yihaochen2002 commited on
Commit
b5a06b6
·
verified ·
1 Parent(s): 832ae40

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +154 -0
app.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ from sklearn.metrics.pairwise import cosine_similarity
4
+ from typing_extensions import Doc
5
+ import gradio as gr
6
+ df = pd.read_csv('dataframe.csv')
7
+ tfidf_matrix = pd.read_csv('tfidf_matrix.csv', header=None).values
8
+ tfidf_matrix.shape
9
+ word2vec_matrix = pd.read_csv('word2vecmatrix.csv',header=None).values
10
+ word2vec_matrix.shape
11
+
12
+ sbert1_matrix = pd.read_csv('sentencetransformer1.csv',header=None).values
13
+ sbert1_matrix.shape
14
+
15
+ sbert2_matrix = pd.read_csv('sentencetransformer2 copy.csv',header=None).values
16
+ sbert2_matrix.shape
17
+
18
+ def course_recommendation(model, course_subject_code, course_number, whether_not_lower_level=False, whether_only_sameorlower_level = False, whether_not_same_subject=False, whether_only_same_subject=False, recomendations_number = 5):
19
+ if model == "tf-idf":
20
+ docmatrix = tfidf_matrix
21
+ elif model == "word2vec":
22
+ docmatrix = word2vec_matrix
23
+ elif model == "sbert1":
24
+ docmatrix = sbert1_matrix # This appears to have been a typo in the original code
25
+ elif model == "sbert2":
26
+ docmatrix = sbert2_matrix
27
+
28
+ # Check if the course exists in the dataframe
29
+ if not ((df['Course Subject Code'] == course_subject_code) & (df['Course Number'] == course_number)).any():
30
+ return pd.DataFrame({'Message': ["The course you input does not exist in this semester or we do not have enough course description information about it. Please try another course. "]})
31
+
32
+ if whether_not_lower_level == True and whether_only_sameorlower_level == True:
33
+ return pd.DataFrame({'Message': ["There seems to be a conflict in the filtering logic. Please double-check the checkboxes for filtering carefully."]})
34
+ if whether_not_same_subject == True and whether_only_same_subject == True:
35
+ return pd.DataFrame({'Message': ["There seems to be a conflict in the filtering logic. Please double-check the checkboxes for filtering carefully."]})
36
+
37
+ # Get the index and level of the course in the dataframe
38
+ course_info = df[(df['Course Subject Code'] == course_subject_code) & (df['Course Number'] == course_number)]
39
+ course_index = course_info.index[0]
40
+ course_level = course_info.iloc[0]['Course Level']
41
+ # Normalize "First-year Student Seminar" to "100-level"
42
+ course_level = "100-level" if course_level == "First-year Student Seminar" else course_level
43
+
44
+ df_filtered = df.copy()
45
+ if whether_not_same_subject:
46
+ df_filtered = df_filtered[df_filtered['Course Subject Code'] != course_subject_code]
47
+ if whether_only_same_subject:
48
+ df_filtered = df_filtered[df_filtered['Course Subject Code'] == course_subject_code]
49
+
50
+ if whether_not_lower_level:
51
+ levels_to_include = ['100-level', '200-level', '300-level', '400-level', 'Graduate level']
52
+ current_level_index = levels_to_include.index(course_level)
53
+ allowed_levels = levels_to_include[current_level_index:] # Include current and higher levels
54
+ df_filtered = df_filtered[df_filtered['Course Level'].isin(allowed_levels)]
55
+
56
+ if whether_only_sameorlower_level:
57
+ levels_to_include = ['100-level', '200-level', '300-level', '400-level', 'Graduate level']
58
+ current_level_index = levels_to_include.index(course_level)
59
+ allowed_levels = levels_to_include[:current_level_index + 1] # Include current and lower levels
60
+ df_filtered = df_filtered[df_filtered['Course Level'].isin(allowed_levels)]
61
+
62
+ # Retrieve the vector for the specified course
63
+ course_vector = docmatrix[course_index]
64
+
65
+ # Calculate the cosine similarity with filtered courses
66
+ cosine_similarities = cosine_similarity(docmatrix[df_filtered.index], course_vector.reshape(1, -1)).flatten()
67
+
68
+ # Get the indices of the courses with the highest cosine similarity scores
69
+ similar_courses_indices = np.argsort(-cosine_similarities)[:int(recomendations_number)+1]
70
+
71
+ # Retrieve the course details for the most similar courses
72
+ similar_courses = df_filtered.iloc[similar_courses_indices][['Course Code', 'Course Title', 'Course Description Text']]
73
+ if similar_courses.index[0] == course_index:
74
+ similar_courses = similar_courses.iloc[1:] # Exclude the original course if it is the highest ranked
75
+ else:
76
+ similar_courses = similar_courses.head(int(recomendations_number))
77
+
78
+ # Insert a column for similarity rank
79
+
80
+ input_course_details = course_info[['Course Code', 'Course Title', 'Course Description Text']]
81
+ result_df = pd.concat([input_course_details, similar_courses]).reset_index(drop=True)
82
+ result_df .insert(0, 'Similar Rank', range(0, len(similar_courses) + 1))
83
+ return result_df
84
+
85
+ import gradio as gr
86
+ import pandas as pd
87
+ from functools import partial
88
+
89
+ def highlight_first_row(s, props=''):
90
+ return [props if s.name == 0 else '' for _ in range(len(s))]
91
+
92
+ def recommend(model_name, course_subject_code, course_number, exclude_lower_levels, exclude_upper_levels, exclude_same_subject, exclude_other_subject, recomendations_number):
93
+ outputdf = course_recommendation(model_name, course_subject_code, course_number, exclude_lower_levels, exclude_upper_levels, exclude_same_subject, exclude_other_subject, recomendations_number)
94
+ outputdf = outputdf.style.apply(highlight_first_row, props='background-color: orange;', axis=1)
95
+ return outputdf
96
+
97
+
98
+
99
+ def main():
100
+ with gr.Blocks(theme=gr.themes.Default(primary_hue="blue")) as demo:
101
+ gr.Markdown("# Course Recommendation System - For UIUC fall 2024 semester")
102
+ gr.Markdown("This project provides course recommendations using different NLP models. Select a model and enter course details to see recommendations.")
103
+ gr.Markdown("Want to know how these models work? Check out the **ABOUT** tab:)")
104
+ with gr.Row():
105
+ with gr.Column(scale=2):
106
+ gr.Markdown("*Choose the course you want to explore:*" )
107
+ with gr.Row():
108
+ subject = gr.Dropdown(choices=sorted(df['Course Subject Code'].unique()), label="Course Subject Code")
109
+ number = gr.Textbox(label="Course Number")
110
+ recommendation_no = gr.Slider(3, 100, step = 1, label="Recommendation Number", info="Choose between 3 and 100")
111
+ with gr.Column(scale=1):
112
+ gr.Markdown("*You may want to add a filter:*")
113
+ with gr.Row():
114
+ exclude_lower = gr.Checkbox(label="Only Upper Level", info = "Same level and higher level courses will be shown")
115
+ exclude_upper = gr.Checkbox(label="Only Lower Level", info = "Same level and lower level courses will be shown")
116
+ with gr.Row():
117
+ exclude_same = gr.Checkbox(label="Only Different Subject")
118
+ exclude_other = gr.Checkbox(label="Only Same Subject")
119
+ tf_idf_submit = gr.Button("Recommend", variant="primary")
120
+ with gr.Tabs() as tabs:
121
+
122
+ # Setting up the interface for each model
123
+ with gr.Tab("Word2Vec Model"):
124
+ tf_idf_submit.click(
125
+ fn=partial(recommend, "word2vec"),
126
+ inputs=[subject, number, exclude_lower, exclude_upper, exclude_same, exclude_other, recommendation_no],
127
+ outputs=gr.Dataframe(wrap = True, column_widths = ["10%","10%", "20%", "63%"])
128
+ )
129
+ with gr.Tab("TF-IDF Model"):
130
+ tf_idf_submit.click(
131
+ fn=partial(recommend, "tf-idf"),
132
+ inputs=[subject, number, exclude_lower, exclude_upper, exclude_same, exclude_other, recommendation_no],
133
+ outputs=gr.Dataframe(wrap = True, column_widths = ["10%","10%", "20%", "63%"])
134
+ )
135
+ with gr.Tab("SBERT Model1"):
136
+ tf_idf_submit.click(
137
+ fn=partial(recommend, "sbert1"),
138
+ inputs=[subject, number, exclude_lower, exclude_upper, exclude_same, exclude_other, recommendation_no],
139
+ outputs=gr.Dataframe(wrap = True, column_widths = ["10%","10%", "20%", "63%"])
140
+ )
141
+ with gr.Tab("SBERT Model2"):
142
+ tf_idf_submit.click(
143
+ fn=partial(recommend, "sbert2"),
144
+ inputs=[subject, number, exclude_lower, exclude_upper, exclude_same, exclude_other, recommendation_no],
145
+ outputs=gr.Dataframe(wrap = True, column_widths = ["10%","10%", "20%", "63%"])
146
+ )
147
+ with gr.Tab("ABOUT"):
148
+ gr.Markdown("This project provides course recommendations using different NLP models. Select a model and enter course details to see recommendations.")
149
+ return demo
150
+
151
+ # Launch the interface
152
+ if __name__ == "__main__":
153
+ main().launch(share=True)
154
+