File size: 3,007 Bytes
			
			| 37170d6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | import gradio as gr
from core.chessboard_detector import ChessboardDetector
detector = ChessboardDetector(
    det_model_path="onnx/det/v1.onnx", 
    pose_model_path="onnx/pose/v1.onnx",
    full_classifier_model_path="onnx/layout_recognition/v1.onnx"
)
# 数据集路径
dict_cate_names = {
    '.': '.',
    'x': 'x',
    '红帅': 'K',
    '红士': 'A',
    '红相': 'B',
    '红马': 'N',
    '红车': 'R',
    '红炮': 'C',
    '红兵': 'P',
    '黑将': 'k',
    '黑仕': 'a',
    '黑象': 'b',
    '黑傌': 'n',
    '黑車': 'r',
    '黑砲': 'c',
    '黑卒': 'p',
}
dict_cate_names_reverse = {v: k for k, v in dict_cate_names.items()}
with gr.Blocks(
    css="""
        .image {
            max-height: 512px;
        }
    """
) as demo:
    gr.Markdown("""
                ## 棋盘检测, 棋子识别
                步骤:  
                    1. 流程分成两步,第一步检测边缘  
                    2. 对整个棋盘画面进行棋子分类预测
                """
    )
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(label="上传棋盘图片", type="numpy", elem_classes="image")
        with gr.Column():
            original_image_with_keypoints = gr.Image(
                label="step1: 原图带关键点",
                interactive=False,
                visible=True,
                elem_classes="image"
            )
    with gr.Row():
        with gr.Column():   
            transformed_image = gr.Image(
                label="step2: 拉伸棋盘",
                interactive=False,
                visible=True,
                elem_classes="image"
            )
        with gr.Column():
            use_time = gr.Textbox(
                label="用时",
                interactive=False,
                visible=True,
            )
            layout_pred_info = gr.Dataframe(
                label="棋子识别",
                interactive=False,
                visible=True,
            )
    def detect_chessboard(image):
        original_image_with_keypoints, transformed_image, cells_labels_str, scores, time_info = detector.pred_detect_board_and_classifier(image)
        # 将 cells_labels 转换为 DataFrame
        # cells_labels 通过  \n 分割
        annotation_10_rows = [item for item in cells_labels_str.split("\n")]
        # 将 annotation_10_rows 转换成为 10 行 9 列的二维数组
        annotation_arr_10_9 = [list(item) for item in annotation_10_rows]
        # 将 棋子类别 转换为 中文
        annotation_arr_10_9 = [[dict_cate_names_reverse[item] for item in row] for row in annotation_arr_10_9]
        return original_image_with_keypoints, transformed_image, annotation_arr_10_9, time_info
    image_input.change(fn=detect_chessboard, 
                       inputs=[image_input], 
                       outputs=[original_image_with_keypoints, transformed_image, layout_pred_info, use_time])
if __name__ == "__main__":
    demo.launch()
 |