
|
|
|
log_every_t = 1 if save_intermediate_vid else None
|
|
|
|
if custom_shape is not None:
|
|
z = torch.randn(custom_shape)
|
|
print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}")
|
|
|
|
z0 = None
|
|
|
|
log["input"] = x
|
|
log["reconstruction"] = xrec
|
|
|
|
if ismap(xc):
|
|
log["original_conditioning"] = model.to_rgb(xc)
|
|
if hasattr(model, 'cond_stage_key'):
|
|
log[model.cond_stage_key] = model.to_rgb(xc)
|
|
|
|
else:
|
|
log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x)
|
|
if model.cond_stage_model:
|
|
log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x)
|
|
if model.cond_stage_key =='class_label':
|
|
log[model.cond_stage_key] = xc[model.cond_stage_key]
|
|
|
|
with model.ema_scope("Plotting"):
|
|
t0 = time.time()
|
|
img_cb = None
|
|
|
|
sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape,
|
|
eta=eta,
|
|
quantize_x0=quantize_x0, img_callback=img_cb, mask=None, x0=z0,
|
|
temperature=temperature, noise_dropout=noise_dropout,
|
|
score_corrector=corrector, corrector_kwargs=corrector_kwargs,
|
|
x_T=x_T, log_every_t=log_every_t)
|
|
t1 = time.time()
|
|
|
|
if ddim_use_x0_pred:
|
|
sample = intermediates['pred_x0'][-1]
|
|
|
|
x_sample = model.decode_first_stage(sample)
|
|
|
|
try:
|
|
x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True)
|
|
log["sample_noquant"] = x_sample_noquant
|
|
log["sample_diff"] = torch.abs(x_sample_noquant - x_sample)
|
|
except:
|
|
pass
|
|
|
|
log["sample"] = x_sample
|
|
log["time"] = t1 - t0
|
|
|
|
return log |