import numpy as np import cv2 from typing import Tuple, List BONE_NAMES = [ "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7", "A8", "J0", "J1", "J2", "J3", "J4", "J5", "J6", "J7", "J8", "B0", "C0", "D0", "E0", "F0", "G0", "H0", "I0", "B8", "C8", "D8", "E8", "F8", "G8", "H8", "I8", ] def check_keypoints(keypoints: np.ndarray): """ 检查关键点坐标是否正确 @param keypoints: 关键点坐标, shape 为 (34, 2) """ if keypoints.shape != (34, 2): raise Exception(f"keypoints shape error: {keypoints.shape}") def build_cells_xywh_by_cronners(corner_points: np.ndarray, padding: int = 3) -> np.ndarray: """ 根据 棋盘的 corner 点坐标 计算 每个位置的 xywh @param corner_points: 棋盘的 corner 点坐标, shape 为 (4, 2) @param padding: 棋盘边框 padding @return: 棋盘的 xywh, shape 为 (10, 9, 4), 4 为 center_x, center_y, w, h """ if corner_points.shape != (4, 2): raise Exception(f"corner_points shape error: {corner_points.shape}") top_left_xy = corner_points[0] top_right_xy = corner_points[1] bottom_left_xy = corner_points[2] bottom_right_xy = corner_points[3] # 计算 每个框的 w 和 h item_w = (top_right_xy[0] - top_left_xy[0]) / (9 - 1) item_h = (bottom_left_xy[1] - top_left_xy[1]) / (10 - 1) item_w = item_w item_h = item_h item_w_with_padding = item_w - padding * 2 item_h_with_padding = item_h - padding * 2 # 计算 每个框的 center 坐标 cells_xywh = np.zeros((10, 9, 4)) for i in range(10): for j in range(9): center_x = top_left_xy[0] + item_w * j center_y = top_left_xy[1] + item_h * i cells_xywh[i, j] = [center_x, center_y, item_w_with_padding, item_h_with_padding] return cells_xywh # todo: 需要优化 def build_cells_xywh(keypoints: np.ndarray, width: int = 450, height: int = 500, padding: int = 3) -> np.ndarray: """ @param keypoints: 关键点坐标, shape 为 (34, 2) @param width: 棋盘宽度 @param height: 棋盘高度 @param padding: 棋盘边框 padding @return: 棋盘的 xywh, shape 为 (10, 9, 4), 4 为 center_x, center_y, w, h """ check_keypoints(keypoints) # 生成 A0 到 J8 的坐标, 如 B1 坐标 为 A1-J1 与 B0-B8 的交集点 cells_xywh = np.zeros((10, 9, 4), dtype=np.int16) # 遍历 full_points 的每个点,计算其坐标 for i in range(10): for j in range(9): # 计算 第 i 行 第 j 列 的坐标 row_name = chr(ord('A') + i) col_name = str(j) flag_name = f"{row_name}{col_name}" if flag_name in BONE_NAMES: # 计算 第 i 行 第 j 列 的坐标 cur_xy = keypoints[BONE_NAMES.index(flag_name)] cells_xywh[i, j] = [cur_xy[0], cur_xy[1], 0, 0] else: # 计算 第 i 行 第 j 列 的坐标 row_start_name = f"{row_name}0" row_end_name = f"{row_name}8" col_start_name = f"A{col_name}" col_end_name = f"J{col_name}" row_start_xy = keypoints[BONE_NAMES.index(row_start_name)] row_end_xy = keypoints[BONE_NAMES.index(row_end_name)] col_start_xy = keypoints[BONE_NAMES.index(col_start_name)] col_end_xy = keypoints[BONE_NAMES.index(col_end_name)] # 计算 row_start_xy 到 row_end_xy 的直线 与 col_start_xy 到 col_end_xy 的直线 的交点 # 使用参数方程法计算交点 x1, y1 = row_start_xy # 横向直线起点 x2, y2 = row_end_xy # 横向直线终点 x3, y3 = col_start_xy # 纵向直线起点 x4, y4 = col_end_xy # 纵向直线终点 # 计算交点坐标 # 使用克莱姆法则求解 denominator = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4) # 计算交点的 x 坐标 x = ((x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4)) / denominator # 计算交点的 y 坐标 y = ((x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4)) / denominator cells_xywh[i, j] = [int(x), int(y), 0, 0] # 计算每个点位的 wh for i in range(10): for j in range(9): cur_xy = cells_xywh[i, j] # 获取上下左右 4 个点, 根据 4 个点计算 wh, 宽高为 4 个点 计算出来的 x1y1x2y2 的距离 的 1/2 if i == 0: # [i+1, j] 的 反向点 up_xy = 2 * cur_xy - cells_xywh[i+1, j] else: up_xy = cells_xywh[i - 1, j] if i == 9: # [i-1, j] 的 反向点 down_xy = 2 * cur_xy - cells_xywh[i-1, j] else: down_xy = cells_xywh[i+1, j] if j == 0: left_xy = 2 * cur_xy - cells_xywh[i, j+1] else: left_xy = cells_xywh[i, j-1] if j == 8: right_xy = 2 * cur_xy - cells_xywh[i, j-1] else: right_xy = cells_xywh[i, j+1] min_x = min(up_xy[0].tolist(), down_xy[0].tolist(), left_xy[0].tolist(), right_xy[0].tolist()) min_y = min(up_xy[1].tolist(), down_xy[1].tolist(), left_xy[1].tolist(), right_xy[1].tolist()) min_x += padding min_y += padding # 防止 min_x 和 min_y 为 0 min_x = max(min_x, 1) min_y = max(min_y, 1) max_x = max(up_xy[0].tolist(), down_xy[0].tolist(), left_xy[0].tolist(), right_xy[0].tolist()) max_y = max(up_xy[1].tolist(), down_xy[1].tolist(), left_xy[1].tolist(), right_xy[1].tolist()) max_x -= padding max_y -= padding # 防止 max_x 和 max_y 超出边界 max_x = min(max_x, width - 1) max_y = min(max_y, height - 1) w = (max_x - min_x) / 2 h = (max_y - min_y) / 2 cells_xywh[i, j] = [int(cur_xy[0]), int(cur_xy[1]), int(w), int(h)] return cells_xywh def perspective_transform( image: cv2.UMat, src_points: np.ndarray, keypoints: np.ndarray, dst_size=(450, 500)) -> Tuple[cv2.UMat, np.ndarray, np.ndarray]: """ 透视变换 @param image: 图片 @param src_points: 源点坐标 @param keypoints: 关键点坐标 @param dst_size: 目标尺寸 (width, height) 10 行 9 列 @return: result: 透视变换后的图片 transformed_keypoints: 透视变换后的关键点坐标 corner_points: 棋盘的 corner 点坐标, shape 为 (4, 2) A0, A8, J0, J8 """ check_keypoints(keypoints) # 源点和目标点 src = np.float32(src_points) padding = 50 corner_points = np.float32([ # 左上角 [padding, padding], # 右上角 [dst_size[0]-padding, padding], # 左下角 [padding, dst_size[1]-padding], # 右下角 [dst_size[0]-padding, dst_size[1]-padding]]) # 计算透视变换矩阵 matrix = cv2.getPerspectiveTransform(src, corner_points) # 执行透视变换 result = cv2.warpPerspective(image, matrix, dst_size) # 重塑数组为要求的格式 (N,1,2) keypoints_reshaped = keypoints.reshape(-1, 1, 2).astype(np.float32) transformed_keypoints = cv2.perspectiveTransform(keypoints_reshaped, matrix) # 转回原来的形状 transformed_keypoints = transformed_keypoints.reshape(-1, 2) return result, transformed_keypoints, corner_points def get_board_corner_points(keypoints: np.ndarray) -> np.ndarray: """ 计算棋局四个边角的 points @param keypoints: 关键点坐标, shape 为 (34, 2) @return: 边角的坐标, shape 为 (4, 2) """ check_keypoints(keypoints) # 找到 A0 A8 J0 J8 的坐标 以及 A4 和 J4 的坐标 a0_index = BONE_NAMES.index("A0") a8_index = BONE_NAMES.index("A8") j0_index = BONE_NAMES.index("J0") j8_index = BONE_NAMES.index("J8") a0_xy = keypoints[a0_index] a8_xy = keypoints[a8_index] j0_xy = keypoints[j0_index] j8_xy = keypoints[j8_index] # 计算新的四个角点坐标 dst_points = np.array([ a0_xy, a8_xy, j0_xy, j8_xy ], dtype=np.float32) return dst_points def extract_chessboard(img: cv2.UMat, keypoints: np.ndarray) -> Tuple[cv2.UMat, np.ndarray, np.ndarray]: """ 提取棋盘信息 @param img: 图片 @param keypoints: 关键点坐标, shape 为 (34, 2) @return: transformed_image: 透视变换后的图片 transformed_keypoints: 透视变换后的关键点坐标 transformed_corner_points: 棋盘的 corner 点坐标, shape 为 (4, 2) A0, A8, J0, J8 """ check_keypoints(keypoints) source_corner_points = get_board_corner_points(keypoints) transformed_image, transformed_keypoints, transformed_corner_points = perspective_transform(img, source_corner_points, keypoints) return transformed_image, transformed_keypoints, transformed_corner_points def collect_cells_images(image: cv2.UMat, cells_xywh: np.ndarray) -> List[List[np.ndarray]]: """ 收集 棋盘的 cells_xywh 对应的图片集合 """ width = image.shape[1] height = image.shape[0] crop_cells: List[List[np.ndarray]] = [] for i in range(10): row_cells = [] for j in range(9): x, y, w, h = cells_xywh[i, j] x_0 = max(int(x-w/2), 0) y_0 = max(int(y-h/2), 0) x_1 = min(int(x+w/2), width-1) y_1 = min(int(y+h/2), height-1) crop_img = image[y_0:y_1, x_0:x_1] row_cells.append(crop_img) crop_cells.append(row_cells) return crop_cells def draw_cells_box(image: cv2.UMat, cells_xywh: np.ndarray) -> cv2.UMat: """ 绘制 棋盘的 cells_xywh 对应的 矩形框 """ width = image.shape[1] height = image.shape[0] for i in range(10): for j in range(9): x, y, w, h = cells_xywh[i, j] x_0 = max(int(x-w/2), 0) y_0 = max(int(y-h/2), 0) x_1 = min(int(x+w/2), width-1) y_1 = min(int(y+h/2), height-1) cv2.rectangle(image,(x_0, y_0), (x_1, y_1), (0, 0, 255), 1) return image