Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -19,21 +19,17 @@ def _secret(key: str, fallback: str = None) -> str:
|
|
19 |
# ----------------------------------------------------------------------
|
20 |
# 1. Configuration & Constants
|
21 |
# ----------------------------------------------------------------------
|
22 |
-
# The private repo containing the vector DB and the logic script
|
23 |
REPO_ID = _secret("REPO_ID")
|
24 |
-
# Files to download from the repo
|
25 |
FILES_TO_DOWNLOAD = ["index.faiss", "index.pkl", "agent_logic.py"]
|
26 |
-
# A local directory to store all downloaded assets
|
27 |
LOCAL_DOWNLOAD_DIR = "downloaded_assets"
|
28 |
EMBEDDING_MODEL_NAME = "google/embeddinggemma-300m"
|
29 |
|
30 |
# ----------------------------------------------------------------------
|
31 |
# 2. Bootstrap Phase: Download assets and initialize the engine
|
32 |
-
# (This code runs only once when the Space starts up)
|
33 |
# ----------------------------------------------------------------------
|
34 |
print("--- [UI App] Starting bootstrap process ---")
|
35 |
os.makedirs(LOCAL_DOWNLOAD_DIR, exist_ok=True)
|
36 |
-
hf_token = _secret("HF_TOKEN")
|
37 |
|
38 |
for filename in FILES_TO_DOWNLOAD:
|
39 |
print(f"--- [UI App] Downloading '{filename}'... ---")
|
@@ -45,15 +41,12 @@ for filename in FILES_TO_DOWNLOAD:
|
|
45 |
except Exception as e:
|
46 |
raise RuntimeError(f"Failed to download '{filename}'. Check repo/file names and HF_TOKEN. Error: {e}")
|
47 |
|
48 |
-
# Dynamically import the RAG_Engine class from the downloaded script
|
49 |
logic_script_path = os.path.join(LOCAL_DOWNLOAD_DIR, "agent_logic.py")
|
50 |
spec = importlib.util.spec_from_file_location("agent_logic", logic_script_path)
|
51 |
agent_logic_module = importlib.util.module_from_spec(spec)
|
52 |
spec.loader.exec_module(agent_logic_module)
|
53 |
print("--- [UI App] Agent logic module imported successfully. ---")
|
54 |
|
55 |
-
# Instantiate the engine. This single line triggers all the complex setup
|
56 |
-
# defined in the private_logic.py file.
|
57 |
engine = agent_logic_module.RAG_Engine(
|
58 |
local_download_dir=LOCAL_DOWNLOAD_DIR,
|
59 |
embedding_model_name=EMBEDDING_MODEL_NAME
|
@@ -61,41 +54,96 @@ engine = agent_logic_module.RAG_Engine(
|
|
61 |
print("--- [UI App] Bootstrap complete. Gradio UI is starting. ---")
|
62 |
|
63 |
# ----------------------------------------------------------------------
|
64 |
-
# 3. Core Gradio Chat Logic
|
65 |
# ----------------------------------------------------------------------
|
66 |
-
def
|
67 |
"""
|
68 |
-
|
69 |
-
It passes the inputs to the RAG engine and streams the output.
|
70 |
"""
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
# Stream the response back to the UI
|
74 |
-
|
75 |
for char in final_response:
|
76 |
-
|
77 |
time.sleep(0.01)
|
78 |
-
yield
|
79 |
|
80 |
# ----------------------------------------------------------------------
|
81 |
-
# 4. UI Layout and Launch
|
82 |
# ----------------------------------------------------------------------
|
83 |
-
chatbot = gr.ChatInterface(
|
84 |
-
respond,
|
85 |
-
type="messages",
|
86 |
-
title="PRECISE RAG Agent",
|
87 |
-
description="Silakan bertanya tentang PRECISE.",
|
88 |
-
examples=[
|
89 |
-
["Apa rumus untuk menghitung PVR?"],
|
90 |
-
["Apa tujuan pengadaan PRECISE?"],
|
91 |
-
],
|
92 |
-
cache_examples=False,
|
93 |
-
theme=gr.themes.Soft(),
|
94 |
-
)
|
95 |
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
if __name__ == "__main__":
|
100 |
allowed_user = _secret("CHAT_USER")
|
101 |
allowed_pass = _secret("CHAT_PASS")
|
|
|
19 |
# ----------------------------------------------------------------------
|
20 |
# 1. Configuration & Constants
|
21 |
# ----------------------------------------------------------------------
|
|
|
22 |
REPO_ID = _secret("REPO_ID")
|
|
|
23 |
FILES_TO_DOWNLOAD = ["index.faiss", "index.pkl", "agent_logic.py"]
|
|
|
24 |
LOCAL_DOWNLOAD_DIR = "downloaded_assets"
|
25 |
EMBEDDING_MODEL_NAME = "google/embeddinggemma-300m"
|
26 |
|
27 |
# ----------------------------------------------------------------------
|
28 |
# 2. Bootstrap Phase: Download assets and initialize the engine
|
|
|
29 |
# ----------------------------------------------------------------------
|
30 |
print("--- [UI App] Starting bootstrap process ---")
|
31 |
os.makedirs(LOCAL_DOWNLOAD_DIR, exist_ok=True)
|
32 |
+
hf_token = _secret("HF_TOKEN")
|
33 |
|
34 |
for filename in FILES_TO_DOWNLOAD:
|
35 |
print(f"--- [UI App] Downloading '{filename}'... ---")
|
|
|
41 |
except Exception as e:
|
42 |
raise RuntimeError(f"Failed to download '{filename}'. Check repo/file names and HF_TOKEN. Error: {e}")
|
43 |
|
|
|
44 |
logic_script_path = os.path.join(LOCAL_DOWNLOAD_DIR, "agent_logic.py")
|
45 |
spec = importlib.util.spec_from_file_location("agent_logic", logic_script_path)
|
46 |
agent_logic_module = importlib.util.module_from_spec(spec)
|
47 |
spec.loader.exec_module(agent_logic_module)
|
48 |
print("--- [UI App] Agent logic module imported successfully. ---")
|
49 |
|
|
|
|
|
50 |
engine = agent_logic_module.RAG_Engine(
|
51 |
local_download_dir=LOCAL_DOWNLOAD_DIR,
|
52 |
embedding_model_name=EMBEDDING_MODEL_NAME
|
|
|
54 |
print("--- [UI App] Bootstrap complete. Gradio UI is starting. ---")
|
55 |
|
56 |
# ----------------------------------------------------------------------
|
57 |
+
# 3. Core Gradio Chat Logic
|
58 |
# ----------------------------------------------------------------------
|
59 |
+
def add_message_and_respond(message: str, history: list):
|
60 |
"""
|
61 |
+
Adds the user's message to the chat history and gets the bot's streaming response.
|
|
|
62 |
"""
|
63 |
+
# Add the user's message to the UI immediately
|
64 |
+
history.append([message, None])
|
65 |
+
yield history
|
66 |
+
|
67 |
+
# Convert chat history to the format the engine expects
|
68 |
+
history_for_engine = []
|
69 |
+
for user_msg, bot_msg in history[:-1]: # Exclude the current turn
|
70 |
+
history_for_engine.append({"role": "user", "content": user_msg})
|
71 |
+
if bot_msg:
|
72 |
+
history_for_engine.append({"role": "assistant", "content": bot_msg})
|
73 |
+
|
74 |
+
# Get the response from the agent
|
75 |
+
final_response = engine.get_response(message, history_for_engine)
|
76 |
|
77 |
+
# Stream the complete response back to the UI
|
78 |
+
history[-1][1] = ""
|
79 |
for char in final_response:
|
80 |
+
history[-1][1] += char
|
81 |
time.sleep(0.01)
|
82 |
+
yield history
|
83 |
|
84 |
# ----------------------------------------------------------------------
|
85 |
+
# 4. UI Layout and Launch (Beautified with gr.Blocks)
|
86 |
# ----------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
# Custom CSS for a cleaner look
|
89 |
+
css = """
|
90 |
+
#chatbot { min-height: 600px; }
|
91 |
+
.footer { text-align: center; color: #777; font-size: 0.8em; padding: 10px 0; }
|
92 |
+
"""
|
93 |
+
|
94 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
95 |
+
# Header
|
96 |
+
gr.Markdown("<h1>🤖 PRECISE RAG Agent</h1>")
|
97 |
+
gr.Markdown("Tanya Jawab Cerdas Mengenai Dokumentasi Sistem PRECISE")
|
98 |
+
|
99 |
+
# Main Chatbot Interface
|
100 |
+
chatbot = gr.Chatbot(
|
101 |
+
elem_id="chatbot",
|
102 |
+
label="Conversation",
|
103 |
+
bubble_fill=False,
|
104 |
+
render_math=True # <-- THE FIX FOR FORMULAS!
|
105 |
+
)
|
106 |
+
|
107 |
+
# Input area
|
108 |
+
with gr.Row():
|
109 |
+
msg = gr.Textbox(
|
110 |
+
label="Your Question",
|
111 |
+
placeholder="Ketik pertanyaan Anda di sini dan tekan Enter...",
|
112 |
+
scale=4, # Make the textbox wider
|
113 |
+
)
|
114 |
+
submit_btn = gr.Button("Send", variant="primary", scale=1)
|
115 |
|
116 |
+
# Example questions
|
117 |
+
gr.Examples(
|
118 |
+
examples=[
|
119 |
+
"Apa tujuan pengadaan PRECISE?",
|
120 |
+
"Apa keunggulan utama PRECISE dibandingkan sistem perhitungan target promosi yang lama?",
|
121 |
+
"Apakah PRECISE sudah terbukti memberikan manfaat finansial? Bisakah diberikan contohnya?",
|
122 |
+
"Selain akurasi, aspek teknis apa yang membuat PRECISE unik?"
|
123 |
+
],
|
124 |
+
inputs=msg,
|
125 |
+
)
|
126 |
+
|
127 |
+
# Footer
|
128 |
+
gr.Markdown("<hr><p class='footer'>Powered by OpenRouter and LangChain. All rights reserved.</p>")
|
129 |
+
|
130 |
+
# --- Event Handlers ---
|
131 |
+
|
132 |
+
# Define the action for submitting a message (either by pressing Enter or clicking the button)
|
133 |
+
def submit_action(message, history):
|
134 |
+
yield from add_message_and_respond(message, history)
|
135 |
+
|
136 |
+
# When the user submits, call the action and update the chatbot
|
137 |
+
# Then, clear the input textbox
|
138 |
+
msg.submit(submit_action, [msg, chatbot], chatbot)
|
139 |
+
msg.submit(lambda: "", None, msg) # Clears textbox
|
140 |
+
|
141 |
+
submit_btn.click(submit_action, [msg, chatbot], chatbot)
|
142 |
+
submit_btn.click(lambda: "", None, msg) # Clears textbox
|
143 |
+
|
144 |
+
# ----------------------------------------------------------------------
|
145 |
+
# 5. Launch the App
|
146 |
+
# ----------------------------------------------------------------------
|
147 |
if __name__ == "__main__":
|
148 |
allowed_user = _secret("CHAT_USER")
|
149 |
allowed_pass = _secret("CHAT_PASS")
|