add resolution
Browse files
app.py
CHANGED
@@ -35,9 +35,7 @@ def get_modelscope_pipeline(
|
|
35 |
# model_id, torch_dtype=torch.float16, variant="fp16"
|
36 |
# )
|
37 |
# else:
|
38 |
-
pipe = DiffusionPipeline.from_pretrained(
|
39 |
-
model_id
|
40 |
-
)
|
41 |
scheduler = LCMScheduler.from_pretrained(
|
42 |
model_id,
|
43 |
subfolder="scheduler",
|
@@ -98,12 +96,10 @@ def get_animatediff_pipeline(
|
|
98 |
# torch_dtype=torch.float16,
|
99 |
# )
|
100 |
# else:
|
101 |
-
adapter = MotionAdapter.from_pretrained(
|
102 |
-
motion_module_path
|
103 |
-
)
|
104 |
pipe = AnimateDiffPipeline.from_pretrained(
|
105 |
model_id,
|
106 |
-
motion_adapter=adapter,
|
107 |
)
|
108 |
scheduler = LCMScheduler.from_pretrained(
|
109 |
model_id,
|
@@ -141,7 +137,13 @@ def get_animatediff_pipeline(
|
|
141 |
|
142 |
|
143 |
pipe_dict = {
|
144 |
-
"ModelScope T2V": {
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
"AnimateDiff (SD1.5)": {"WebVid": None, "LAION-aes": None},
|
146 |
"AnimateDiff (RealisticVision)": {"WebVid": None, "LAION-aes": None},
|
147 |
"AnimateDiff (epiCRealism)": {"WebVid": None, "LAION-aes": None},
|
@@ -179,9 +181,17 @@ cache_pipeline = {
|
|
179 |
# else:
|
180 |
# raise ValueError(f"Unknown base_model {base_model}")
|
181 |
|
182 |
-
|
|
|
183 |
def infer(
|
184 |
-
base_model,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
):
|
186 |
# if pipe_dict[base_model][variant] is None:
|
187 |
# if base_model == "ModelScope T2V":
|
@@ -245,12 +255,14 @@ def infer(
|
|
245 |
|
246 |
generator = torch.Generator("cpu").manual_seed(seed)
|
247 |
|
248 |
-
|
249 |
output = cache_pipeline["pipeline"](
|
250 |
prompt=prompt,
|
251 |
num_frames=16,
|
252 |
guidance_scale=1.0,
|
253 |
num_inference_steps=num_inference_steps,
|
|
|
|
|
254 |
generator=generator,
|
255 |
).frames
|
256 |
if not isinstance(output, list):
|
@@ -275,50 +287,69 @@ examples = [
|
|
275 |
"ModelScope T2V",
|
276 |
"LAION-aes",
|
277 |
"Aerial uhd 4k view. mid-air flight over fresh and clean mountain river at sunny summer morning. Green trees and sun rays on horizon. Direct on sun.",
|
278 |
-
4
|
|
|
|
|
279 |
],
|
280 |
-
["ModelScope T2V", "Anime", "Timelapse misty mountain landscape", 4
|
|
|
|
|
|
|
281 |
[
|
282 |
"ModelScope T2V",
|
283 |
"WebVid",
|
284 |
"Back of woman in shorts going near pure creek in beautiful mountains.",
|
285 |
-
4
|
|
|
|
|
286 |
],
|
287 |
[
|
288 |
"ModelScope T2V",
|
289 |
"3D Cartoon",
|
290 |
"A rotating pandoro (a traditional italian sweet yeast bread, most popular around christmas and new year) being eaten in time-lapse.",
|
291 |
-
4
|
|
|
|
|
292 |
],
|
293 |
[
|
294 |
"ModelScope T2V",
|
295 |
"Realistic",
|
296 |
"Slow motion avocado with a stone falls and breaks into 2 parts with splashes",
|
297 |
-
4
|
|
|
|
|
298 |
],
|
299 |
[
|
300 |
"AnimateDiff (RealisticVision)",
|
301 |
"LAION-aes",
|
302 |
"Slow motion of delicious salmon sachimi set with green vegetables leaves served on wood plate. make homemade japanese food at home.-dan",
|
303 |
-
8
|
|
|
|
|
304 |
],
|
305 |
[
|
306 |
"AnimateDiff (RealisticVision)",
|
307 |
"WebVid",
|
308 |
"Blooming meadow panorama zoom-out shot heavenly clouds and upcoming thunderstorm in mountain range harz, germany.",
|
309 |
-
8
|
|
|
|
|
310 |
],
|
311 |
[
|
312 |
"AnimateDiff (RealisticVision)",
|
313 |
"LAION-aes",
|
314 |
"A young woman in a yellow sweater uses vr glasses, sitting on the shore of a pond on a background of dark waves. a strong wind develops her hair, the sun's rays are reflected from the water.",
|
315 |
-
8
|
|
|
|
|
316 |
],
|
317 |
[
|
318 |
"AnimateDiff (RealisticVision)",
|
319 |
"LAION-aes",
|
320 |
"Female running at sunset. healthy fitness concept",
|
321 |
-
8
|
|
|
|
|
322 |
],
|
323 |
]
|
324 |
|
@@ -339,6 +370,7 @@ variants = {
|
|
339 |
def update_variant(rs):
|
340 |
return gr.update(choices=variants[rs], value=None)
|
341 |
|
|
|
342 |
# init_pipelines()
|
343 |
|
344 |
with gr.Blocks(css=css) as demo:
|
@@ -362,9 +394,12 @@ with gr.Blocks(css=css) as demo:
|
|
362 |
|
363 |
gr.Markdown(
|
364 |
f"""
|
365 |
-
<p align="center">
|
|
|
366 |
"""
|
367 |
)
|
|
|
|
|
368 |
with gr.Row():
|
369 |
base_model = gr.Dropdown(
|
370 |
label="Base model",
|
@@ -420,16 +455,50 @@ with gr.Blocks(css=css) as demo:
|
|
420 |
step=1,
|
421 |
value=4,
|
422 |
)
|
423 |
-
|
424 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
# result = gr.Video(label="Result", show_label=False, interactive=False, height=512, width=512, autoplay=True)
|
426 |
result = gr.Video(
|
427 |
-
label="Result",
|
|
|
|
|
|
|
|
|
|
|
428 |
)
|
429 |
|
430 |
gr.Examples(
|
431 |
examples=examples,
|
432 |
-
inputs=[base_model, variant_dropdown, prompt, num_inference_steps],
|
433 |
cache_examples=True,
|
434 |
fn=infer,
|
435 |
outputs=[result, seed],
|
@@ -442,6 +511,8 @@ with gr.Blocks(css=css) as demo:
|
|
442 |
variant_dropdown,
|
443 |
prompt,
|
444 |
num_inference_steps,
|
|
|
|
|
445 |
seed,
|
446 |
randomize_seed,
|
447 |
],
|
|
|
35 |
# model_id, torch_dtype=torch.float16, variant="fp16"
|
36 |
# )
|
37 |
# else:
|
38 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
|
|
|
|
|
39 |
scheduler = LCMScheduler.from_pretrained(
|
40 |
model_id,
|
41 |
subfolder="scheduler",
|
|
|
96 |
# torch_dtype=torch.float16,
|
97 |
# )
|
98 |
# else:
|
99 |
+
adapter = MotionAdapter.from_pretrained(motion_module_path)
|
|
|
|
|
100 |
pipe = AnimateDiffPipeline.from_pretrained(
|
101 |
model_id,
|
102 |
+
motion_adapter=adapter, torch_dtype=torch.float16
|
103 |
)
|
104 |
scheduler = LCMScheduler.from_pretrained(
|
105 |
model_id,
|
|
|
137 |
|
138 |
|
139 |
pipe_dict = {
|
140 |
+
"ModelScope T2V": {
|
141 |
+
"WebVid": None,
|
142 |
+
"LAION-aes": None,
|
143 |
+
"Anime": None,
|
144 |
+
"Realistic": None,
|
145 |
+
"3D Cartoon": None,
|
146 |
+
},
|
147 |
"AnimateDiff (SD1.5)": {"WebVid": None, "LAION-aes": None},
|
148 |
"AnimateDiff (RealisticVision)": {"WebVid": None, "LAION-aes": None},
|
149 |
"AnimateDiff (epiCRealism)": {"WebVid": None, "LAION-aes": None},
|
|
|
181 |
# else:
|
182 |
# raise ValueError(f"Unknown base_model {base_model}")
|
183 |
|
184 |
+
|
185 |
+
@spaces.GPU(duration=90)
|
186 |
def infer(
|
187 |
+
base_model,
|
188 |
+
variant,
|
189 |
+
prompt,
|
190 |
+
num_inference_steps=4,
|
191 |
+
height=256,
|
192 |
+
width=256,
|
193 |
+
seed=0,
|
194 |
+
randomize_seed=True,
|
195 |
):
|
196 |
# if pipe_dict[base_model][variant] is None:
|
197 |
# if base_model == "ModelScope T2V":
|
|
|
255 |
|
256 |
generator = torch.Generator("cpu").manual_seed(seed)
|
257 |
|
258 |
+
progress = gr.Progress(track_tqdm=True)
|
259 |
output = cache_pipeline["pipeline"](
|
260 |
prompt=prompt,
|
261 |
num_frames=16,
|
262 |
guidance_scale=1.0,
|
263 |
num_inference_steps=num_inference_steps,
|
264 |
+
height=height,
|
265 |
+
width=width,
|
266 |
generator=generator,
|
267 |
).frames
|
268 |
if not isinstance(output, list):
|
|
|
287 |
"ModelScope T2V",
|
288 |
"LAION-aes",
|
289 |
"Aerial uhd 4k view. mid-air flight over fresh and clean mountain river at sunny summer morning. Green trees and sun rays on horizon. Direct on sun.",
|
290 |
+
4,
|
291 |
+
256,
|
292 |
+
256,
|
293 |
],
|
294 |
+
["ModelScope T2V", "Anime", "Timelapse misty mountain landscape", 4,
|
295 |
+
256,
|
296 |
+
256,
|
297 |
+
],
|
298 |
[
|
299 |
"ModelScope T2V",
|
300 |
"WebVid",
|
301 |
"Back of woman in shorts going near pure creek in beautiful mountains.",
|
302 |
+
4,
|
303 |
+
256,
|
304 |
+
256,
|
305 |
],
|
306 |
[
|
307 |
"ModelScope T2V",
|
308 |
"3D Cartoon",
|
309 |
"A rotating pandoro (a traditional italian sweet yeast bread, most popular around christmas and new year) being eaten in time-lapse.",
|
310 |
+
4,
|
311 |
+
256,
|
312 |
+
256,
|
313 |
],
|
314 |
[
|
315 |
"ModelScope T2V",
|
316 |
"Realistic",
|
317 |
"Slow motion avocado with a stone falls and breaks into 2 parts with splashes",
|
318 |
+
4,
|
319 |
+
256,
|
320 |
+
256,
|
321 |
],
|
322 |
[
|
323 |
"AnimateDiff (RealisticVision)",
|
324 |
"LAION-aes",
|
325 |
"Slow motion of delicious salmon sachimi set with green vegetables leaves served on wood plate. make homemade japanese food at home.-dan",
|
326 |
+
8,
|
327 |
+
512,
|
328 |
+
512,
|
329 |
],
|
330 |
[
|
331 |
"AnimateDiff (RealisticVision)",
|
332 |
"WebVid",
|
333 |
"Blooming meadow panorama zoom-out shot heavenly clouds and upcoming thunderstorm in mountain range harz, germany.",
|
334 |
+
8,
|
335 |
+
512,
|
336 |
+
512,
|
337 |
],
|
338 |
[
|
339 |
"AnimateDiff (RealisticVision)",
|
340 |
"LAION-aes",
|
341 |
"A young woman in a yellow sweater uses vr glasses, sitting on the shore of a pond on a background of dark waves. a strong wind develops her hair, the sun's rays are reflected from the water.",
|
342 |
+
8,
|
343 |
+
512,
|
344 |
+
512,
|
345 |
],
|
346 |
[
|
347 |
"AnimateDiff (RealisticVision)",
|
348 |
"LAION-aes",
|
349 |
"Female running at sunset. healthy fitness concept",
|
350 |
+
8,
|
351 |
+
512,
|
352 |
+
512,
|
353 |
],
|
354 |
]
|
355 |
|
|
|
370 |
def update_variant(rs):
|
371 |
return gr.update(choices=variants[rs], value=None)
|
372 |
|
373 |
+
|
374 |
# init_pipelines()
|
375 |
|
376 |
with gr.Blocks(css=css) as demo:
|
|
|
394 |
|
395 |
gr.Markdown(
|
396 |
f"""
|
397 |
+
<p align="center">Currently running on {device}.</p>
|
398 |
+
<p align="center">Model loading takes extra time.</p>
|
399 |
"""
|
400 |
)
|
401 |
+
|
402 |
+
# <p align="center">ModelScope T2V works the best for resolution 256x256, and AnimateDiff works the best for 512x512.</p>
|
403 |
with gr.Row():
|
404 |
base_model = gr.Dropdown(
|
405 |
label="Base model",
|
|
|
455 |
step=1,
|
456 |
value=4,
|
457 |
)
|
458 |
+
|
459 |
+
with gr.Group():
|
460 |
+
with gr.Row():
|
461 |
+
text_hint = gr.Textbox(
|
462 |
+
"Hint: ModelScope T2V works the best for resolution 256x256, and AnimateDiff works the best for resolution 512x512.",
|
463 |
+
interactive=False,
|
464 |
+
label="Hint",
|
465 |
+
container=False,
|
466 |
+
|
467 |
+
)
|
468 |
+
with gr.Row():
|
469 |
+
height = gr.Slider(
|
470 |
+
label="Height",
|
471 |
+
minimum=256,
|
472 |
+
maximum=1024,
|
473 |
+
step=64,
|
474 |
+
value=512,
|
475 |
+
interactive=True,
|
476 |
+
)
|
477 |
+
width = gr.Slider(
|
478 |
+
label="Width",
|
479 |
+
minimum=256,
|
480 |
+
maximum=1024,
|
481 |
+
step=64,
|
482 |
+
value=512,
|
483 |
+
interactive=True,
|
484 |
+
)
|
485 |
+
|
486 |
+
|
487 |
+
|
488 |
+
with gr.Column(show_progress=True):
|
489 |
# result = gr.Video(label="Result", show_label=False, interactive=False, height=512, width=512, autoplay=True)
|
490 |
result = gr.Video(
|
491 |
+
label="Result",
|
492 |
+
show_label=False,
|
493 |
+
interactive=False,
|
494 |
+
autoplay=True,
|
495 |
+
# height=512,
|
496 |
+
# width=512,
|
497 |
)
|
498 |
|
499 |
gr.Examples(
|
500 |
examples=examples,
|
501 |
+
inputs=[base_model, variant_dropdown, prompt, num_inference_steps, height, width],
|
502 |
cache_examples=True,
|
503 |
fn=infer,
|
504 |
outputs=[result, seed],
|
|
|
511 |
variant_dropdown,
|
512 |
prompt,
|
513 |
num_inference_steps,
|
514 |
+
height,
|
515 |
+
width,
|
516 |
seed,
|
517 |
randomize_seed,
|
518 |
],
|