yingzhac's picture
Fix: Replace external URLs with local example images to avoid 429 errors
e7cea37
raw
history blame
6.17 kB
import gradio as gr
import numpy as np
import random
import cv2
import spaces
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from diffusers.utils import load_image
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
sd_model_id = "runwayml/stable-diffusion-v1-5"
controlnet_model_id = "lllyasviel/sd-controlnet-canny"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
# Load ControlNet model
controlnet = ControlNetModel.from_pretrained(
controlnet_model_id,
torch_dtype=torch_dtype
)
# Load Stable Diffusion with ControlNet
pipe = StableDiffusionControlNetPipeline.from_pretrained(
sd_model_id,
controlnet=controlnet,
torch_dtype=torch_dtype,
safety_checker=None
)
pipe = pipe.to(device)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def apply_canny(image, low_threshold, high_threshold):
"""Apply Canny edge detection to the image"""
# Convert PIL image to numpy array
image_np = np.array(image)
# Convert to grayscale if the image is colored
if len(image_np.shape) == 3 and image_np.shape[2] == 3:
image_gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
else:
image_gray = image_np
# Apply Canny edge detection
edges = cv2.Canny(image_gray, low_threshold, high_threshold)
# Convert back to RGB for the model
edges_rgb = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
# Convert back to PIL image
return Image.fromarray(edges_rgb)
@spaces.GPU
def infer(
prompt,
input_image,
negative_prompt,
seed,
randomize_seed,
canny_low_threshold,
canny_high_threshold,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if input_image is None:
return None, seed
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Process the image
if input_image is not None:
width, height = input_image.size
# Ensure width and height are valid for the model
if width > MAX_IMAGE_SIZE:
width = MAX_IMAGE_SIZE
if height > MAX_IMAGE_SIZE:
height = MAX_IMAGE_SIZE
# Apply Canny edge detection
canny_image = apply_canny(input_image, canny_low_threshold, canny_high_threshold)
image = pipe(
prompt=prompt,
image=canny_image,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
).images[0]
return image, seed, canny_image
examples = [
["A fantasy landscape with mountains and a lake", "examples/landscape.jpg"],
["A cyberpunk city street scene", "examples/city.jpg"],
["A cartoon character in winter clothing", "examples/character.jpg"],
]
css = """
#col-container {
margin: 0 auto;
max-width: 840px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # ControlNet Canny - Edge Guided Image Generation")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Input Image",
type="pil",
height=400
)
with gr.Column(scale=1):
canny_image = gr.Image(
label="Canny Edge Detection",
height=400
)
with gr.Column(scale=1):
result = gr.Image(
label="Result",
height=400
)
prompt = gr.Text(
label="Prompt",
placeholder="Enter your prompt (e.g., 'a fantasy landscape with mountains')",
)
run_button = gr.Button("Run", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
canny_low_threshold = gr.Slider(
label="Canny Low Threshold",
minimum=1,
maximum=255,
step=1,
value=100,
)
canny_high_threshold = gr.Slider(
label="Canny High Threshold",
minimum=1,
maximum=255,
step=1,
value=200,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=20.0,
step=0.1,
value=7.5,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=30,
)
gr.Examples(
examples=examples,
inputs=[prompt, input_image],
outputs=[result, seed, canny_image],
fn=infer,
cache_examples=True,
)
gr.on(
triggers=[run_button.click],
fn=infer,
inputs=[
prompt,
input_image,
negative_prompt,
seed,
randomize_seed,
canny_low_threshold,
canny_high_threshold,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed, canny_image],
)
if __name__ == "__main__":
demo.launch()