update v3
Browse files- app.py +107 -12
- onnx/layout_recognition/nano_v3-0319.onnx +3 -0
- resources/black_a.png +0 -0
- resources/black_b.png +0 -0
- resources/black_c.png +0 -0
- resources/black_k.png +0 -0
- resources/black_n.png +0 -0
- resources/black_p.png +0 -0
- resources/black_r.png +0 -0
- resources/red_A.png +0 -0
- resources/red_B.png +0 -0
- resources/red_C.png +0 -0
- resources/red_K.png +0 -0
- resources/red_N.png +0 -0
- resources/red_P.png +0 -0
- resources/red_R.png +0 -0
app.py
CHANGED
|
@@ -1,11 +1,14 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
# import cv2
|
| 3 |
import os
|
|
|
|
|
|
|
|
|
|
| 4 |
from core.chessboard_detector import ChessboardDetector
|
| 5 |
|
| 6 |
detector = ChessboardDetector(
|
| 7 |
-
pose_model_path="onnx/pose/
|
| 8 |
-
full_classifier_model_path="onnx/layout_recognition/
|
| 9 |
)
|
| 10 |
|
| 11 |
# 数据集路径
|
|
@@ -29,9 +32,51 @@ dict_cate_names = {
|
|
| 29 |
'黑卒': 'p',
|
| 30 |
}
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
dict_cate_names_reverse = {v: k for k, v in dict_cate_names.items()}
|
| 33 |
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
### 构建 examples
|
| 36 |
|
| 37 |
def build_examples():
|
|
@@ -58,6 +103,7 @@ with gr.Blocks(css="""
|
|
| 58 |
## 棋盘检测, 棋子识别
|
| 59 |
|
| 60 |
features: 轻量化模型
|
|
|
|
| 61 |
|
| 62 |
x 表示 有遮挡位置
|
| 63 |
. 表示 棋盘上的普通交叉点
|
|
@@ -65,6 +111,9 @@ with gr.Blocks(css="""
|
|
| 65 |
步骤:
|
| 66 |
1. 流程分成两步,第一步 keypoints 检测
|
| 67 |
2. 拉伸棋盘,并预测棋子
|
|
|
|
|
|
|
|
|
|
| 68 |
"""
|
| 69 |
)
|
| 70 |
with gr.Row():
|
|
@@ -95,16 +144,60 @@ with gr.Blocks(css="""
|
|
| 95 |
interactive=False,
|
| 96 |
visible=True,
|
| 97 |
)
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
with gr.Row():
|
| 105 |
with gr.Column():
|
| 106 |
gr.Examples(
|
| 107 |
-
full_examples, inputs=[image_input], label="示例图片", examples_per_page=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
|
| 110 |
def detect_chessboard(image):
|
|
@@ -118,21 +211,23 @@ with gr.Blocks(css="""
|
|
| 118 |
# cells_labels 通过 \n 分割
|
| 119 |
annotation_10_rows = [item for item in cells_labels_str.split("\n")]
|
| 120 |
# 将 annotation_10_rows 转换成为 10 行 9 列的二维数组
|
| 121 |
-
|
| 122 |
|
| 123 |
# 将 棋子类别 转换为 中文
|
| 124 |
-
annotation_arr_10_9 = [[dict_cate_names_reverse[item] for item in row] for row in
|
| 125 |
|
| 126 |
except Exception as e:
|
| 127 |
gr.Warning(f"检测失败 图片或者视频布局错误")
|
| 128 |
return None, None, None, None
|
| 129 |
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
| 132 |
|
| 133 |
image_input.change(fn=detect_chessboard,
|
| 134 |
inputs=[image_input],
|
| 135 |
-
outputs=[original_image_with_keypoints, transformed_image, layout_pred_info, use_time])
|
| 136 |
|
| 137 |
if __name__ == "__main__":
|
| 138 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
# import cv2
|
| 3 |
import os
|
| 4 |
+
import base64
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
from core.chessboard_detector import ChessboardDetector
|
| 8 |
|
| 9 |
detector = ChessboardDetector(
|
| 10 |
+
pose_model_path="onnx/pose/4_v6-0301.onnx",
|
| 11 |
+
full_classifier_model_path="onnx/layout_recognition/nano_v3-0319.onnx"
|
| 12 |
)
|
| 13 |
|
| 14 |
# 数据集路径
|
|
|
|
| 32 |
'黑卒': 'p',
|
| 33 |
}
|
| 34 |
|
| 35 |
+
# 数据集路径
|
| 36 |
+
dict_cate_images = {
|
| 37 |
+
'K': 'red_K.png',
|
| 38 |
+
'A': 'red_A.png',
|
| 39 |
+
'B': 'red_B.png',
|
| 40 |
+
'N': 'red_N.png',
|
| 41 |
+
'R': 'red_R.png',
|
| 42 |
+
'C': 'red_C.png',
|
| 43 |
+
'P': 'red_P.png',
|
| 44 |
+
'k': 'black_k.png',
|
| 45 |
+
'a': 'black_a.png',
|
| 46 |
+
'b': 'black_b.png',
|
| 47 |
+
'n': 'black_n.png',
|
| 48 |
+
'r': 'black_r.png',
|
| 49 |
+
'c': 'black_c.png',
|
| 50 |
+
'p': 'black_p.png',
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
dict_cate_names_reverse = {v: k for k, v in dict_cate_names.items()}
|
| 54 |
|
| 55 |
|
| 56 |
+
# 缓存图片的 base64 编码
|
| 57 |
+
image_base64_cache = {}
|
| 58 |
+
|
| 59 |
+
def get_image_base64(img_path):
|
| 60 |
+
if img_path in image_base64_cache:
|
| 61 |
+
return image_base64_cache[img_path]
|
| 62 |
+
|
| 63 |
+
try:
|
| 64 |
+
img_full_path = Path("resources") / img_path
|
| 65 |
+
if not img_full_path.exists():
|
| 66 |
+
return ""
|
| 67 |
+
|
| 68 |
+
with open(img_full_path, "rb") as img_file:
|
| 69 |
+
encoded = base64.b64encode(img_file.read()).decode('utf-8')
|
| 70 |
+
data_url = f"data:image/png;base64,{encoded}"
|
| 71 |
+
image_base64_cache[img_path] = data_url
|
| 72 |
+
return data_url
|
| 73 |
+
except Exception as e:
|
| 74 |
+
print(f"Error loading image {img_path}: {e}")
|
| 75 |
+
return
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
### 构建 examples
|
| 81 |
|
| 82 |
def build_examples():
|
|
|
|
| 103 |
## 棋盘检测, 棋子识别
|
| 104 |
|
| 105 |
features: 轻量化模型
|
| 106 |
+
|
| 107 |
|
| 108 |
x 表示 有遮挡位置
|
| 109 |
. 表示 棋盘上的普通交叉点
|
|
|
|
| 111 |
步骤:
|
| 112 |
1. 流程分成两步,第一步 keypoints 检测
|
| 113 |
2. 拉伸棋盘,并预测棋子
|
| 114 |
+
|
| 115 |
+
log:
|
| 116 |
+
1. 优化棋子识别,增加对游戏棋盘的识别
|
| 117 |
"""
|
| 118 |
)
|
| 119 |
with gr.Row():
|
|
|
|
| 144 |
interactive=False,
|
| 145 |
visible=True,
|
| 146 |
)
|
| 147 |
+
|
| 148 |
+
# 添加 手风琴
|
| 149 |
+
with gr.Accordion("文字识别", open=False):
|
| 150 |
+
layout_pred_info = gr.Dataframe(
|
| 151 |
+
label="棋子识别",
|
| 152 |
+
interactive=False,
|
| 153 |
+
visible=True,
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
with gr.Accordion("棋子识别", open=True):
|
| 157 |
+
# 10 行 9 列的表格
|
| 158 |
+
table_html = gr.HTML(
|
| 159 |
+
"""
|
| 160 |
+
<table>
|
| 161 |
+
</table>
|
| 162 |
+
"""
|
| 163 |
+
)
|
| 164 |
|
| 165 |
with gr.Row():
|
| 166 |
with gr.Column():
|
| 167 |
gr.Examples(
|
| 168 |
+
full_examples[:10], inputs=[image_input], label="示例图片1", examples_per_page=10,)
|
| 169 |
+
|
| 170 |
+
gr.Examples(
|
| 171 |
+
full_examples[10:20], inputs=[image_input], label="示例图片2", examples_per_page=10,)
|
| 172 |
+
|
| 173 |
+
gr.Examples(
|
| 174 |
+
full_examples[20:], inputs=[image_input], label="示例图片3", examples_per_page=10,)
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def gen_table_html(annotation_arr_10_9):
|
| 178 |
+
# 生成表格 HTML
|
| 179 |
+
html = "<table border='1' style='margin: auto;'>"
|
| 180 |
+
|
| 181 |
+
for row in annotation_arr_10_9:
|
| 182 |
+
html += "<tr>"
|
| 183 |
+
for cell in row:
|
| 184 |
+
if cell == '.':
|
| 185 |
+
# 普通交叉点
|
| 186 |
+
html += "<td style='width: 60px; height: 60px; text-align: center;'></td>"
|
| 187 |
+
elif cell == 'x':
|
| 188 |
+
# 遮挡位置
|
| 189 |
+
html += "<td style='width: 60px; height: 60px; text-align: center;'>x</td>"
|
| 190 |
+
else:
|
| 191 |
+
# 获取对应的图片文件名
|
| 192 |
+
img_file = dict_cate_images.get(cell, '')
|
| 193 |
+
img_data_base64 = get_image_base64(img_file)
|
| 194 |
+
# 生成图片标签
|
| 195 |
+
html += f"<td style='width: 60px; height: 60px; text-align: center; padding: 0;'><img src='{img_data_base64}' width='58' height='58'></td>"
|
| 196 |
+
html += "</tr>"
|
| 197 |
+
|
| 198 |
+
html += "</table>"
|
| 199 |
+
return html
|
| 200 |
+
|
| 201 |
|
| 202 |
|
| 203 |
def detect_chessboard(image):
|
|
|
|
| 211 |
# cells_labels 通过 \n 分割
|
| 212 |
annotation_10_rows = [item for item in cells_labels_str.split("\n")]
|
| 213 |
# 将 annotation_10_rows 转换成为 10 行 9 列的二维数组
|
| 214 |
+
annotation_arr_10_9_short = [list(item) for item in annotation_10_rows]
|
| 215 |
|
| 216 |
# 将 棋子类别 转换为 中文
|
| 217 |
+
annotation_arr_10_9 = [[dict_cate_names_reverse[item] for item in row] for row in annotation_arr_10_9_short]
|
| 218 |
|
| 219 |
except Exception as e:
|
| 220 |
gr.Warning(f"检测失败 图片或者视频布局错误")
|
| 221 |
return None, None, None, None
|
| 222 |
|
| 223 |
|
| 224 |
+
table_html = gen_table_html(annotation_arr_10_9_short)
|
| 225 |
+
|
| 226 |
+
return original_image_with_keypoints, transformed_image, annotation_arr_10_9, table_html, time_info
|
| 227 |
|
| 228 |
image_input.change(fn=detect_chessboard,
|
| 229 |
inputs=[image_input],
|
| 230 |
+
outputs=[original_image_with_keypoints, transformed_image, layout_pred_info, table_html, use_time])
|
| 231 |
|
| 232 |
if __name__ == "__main__":
|
| 233 |
demo.launch()
|
onnx/layout_recognition/nano_v3-0319.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:da66ba9809f15127f8ae729b1755e42ee61c100c4f9979ce0ef13602ac471298
|
| 3 |
+
size 31101356
|
resources/black_a.png
ADDED
|
resources/black_b.png
ADDED
|
resources/black_c.png
ADDED
|
resources/black_k.png
ADDED
|
resources/black_n.png
ADDED
|
resources/black_p.png
ADDED
|
resources/black_r.png
ADDED
|
resources/red_A.png
ADDED
|
resources/red_B.png
ADDED
|
resources/red_C.png
ADDED
|
resources/red_K.png
ADDED
|
resources/red_N.png
ADDED
|
resources/red_P.png
ADDED
|
resources/red_R.png
ADDED
|