import numpy as np import cv2 from typing import Tuple, List, Union from .base_onnx import BaseONNX class RTMDET_ONNX(BaseONNX): def __init__(self, model_path, input_size=(640, 640)): super().__init__(model_path, input_size) def preprocess_image(self, img_bgr: cv2.UMat): # 调整图片大小 img_bgr = cv2.resize(img_bgr, self.input_size) # normalize mean and std img = (img_bgr - np.array([103.53, 116.28, 123.675])) / np.array([57.375, 57.12, 58.395]) img = img.astype(np.float32) # 转换为浮点型并归一化 # img = img.astype(np.float32) / 255.0 # 调整维度顺序 (H,W,C) -> (C,H,W) img = np.transpose(img, (2, 0, 1)) # 添加 batch 维度 img = np.expand_dims(img, axis=0) return img def run_inference(self, image: np.ndarray): """ Run inference on the image. Args: image (np.ndarray): The image to run inference on. Returns: tuple: A tuple containing the detection results and labels. """ # 运行推理 outputs = self.session.run(None, {self.input_name: image}) """ dets: 检测框 [batch, num_dets, [x1, y1, x2, y2, conf]] ([batch, num_dets, Reshape(dets_dim_2)]) labels: 标签 [batch,num_dets] """ dets, labels = outputs return dets, labels def pred(self, image: List[Union[cv2.UMat, str]]) -> Tuple[List[int], float]: """ Predict the detection results of the image. Args: image (cv2.UMat, str): The image to predict. Returns: xyxy (list[int, int, int, int]): The detection results. conf (float): The confidence of the detection results. """ if isinstance(image, str): img_bgr = cv2.imread(image) else: img_bgr = image.copy() original_w, original_h = img_bgr.shape[1], img_bgr.shape[0] image = self.preprocess_image(img_bgr) dets, labels = self.run_inference(image) # 获取置信度最高的检测框 # dets = dets[0][0] # labels = labels[0][0] x1, y1, x2, y2, conf = dets[0][0] xyxy = [x1, y1, x2, y2] xyxy = self.transform_xyxy_to_original(xyxy, original_w, original_h) return xyxy, conf def transform_xyxy_to_original(self, xyxy, original_w, original_h) -> List[int]: """ 将检测框从输入图像的尺寸转换为原始图像的尺寸 """ x1, y1, x2, y2 = xyxy input_w, input_h = self.input_size ratio_w, ratio_h = original_w / input_w, original_h / input_h x1, y1, x2, y2 = x1 * ratio_w, y1 * ratio_h, x2 * ratio_w, y2 * ratio_h # 转换为整数 x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) return [x1, y1, x2, y2] def draw_pred(self, img: cv2.UMat, xyxy: List[int], conf: float, is_rgb: bool = True) -> cv2.UMat: """ Draw the detection results on the image. """ if not is_rgb: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) x1, y1, x2, y2 = xyxy cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 2) cv2.putText(img, f"{conf:.2f}", (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) return img