Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
from typing_extensions import Doc
|
5 |
+
import gradio as gr
|
6 |
+
df = pd.read_csv('dataframe.csv')
|
7 |
+
tfidf_matrix = pd.read_csv('tfidf_matrix.csv', header=None).values
|
8 |
+
tfidf_matrix.shape
|
9 |
+
word2vec_matrix = pd.read_csv('word2vecmatrix.csv',header=None).values
|
10 |
+
word2vec_matrix.shape
|
11 |
+
|
12 |
+
sbert1_matrix = pd.read_csv('sentencetransformer1.csv',header=None).values
|
13 |
+
sbert1_matrix.shape
|
14 |
+
|
15 |
+
sbert2_matrix = pd.read_csv('sentencetransformer2 copy.csv',header=None).values
|
16 |
+
sbert2_matrix.shape
|
17 |
+
|
18 |
+
def course_recommendation(model, course_subject_code, course_number, whether_not_lower_level=False, whether_only_sameorlower_level = False, whether_not_same_subject=False, whether_only_same_subject=False, recomendations_number = 5):
|
19 |
+
if model == "tf-idf":
|
20 |
+
docmatrix = tfidf_matrix
|
21 |
+
elif model == "word2vec":
|
22 |
+
docmatrix = word2vec_matrix
|
23 |
+
elif model == "sbert1":
|
24 |
+
docmatrix = sbert1_matrix # This appears to have been a typo in the original code
|
25 |
+
elif model == "sbert2":
|
26 |
+
docmatrix = sbert2_matrix
|
27 |
+
|
28 |
+
# Check if the course exists in the dataframe
|
29 |
+
if not ((df['Course Subject Code'] == course_subject_code) & (df['Course Number'] == course_number)).any():
|
30 |
+
return pd.DataFrame({'Message': ["The course you input does not exist in this semester or we do not have enough course description information about it. Please try another course. "]})
|
31 |
+
|
32 |
+
if whether_not_lower_level == True and whether_only_sameorlower_level == True:
|
33 |
+
return pd.DataFrame({'Message': ["There seems to be a conflict in the filtering logic. Please double-check the checkboxes for filtering carefully."]})
|
34 |
+
if whether_not_same_subject == True and whether_only_same_subject == True:
|
35 |
+
return pd.DataFrame({'Message': ["There seems to be a conflict in the filtering logic. Please double-check the checkboxes for filtering carefully."]})
|
36 |
+
|
37 |
+
# Get the index and level of the course in the dataframe
|
38 |
+
course_info = df[(df['Course Subject Code'] == course_subject_code) & (df['Course Number'] == course_number)]
|
39 |
+
course_index = course_info.index[0]
|
40 |
+
course_level = course_info.iloc[0]['Course Level']
|
41 |
+
# Normalize "First-year Student Seminar" to "100-level"
|
42 |
+
course_level = "100-level" if course_level == "First-year Student Seminar" else course_level
|
43 |
+
|
44 |
+
df_filtered = df.copy()
|
45 |
+
if whether_not_same_subject:
|
46 |
+
df_filtered = df_filtered[df_filtered['Course Subject Code'] != course_subject_code]
|
47 |
+
if whether_only_same_subject:
|
48 |
+
df_filtered = df_filtered[df_filtered['Course Subject Code'] == course_subject_code]
|
49 |
+
|
50 |
+
if whether_not_lower_level:
|
51 |
+
levels_to_include = ['100-level', '200-level', '300-level', '400-level', 'Graduate level']
|
52 |
+
current_level_index = levels_to_include.index(course_level)
|
53 |
+
allowed_levels = levels_to_include[current_level_index:] # Include current and higher levels
|
54 |
+
df_filtered = df_filtered[df_filtered['Course Level'].isin(allowed_levels)]
|
55 |
+
|
56 |
+
if whether_only_sameorlower_level:
|
57 |
+
levels_to_include = ['100-level', '200-level', '300-level', '400-level', 'Graduate level']
|
58 |
+
current_level_index = levels_to_include.index(course_level)
|
59 |
+
allowed_levels = levels_to_include[:current_level_index + 1] # Include current and lower levels
|
60 |
+
df_filtered = df_filtered[df_filtered['Course Level'].isin(allowed_levels)]
|
61 |
+
|
62 |
+
# Retrieve the vector for the specified course
|
63 |
+
course_vector = docmatrix[course_index]
|
64 |
+
|
65 |
+
# Calculate the cosine similarity with filtered courses
|
66 |
+
cosine_similarities = cosine_similarity(docmatrix[df_filtered.index], course_vector.reshape(1, -1)).flatten()
|
67 |
+
|
68 |
+
# Get the indices of the courses with the highest cosine similarity scores
|
69 |
+
similar_courses_indices = np.argsort(-cosine_similarities)[:int(recomendations_number)+1]
|
70 |
+
|
71 |
+
# Retrieve the course details for the most similar courses
|
72 |
+
similar_courses = df_filtered.iloc[similar_courses_indices][['Course Code', 'Course Title', 'Course Description Text']]
|
73 |
+
if similar_courses.index[0] == course_index:
|
74 |
+
similar_courses = similar_courses.iloc[1:] # Exclude the original course if it is the highest ranked
|
75 |
+
else:
|
76 |
+
similar_courses = similar_courses.head(int(recomendations_number))
|
77 |
+
|
78 |
+
# Insert a column for similarity rank
|
79 |
+
|
80 |
+
input_course_details = course_info[['Course Code', 'Course Title', 'Course Description Text']]
|
81 |
+
result_df = pd.concat([input_course_details, similar_courses]).reset_index(drop=True)
|
82 |
+
result_df .insert(0, 'Similar Rank', range(0, len(similar_courses) + 1))
|
83 |
+
return result_df
|
84 |
+
|
85 |
+
import gradio as gr
|
86 |
+
import pandas as pd
|
87 |
+
from functools import partial
|
88 |
+
|
89 |
+
def highlight_first_row(s, props=''):
|
90 |
+
return [props if s.name == 0 else '' for _ in range(len(s))]
|
91 |
+
|
92 |
+
def recommend(model_name, course_subject_code, course_number, exclude_lower_levels, exclude_upper_levels, exclude_same_subject, exclude_other_subject, recomendations_number):
|
93 |
+
outputdf = course_recommendation(model_name, course_subject_code, course_number, exclude_lower_levels, exclude_upper_levels, exclude_same_subject, exclude_other_subject, recomendations_number)
|
94 |
+
outputdf = outputdf.style.apply(highlight_first_row, props='background-color: orange;', axis=1)
|
95 |
+
return outputdf
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
def main():
|
100 |
+
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue")) as demo:
|
101 |
+
gr.Markdown("# Course Recommendation System - For UIUC fall 2024 semester")
|
102 |
+
gr.Markdown("This project provides course recommendations using different NLP models. Select a model and enter course details to see recommendations.")
|
103 |
+
gr.Markdown("Want to know how these models work? Check out the **ABOUT** tab:)")
|
104 |
+
with gr.Row():
|
105 |
+
with gr.Column(scale=2):
|
106 |
+
gr.Markdown("*Choose the course you want to explore:*" )
|
107 |
+
with gr.Row():
|
108 |
+
subject = gr.Dropdown(choices=sorted(df['Course Subject Code'].unique()), label="Course Subject Code")
|
109 |
+
number = gr.Textbox(label="Course Number")
|
110 |
+
recommendation_no = gr.Slider(3, 100, step = 1, label="Recommendation Number", info="Choose between 3 and 100")
|
111 |
+
with gr.Column(scale=1):
|
112 |
+
gr.Markdown("*You may want to add a filter:*")
|
113 |
+
with gr.Row():
|
114 |
+
exclude_lower = gr.Checkbox(label="Only Upper Level", info = "Same level and higher level courses will be shown")
|
115 |
+
exclude_upper = gr.Checkbox(label="Only Lower Level", info = "Same level and lower level courses will be shown")
|
116 |
+
with gr.Row():
|
117 |
+
exclude_same = gr.Checkbox(label="Only Different Subject")
|
118 |
+
exclude_other = gr.Checkbox(label="Only Same Subject")
|
119 |
+
tf_idf_submit = gr.Button("Recommend", variant="primary")
|
120 |
+
with gr.Tabs() as tabs:
|
121 |
+
|
122 |
+
# Setting up the interface for each model
|
123 |
+
with gr.Tab("Word2Vec Model"):
|
124 |
+
tf_idf_submit.click(
|
125 |
+
fn=partial(recommend, "word2vec"),
|
126 |
+
inputs=[subject, number, exclude_lower, exclude_upper, exclude_same, exclude_other, recommendation_no],
|
127 |
+
outputs=gr.Dataframe(wrap = True, column_widths = ["10%","10%", "20%", "63%"])
|
128 |
+
)
|
129 |
+
with gr.Tab("TF-IDF Model"):
|
130 |
+
tf_idf_submit.click(
|
131 |
+
fn=partial(recommend, "tf-idf"),
|
132 |
+
inputs=[subject, number, exclude_lower, exclude_upper, exclude_same, exclude_other, recommendation_no],
|
133 |
+
outputs=gr.Dataframe(wrap = True, column_widths = ["10%","10%", "20%", "63%"])
|
134 |
+
)
|
135 |
+
with gr.Tab("SBERT Model1"):
|
136 |
+
tf_idf_submit.click(
|
137 |
+
fn=partial(recommend, "sbert1"),
|
138 |
+
inputs=[subject, number, exclude_lower, exclude_upper, exclude_same, exclude_other, recommendation_no],
|
139 |
+
outputs=gr.Dataframe(wrap = True, column_widths = ["10%","10%", "20%", "63%"])
|
140 |
+
)
|
141 |
+
with gr.Tab("SBERT Model2"):
|
142 |
+
tf_idf_submit.click(
|
143 |
+
fn=partial(recommend, "sbert2"),
|
144 |
+
inputs=[subject, number, exclude_lower, exclude_upper, exclude_same, exclude_other, recommendation_no],
|
145 |
+
outputs=gr.Dataframe(wrap = True, column_widths = ["10%","10%", "20%", "63%"])
|
146 |
+
)
|
147 |
+
with gr.Tab("ABOUT"):
|
148 |
+
gr.Markdown("This project provides course recommendations using different NLP models. Select a model and enter course details to see recommendations.")
|
149 |
+
return demo
|
150 |
+
|
151 |
+
# Launch the interface
|
152 |
+
if __name__ == "__main__":
|
153 |
+
main().launch(share=True)
|
154 |
+
|