File size: 3,007 Bytes
37170d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import gradio as gr
from core.chessboard_detector import ChessboardDetector

detector = ChessboardDetector(
    det_model_path="onnx/det/v1.onnx", 
    pose_model_path="onnx/pose/v1.onnx",
    full_classifier_model_path="onnx/layout_recognition/v1.onnx"
)



# 数据集路径
dict_cate_names = {
    '.': '.',
    'x': 'x',
    '红帅': 'K',
    '红士': 'A',
    '红相': 'B',
    '红马': 'N',
    '红车': 'R',
    '红炮': 'C',
    '红兵': 'P',

    '黑将': 'k',
    '黑仕': 'a',
    '黑象': 'b',
    '黑傌': 'n',
    '黑車': 'r',
    '黑砲': 'c',
    '黑卒': 'p',
}

dict_cate_names_reverse = {v: k for k, v in dict_cate_names.items()}


with gr.Blocks(
    css="""
        .image {
            max-height: 512px;
        }
    """
) as demo:
    gr.Markdown("""
                ## 棋盘检测, 棋子识别

                步骤:  
                    1. 流程分成两步,第一步检测边缘  
                    2. 对整个棋盘画面进行棋子分类预测
                """
    )

    with gr.Row():
        with gr.Column():
            image_input = gr.Image(label="上传棋盘图片", type="numpy", elem_classes="image")

        with gr.Column():
            original_image_with_keypoints = gr.Image(
                label="step1: 原图带关键点",
                interactive=False,
                visible=True,
                elem_classes="image"
            )


    with gr.Row():
        with gr.Column():   
            transformed_image = gr.Image(
                label="step2: 拉伸棋盘",
                interactive=False,
                visible=True,
                elem_classes="image"
            )

        with gr.Column():
            use_time = gr.Textbox(
                label="用时",
                interactive=False,
                visible=True,
            )
            layout_pred_info = gr.Dataframe(
                label="棋子识别",
                interactive=False,
                visible=True,
            )


    def detect_chessboard(image):
        original_image_with_keypoints, transformed_image, cells_labels_str, scores, time_info = detector.pred_detect_board_and_classifier(image)

        # 将 cells_labels 转换为 DataFrame
        # cells_labels 通过  \n 分割
        annotation_10_rows = [item for item in cells_labels_str.split("\n")]
        # 将 annotation_10_rows 转换成为 10 行 9 列的二维数组
        annotation_arr_10_9 = [list(item) for item in annotation_10_rows]

        # 将 棋子类别 转换为 中文
        annotation_arr_10_9 = [[dict_cate_names_reverse[item] for item in row] for row in annotation_arr_10_9]


        return original_image_with_keypoints, transformed_image, annotation_arr_10_9, time_info

    image_input.change(fn=detect_chessboard, 
                       inputs=[image_input], 
                       outputs=[original_image_with_keypoints, transformed_image, layout_pred_info, use_time])

if __name__ == "__main__":
    demo.launch()