import gradio as gr import numpy as np import random import cv2 import spaces import torch from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler from diffusers.utils import load_image from PIL import Image device = "cuda" if torch.cuda.is_available() else "cpu" sd_model_id = "runwayml/stable-diffusion-v1-5" controlnet_model_id = "lllyasviel/sd-controlnet-canny" if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 # Load ControlNet model controlnet = ControlNetModel.from_pretrained( controlnet_model_id, torch_dtype=torch_dtype ) # Load Stable Diffusion with ControlNet pipe = StableDiffusionControlNetPipeline.from_pretrained( sd_model_id, controlnet=controlnet, torch_dtype=torch_dtype, safety_checker=None ) pipe = pipe.to(device) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def apply_canny(image, low_threshold, high_threshold): """Apply Canny edge detection to the image""" # Convert PIL image to numpy array image_np = np.array(image) # Convert to grayscale if the image is colored if len(image_np.shape) == 3 and image_np.shape[2] == 3: image_gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) else: image_gray = image_np # Apply Canny edge detection edges = cv2.Canny(image_gray, low_threshold, high_threshold) # Convert back to RGB for the model edges_rgb = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB) # Convert back to PIL image return Image.fromarray(edges_rgb) @spaces.GPU def infer( prompt, input_image, negative_prompt, seed, randomize_seed, canny_low_threshold, canny_high_threshold, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): if input_image is None: return None, seed if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) # Process the image if input_image is not None: width, height = input_image.size # Ensure width and height are valid for the model if width > MAX_IMAGE_SIZE: width = MAX_IMAGE_SIZE if height > MAX_IMAGE_SIZE: height = MAX_IMAGE_SIZE # Apply Canny edge detection canny_image = apply_canny(input_image, canny_low_threshold, canny_high_threshold) image = pipe( prompt=prompt, image=canny_image, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, ).images[0] return image, seed, canny_image css = """ #col-container { margin: 0 auto; max-width: 840px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # ControlNet Canny - Edge Guided Image Generation") with gr.Row(): with gr.Column(scale=1): input_image = gr.Image( label="Input Image", type="pil", height=400 ) with gr.Column(scale=1): canny_image = gr.Image( label="Canny Edge Detection", height=400 ) with gr.Column(scale=1): result = gr.Image( label="Result", height=400 ) prompt = gr.Text( label="Prompt", placeholder="Enter your prompt (e.g., 'a fantasy landscape with mountains')", ) run_button = gr.Button("Run", variant="primary") with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) with gr.Row(): canny_low_threshold = gr.Slider( label="Canny Low Threshold", minimum=1, maximum=255, step=1, value=100, ) canny_high_threshold = gr.Slider( label="Canny High Threshold", minimum=1, maximum=255, step=1, value=200, ) guidance_scale = gr.Slider( label="Guidance scale", minimum=1.0, maximum=20.0, step=0.1, value=7.5, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=100, step=1, value=30, ) gr.on( triggers=[run_button.click], fn=infer, inputs=[ prompt, input_image, negative_prompt, seed, randomize_seed, canny_low_threshold, canny_high_threshold, guidance_scale, num_inference_steps, ], outputs=[result, seed, canny_image], ) if __name__ == "__main__": demo.launch()