detect device
Browse files
app.py
CHANGED
|
@@ -29,9 +29,14 @@ def get_modelscope_pipeline(
|
|
| 29 |
mcm_variant: Optional[str] = "WebVid",
|
| 30 |
):
|
| 31 |
model_id = "ali-vilab/text-to-video-ms-1.7b"
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
scheduler = LCMScheduler.from_pretrained(
|
| 36 |
model_id,
|
| 37 |
subfolder="scheduler",
|
|
@@ -82,14 +87,23 @@ def get_animatediff_pipeline(
|
|
| 82 |
else:
|
| 83 |
raise ValueError(f"Unknown real_variant {real_variant}")
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
scheduler = LCMScheduler.from_pretrained(
|
| 94 |
model_id,
|
| 95 |
subfolder="scheduler",
|
|
@@ -306,6 +320,11 @@ with gr.Blocks(css=css) as demo:
|
|
| 306 |
"""
|
| 307 |
)
|
| 308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
with gr.Row():
|
| 310 |
base_model = gr.Dropdown(
|
| 311 |
label="Base model",
|
|
|
|
| 29 |
mcm_variant: Optional[str] = "WebVid",
|
| 30 |
):
|
| 31 |
model_id = "ali-vilab/text-to-video-ms-1.7b"
|
| 32 |
+
if torch.cuda.is_available():
|
| 33 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 34 |
+
model_id, torch_dtype=torch.float16, variant="fp16"
|
| 35 |
+
)
|
| 36 |
+
else:
|
| 37 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 38 |
+
model_id
|
| 39 |
+
)
|
| 40 |
scheduler = LCMScheduler.from_pretrained(
|
| 41 |
model_id,
|
| 42 |
subfolder="scheduler",
|
|
|
|
| 87 |
else:
|
| 88 |
raise ValueError(f"Unknown real_variant {real_variant}")
|
| 89 |
|
| 90 |
+
if torch.cuda.is_available():
|
| 91 |
+
adapter = MotionAdapter.from_pretrained(
|
| 92 |
+
motion_module_path, torch_dtype=torch.float16
|
| 93 |
+
)
|
| 94 |
+
pipe = AnimateDiffPipeline.from_pretrained(
|
| 95 |
+
model_id,
|
| 96 |
+
motion_adapter=adapter,
|
| 97 |
+
torch_dtype=torch.float16,
|
| 98 |
+
)
|
| 99 |
+
else:
|
| 100 |
+
adapter = MotionAdapter.from_pretrained(
|
| 101 |
+
motion_module_path
|
| 102 |
+
)
|
| 103 |
+
pipe = AnimateDiffPipeline.from_pretrained(
|
| 104 |
+
model_id,
|
| 105 |
+
motion_adapter=adapter,
|
| 106 |
+
)
|
| 107 |
scheduler = LCMScheduler.from_pretrained(
|
| 108 |
model_id,
|
| 109 |
subfolder="scheduler",
|
|
|
|
| 320 |
"""
|
| 321 |
)
|
| 322 |
|
| 323 |
+
gr.Markdown(
|
| 324 |
+
f"""
|
| 325 |
+
<p align="center"> Currently running on {device}.</p>
|
| 326 |
+
"""
|
| 327 |
+
)
|
| 328 |
with gr.Row():
|
| 329 |
base_model = gr.Dropdown(
|
| 330 |
label="Base model",
|