yingzhac's picture
Update to use timbrooks/instruct-pix2pix model
eaa2696
raw
history blame
4.73 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
from diffusers.utils import load_image
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "timbrooks/instruct-pix2pix"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
model_repo_id,
torch_dtype=torch_dtype,
safety_checker=None
)
pipe = pipe.to(device)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer(
prompt,
input_image,
negative_prompt,
seed,
randomize_seed,
image_guidance_scale,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if input_image is None:
return None, seed
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Process the image
if input_image is not None:
width, height = input_image.size
# Ensure width and height are valid for the model
if width > MAX_IMAGE_SIZE:
width = MAX_IMAGE_SIZE
if height > MAX_IMAGE_SIZE:
height = MAX_IMAGE_SIZE
image = pipe(
prompt=prompt,
image=input_image,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
image_guidance_scale=image_guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
).images[0]
return image, seed
examples = [
["Turn the sky into a sunset", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
["Turn him into a cyborg", "https://raw.githubusercontent.com/timothybrooks/instruct-pix2pix/main/imgs/example.jpg"],
["Make it look like winter", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
]
css = """
#col-container {
margin: 0 auto;
max-width: 840px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # InstructPix2Pix - Image Editing")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Input Image",
type="pil",
height=400
)
with gr.Column(scale=1):
result = gr.Image(label="Result", height=400)
prompt = gr.Text(
label="Instruction",
placeholder="Enter your instruction (e.g., 'turn the sky into a sunset')",
)
run_button = gr.Button("Run", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
image_guidance_scale = gr.Slider(
label="Image guidance scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=1.0,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=20.0,
step=0.1,
value=7.5,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=20,
)
gr.Examples(
examples=examples,
inputs=[prompt, input_image],
outputs=[result, seed],
fn=infer,
cache_examples=True,
)
gr.on(
triggers=[run_button.click],
fn=infer,
inputs=[
prompt,
input_image,
negative_prompt,
seed,
randomize_seed,
image_guidance_scale,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()