import os import gradio as gr from huggingface_hub import InferenceClient # ---------------------------------------------------------------------- # Helper to read a secret (fallback is useful when you run locally) # ---------------------------------------------------------------------- def _secret(key: str, fallback: str = "") -> str: """Return the value of a secret or the supplied fallback.""" return os.getenv(key, fallback) # ---------------------------------------------------------------------- # Core chat logic – system prompt comes from the secret `prec_chat` # ---------------------------------------------------------------------- def respond( message: str, history: list[dict[str, str]], max_tokens: int, temperature: float, top_p: float, ): """ Generate a response using the HuggingFace Inference API. * System prompt = secret `prec_chat` * HF inference token = secret `HF_TOKEN` """ # 1️⃣ Load the system prompt (fallback = generic assistant) system_message = _secret("prec_chat", "You are a helpful assistant.") # 2️⃣ Load the HF inference token hf_token = _secret("HF_TOKEN") if not hf_token: raise RuntimeError( "HF_TOKEN not found in secrets. Add it to secrets.toml (or via the Space UI)." ) # 3️⃣ Initialise the HF inference client client = InferenceClient(token=hf_token, model="openai/gpt-oss-20b") # 4️⃣ Build the message list for the chat‑completion endpoint messages = [{"role": "system", "content": system_message}] messages.extend(history) # previous conversation turns messages.append({"role": "user", "content": message}) # current user query # 5️⃣ Stream the response back to the UI response = "" for chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): choices = chunk.choices token = "" if choices and choices[0].delta.content: token = choices[0].delta.content response += token yield response # ---------------------------------------------------------------------- # UI – the system‑prompt textbox has been removed. # ---------------------------------------------------------------------- chatbot = gr.ChatInterface( respond, type="messages", additional_inputs=[ # Only generation parameters are exposed now. gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top‑p (nucleus sampling)", ), ], ) # ---------------------------------------------------------------------- # Assemble the Blocks layout (no LoginButton – we use basic auth) # ---------------------------------------------------------------------- with gr.Blocks() as demo: chatbot.render() # ---------------------------------------------------------------------- # Launch – protect the UI with the credentials from secrets. # ---------------------------------------------------------------------- if __name__ == "__main__": # ------------------------------------------------------------------ # 1️⃣ Pull the allowed credentials from secrets (fail fast if missing) # ------------------------------------------------------------------ allowed_user = _secret("CHAT_USER") allowed_pass = _secret("CHAT_PASS") if not allowed_user or not allowed_pass: raise RuntimeError( "Authentication credentials not found in secrets. " "Add CHAT_USER and CHAT_PASS to secrets.toml (or via the HF Spaces UI)." ) # ------------------------------------------------------------------ # 2️⃣ Launch # ------------------------------------------------------------------ demo.launch( auth=(allowed_user, allowed_pass), # <-- Gradio's built‑in basic auth ssr_mode=False, # <-- avoids the i18n locale error # In a Space we **must not** set share=True (Spaces already give a public URL) # If you run locally and want a shareable link, add share=True here. server_name="0.0.0.0", # listen on all interfaces (needed in containers) # Optional: give the app a nice title # title="Secure Chatbot", )