|
import pandas as pd |
|
import numpy as np |
|
import subprocess |
|
import sys |
|
|
|
def install_package(package): |
|
""" Install the necessary package using pip """ |
|
subprocess.check_call([sys.executable, "-m", "pip", "install", package]) |
|
install_package('scikit-learn') |
|
install_package('typing_extensions') |
|
install_package('functools') |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
from typing_extensions import Doc |
|
import gradio as gr |
|
df = pd.read_csv('dataframe.csv') |
|
tfidf_matrix = pd.read_csv('tfidf_matrix.csv', header=None).values |
|
tfidf_matrix.shape |
|
word2vec_matrix = pd.read_csv('word2vecmatrix.csv',header=None).values |
|
word2vec_matrix.shape |
|
|
|
sbert1_matrix = pd.read_csv('sentencetransformer1.csv',header=None).values |
|
sbert1_matrix.shape |
|
|
|
sbert2_matrix = pd.read_csv('sentencetransformer2 copy.csv',header=None).values |
|
sbert2_matrix.shape |
|
|
|
def course_recommendation(model, course_subject_code, course_number, whether_not_lower_level=False, whether_only_sameorlower_level = False, whether_not_same_subject=False, whether_only_same_subject=False, recomendations_number = 5): |
|
if model == "tf-idf": |
|
docmatrix = tfidf_matrix |
|
elif model == "word2vec": |
|
docmatrix = word2vec_matrix |
|
elif model == "sbert1": |
|
docmatrix = sbert1_matrix |
|
elif model == "sbert2": |
|
docmatrix = sbert2_matrix |
|
|
|
|
|
if not ((df['Course Subject Code'] == course_subject_code) & (df['Course Number'] == course_number)).any(): |
|
return pd.DataFrame({'Message': ["The course you input does not exist in this semester or we do not have enough course description information about it. Please try another course. "]}) |
|
|
|
if whether_not_lower_level == True and whether_only_sameorlower_level == True: |
|
return pd.DataFrame({'Message': ["There seems to be a conflict in the filtering logic. Please double-check the checkboxes for filtering carefully."]}) |
|
if whether_not_same_subject == True and whether_only_same_subject == True: |
|
return pd.DataFrame({'Message': ["There seems to be a conflict in the filtering logic. Please double-check the checkboxes for filtering carefully."]}) |
|
|
|
|
|
course_info = df[(df['Course Subject Code'] == course_subject_code) & (df['Course Number'] == course_number)] |
|
course_index = course_info.index[0] |
|
course_level = course_info.iloc[0]['Course Level'] |
|
|
|
course_level = "100-level" if course_level == "First-year Student Seminar" else course_level |
|
|
|
df_filtered = df.copy() |
|
if whether_not_same_subject: |
|
df_filtered = df_filtered[df_filtered['Course Subject Code'] != course_subject_code] |
|
if whether_only_same_subject: |
|
df_filtered = df_filtered[df_filtered['Course Subject Code'] == course_subject_code] |
|
|
|
if whether_not_lower_level: |
|
levels_to_include = ['100-level', '200-level', '300-level', '400-level', 'Graduate level'] |
|
current_level_index = levels_to_include.index(course_level) |
|
allowed_levels = levels_to_include[current_level_index:] |
|
df_filtered = df_filtered[df_filtered['Course Level'].isin(allowed_levels)] |
|
|
|
if whether_only_sameorlower_level: |
|
levels_to_include = ['100-level', '200-level', '300-level', '400-level', 'Graduate level'] |
|
current_level_index = levels_to_include.index(course_level) |
|
allowed_levels = levels_to_include[:current_level_index + 1] |
|
df_filtered = df_filtered[df_filtered['Course Level'].isin(allowed_levels)] |
|
|
|
|
|
course_vector = docmatrix[course_index] |
|
|
|
|
|
cosine_similarities = cosine_similarity(docmatrix[df_filtered.index], course_vector.reshape(1, -1)).flatten() |
|
|
|
|
|
similar_courses_indices = np.argsort(-cosine_similarities)[:int(recomendations_number)+1] |
|
|
|
|
|
similar_courses = df_filtered.iloc[similar_courses_indices][['Course Code', 'Course Title', 'Course Description Text']] |
|
if similar_courses.index[0] == course_index: |
|
similar_courses = similar_courses.iloc[1:] |
|
else: |
|
similar_courses = similar_courses.head(int(recomendations_number)) |
|
|
|
|
|
|
|
input_course_details = course_info[['Course Code', 'Course Title', 'Course Description Text']] |
|
result_df = pd.concat([input_course_details, similar_courses]).reset_index(drop=True) |
|
result_df .insert(0, 'Similar Rank', range(0, len(similar_courses) + 1)) |
|
return result_df |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
from functools import partial |
|
|
|
def highlight_first_row(s, props=''): |
|
return [props if s.name == 0 else '' for _ in range(len(s))] |
|
|
|
def recommend(model_name, course_subject_code, course_number, exclude_lower_levels, exclude_upper_levels, exclude_same_subject, exclude_other_subject, recomendations_number): |
|
outputdf = course_recommendation(model_name, course_subject_code, course_number, exclude_lower_levels, exclude_upper_levels, exclude_same_subject, exclude_other_subject, recomendations_number) |
|
outputdf = outputdf.style.apply(highlight_first_row, props='background-color: orange;', axis=1) |
|
return outputdf |
|
|
|
|
|
|
|
def main(): |
|
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue")) as demo: |
|
gr.Markdown("# Course Recommendation System - For UIUC fall 2024 semester") |
|
gr.Markdown("This project provides course recommendations using different NLP models. Select a model and enter course details to see recommendations.") |
|
gr.Markdown("Want to know how these models work? Check out the **ABOUT** tab:)") |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
gr.Markdown("*Choose the course you want to explore:*" ) |
|
with gr.Row(): |
|
subject = gr.Dropdown(choices=sorted(df['Course Subject Code'].unique()), label="Course Subject Code") |
|
number = gr.Textbox(label="Course Number") |
|
recommendation_no = gr.Slider(3, 100, step = 1, label="Recommendation Number", info="Choose between 3 and 100") |
|
with gr.Column(scale=1): |
|
gr.Markdown("*You may want to add a filter:*") |
|
with gr.Row(): |
|
exclude_lower = gr.Checkbox(label="Only Upper Level", info = "Same level and higher level courses will be shown") |
|
exclude_upper = gr.Checkbox(label="Only Lower Level", info = "Same level and lower level courses will be shown") |
|
with gr.Row(): |
|
exclude_same = gr.Checkbox(label="Only Different Subject") |
|
exclude_other = gr.Checkbox(label="Only Same Subject") |
|
tf_idf_submit = gr.Button("Recommend", variant="primary") |
|
with gr.Tabs() as tabs: |
|
|
|
|
|
with gr.Tab("Word2Vec Model"): |
|
tf_idf_submit.click( |
|
fn=partial(recommend, "word2vec"), |
|
inputs=[subject, number, exclude_lower, exclude_upper, exclude_same, exclude_other, recommendation_no], |
|
outputs=gr.Dataframe(wrap = True, column_widths = ["10%","10%", "20%", "63%"]) |
|
) |
|
with gr.Tab("TF-IDF Model"): |
|
tf_idf_submit.click( |
|
fn=partial(recommend, "tf-idf"), |
|
inputs=[subject, number, exclude_lower, exclude_upper, exclude_same, exclude_other, recommendation_no], |
|
outputs=gr.Dataframe(wrap = True, column_widths = ["10%","10%", "20%", "63%"]) |
|
) |
|
with gr.Tab("SBERT Model1"): |
|
tf_idf_submit.click( |
|
fn=partial(recommend, "sbert1"), |
|
inputs=[subject, number, exclude_lower, exclude_upper, exclude_same, exclude_other, recommendation_no], |
|
outputs=gr.Dataframe(wrap = True, column_widths = ["10%","10%", "20%", "63%"]) |
|
) |
|
with gr.Tab("SBERT Model2"): |
|
tf_idf_submit.click( |
|
fn=partial(recommend, "sbert2"), |
|
inputs=[subject, number, exclude_lower, exclude_upper, exclude_same, exclude_other, recommendation_no], |
|
outputs=gr.Dataframe(wrap = True, column_widths = ["10%","10%", "20%", "63%"]) |
|
) |
|
with gr.Tab("ABOUT"): |
|
gr.Markdown("This project provides course recommendations using different NLP models. Select a model and enter course details to see recommendations.") |
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
main().launch(share=True) |
|
|
|
|