Spaces:
Sleeping
Sleeping
| import os | |
| import glob | |
| import random | |
| from typing import Any, List, Optional, Tuple, Union | |
| import torch | |
| import numpy as np | |
| from transformers import CLIPTokenizer, T5TokenizerFast, CLIPTextModel, CLIPTextModelWithProjection, T5EncoderModel | |
| from library import sd3_utils, train_util | |
| from library import sd3_models | |
| from library.strategy_base import LatentsCachingStrategy, TextEncodingStrategy, TokenizeStrategy, TextEncoderOutputsCachingStrategy | |
| from library.utils import setup_logging | |
| setup_logging() | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| CLIP_L_TOKENIZER_ID = "openai/clip-vit-large-patch14" | |
| CLIP_G_TOKENIZER_ID = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k" | |
| T5_XXL_TOKENIZER_ID = "google/t5-v1_1-xxl" | |
| class Sd3TokenizeStrategy(TokenizeStrategy): | |
| def __init__(self, t5xxl_max_length: int = 256, tokenizer_cache_dir: Optional[str] = None) -> None: | |
| self.t5xxl_max_length = t5xxl_max_length | |
| self.clip_l = self._load_tokenizer(CLIPTokenizer, CLIP_L_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir) | |
| self.clip_g = self._load_tokenizer(CLIPTokenizer, CLIP_G_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir) | |
| self.t5xxl = self._load_tokenizer(T5TokenizerFast, T5_XXL_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir) | |
| self.clip_g.pad_token_id = 0 # use 0 as pad token for clip_g | |
| def tokenize(self, text: Union[str, List[str]]) -> List[torch.Tensor]: | |
| text = [text] if isinstance(text, str) else text | |
| l_tokens = self.clip_l(text, max_length=77, padding="max_length", truncation=True, return_tensors="pt") | |
| g_tokens = self.clip_g(text, max_length=77, padding="max_length", truncation=True, return_tensors="pt") | |
| t5_tokens = self.t5xxl(text, max_length=self.t5xxl_max_length, padding="max_length", truncation=True, return_tensors="pt") | |
| l_attn_mask = l_tokens["attention_mask"] | |
| g_attn_mask = g_tokens["attention_mask"] | |
| t5_attn_mask = t5_tokens["attention_mask"] | |
| l_tokens = l_tokens["input_ids"] | |
| g_tokens = g_tokens["input_ids"] | |
| t5_tokens = t5_tokens["input_ids"] | |
| return [l_tokens, g_tokens, t5_tokens, l_attn_mask, g_attn_mask, t5_attn_mask] | |
| class Sd3TextEncodingStrategy(TextEncodingStrategy): | |
| def __init__( | |
| self, | |
| apply_lg_attn_mask: Optional[bool] = None, | |
| apply_t5_attn_mask: Optional[bool] = None, | |
| l_dropout_rate: float = 0.0, | |
| g_dropout_rate: float = 0.0, | |
| t5_dropout_rate: float = 0.0, | |
| ) -> None: | |
| """ | |
| Args: | |
| apply_t5_attn_mask: Default value for apply_t5_attn_mask. | |
| """ | |
| self.apply_lg_attn_mask = apply_lg_attn_mask | |
| self.apply_t5_attn_mask = apply_t5_attn_mask | |
| self.l_dropout_rate = l_dropout_rate | |
| self.g_dropout_rate = g_dropout_rate | |
| self.t5_dropout_rate = t5_dropout_rate | |
| def encode_tokens( | |
| self, | |
| tokenize_strategy: TokenizeStrategy, | |
| models: List[Any], | |
| tokens: List[torch.Tensor], | |
| apply_lg_attn_mask: Optional[bool] = False, | |
| apply_t5_attn_mask: Optional[bool] = False, | |
| enable_dropout: bool = True, | |
| ) -> List[torch.Tensor]: | |
| """ | |
| returned embeddings are not masked | |
| """ | |
| clip_l, clip_g, t5xxl = models | |
| clip_l: Optional[CLIPTextModel] | |
| clip_g: Optional[CLIPTextModelWithProjection] | |
| t5xxl: Optional[T5EncoderModel] | |
| if apply_lg_attn_mask is None: | |
| apply_lg_attn_mask = self.apply_lg_attn_mask | |
| if apply_t5_attn_mask is None: | |
| apply_t5_attn_mask = self.apply_t5_attn_mask | |
| l_tokens, g_tokens, t5_tokens, l_attn_mask, g_attn_mask, t5_attn_mask = tokens | |
| # dropout: if enable_dropout is False, dropout is not applied. dropout means zeroing out embeddings | |
| if l_tokens is None or clip_l is None: | |
| assert g_tokens is None, "g_tokens must be None if l_tokens is None" | |
| lg_out = None | |
| lg_pooled = None | |
| l_attn_mask = None | |
| g_attn_mask = None | |
| else: | |
| assert g_tokens is not None, "g_tokens must not be None if l_tokens is not None" | |
| # drop some members of the batch: we do not call clip_l and clip_g for dropped members | |
| batch_size, l_seq_len = l_tokens.shape | |
| g_seq_len = g_tokens.shape[1] | |
| non_drop_l_indices = [] | |
| non_drop_g_indices = [] | |
| for i in range(l_tokens.shape[0]): | |
| drop_l = enable_dropout and (self.l_dropout_rate > 0.0 and random.random() < self.l_dropout_rate) | |
| drop_g = enable_dropout and (self.g_dropout_rate > 0.0 and random.random() < self.g_dropout_rate) | |
| if not drop_l: | |
| non_drop_l_indices.append(i) | |
| if not drop_g: | |
| non_drop_g_indices.append(i) | |
| # filter out dropped members | |
| if len(non_drop_l_indices) > 0 and len(non_drop_l_indices) < batch_size: | |
| l_tokens = l_tokens[non_drop_l_indices] | |
| l_attn_mask = l_attn_mask[non_drop_l_indices] | |
| if len(non_drop_g_indices) > 0 and len(non_drop_g_indices) < batch_size: | |
| g_tokens = g_tokens[non_drop_g_indices] | |
| g_attn_mask = g_attn_mask[non_drop_g_indices] | |
| # call clip_l for non-dropped members | |
| if len(non_drop_l_indices) > 0: | |
| nd_l_attn_mask = l_attn_mask.to(clip_l.device) | |
| prompt_embeds = clip_l( | |
| l_tokens.to(clip_l.device), nd_l_attn_mask if apply_lg_attn_mask else None, output_hidden_states=True | |
| ) | |
| nd_l_pooled = prompt_embeds[0] | |
| nd_l_out = prompt_embeds.hidden_states[-2] | |
| if len(non_drop_g_indices) > 0: | |
| nd_g_attn_mask = g_attn_mask.to(clip_g.device) | |
| prompt_embeds = clip_g( | |
| g_tokens.to(clip_g.device), nd_g_attn_mask if apply_lg_attn_mask else None, output_hidden_states=True | |
| ) | |
| nd_g_pooled = prompt_embeds[0] | |
| nd_g_out = prompt_embeds.hidden_states[-2] | |
| # fill in the dropped members | |
| if len(non_drop_l_indices) == batch_size: | |
| l_pooled = nd_l_pooled | |
| l_out = nd_l_out | |
| else: | |
| # model output is always float32 because of the models are wrapped with Accelerator | |
| l_pooled = torch.zeros((batch_size, 768), device=clip_l.device, dtype=torch.float32) | |
| l_out = torch.zeros((batch_size, l_seq_len, 768), device=clip_l.device, dtype=torch.float32) | |
| l_attn_mask = torch.zeros((batch_size, l_seq_len), device=clip_l.device, dtype=l_attn_mask.dtype) | |
| if len(non_drop_l_indices) > 0: | |
| l_pooled[non_drop_l_indices] = nd_l_pooled | |
| l_out[non_drop_l_indices] = nd_l_out | |
| l_attn_mask[non_drop_l_indices] = nd_l_attn_mask | |
| if len(non_drop_g_indices) == batch_size: | |
| g_pooled = nd_g_pooled | |
| g_out = nd_g_out | |
| else: | |
| g_pooled = torch.zeros((batch_size, 1280), device=clip_g.device, dtype=torch.float32) | |
| g_out = torch.zeros((batch_size, g_seq_len, 1280), device=clip_g.device, dtype=torch.float32) | |
| g_attn_mask = torch.zeros((batch_size, g_seq_len), device=clip_g.device, dtype=g_attn_mask.dtype) | |
| if len(non_drop_g_indices) > 0: | |
| g_pooled[non_drop_g_indices] = nd_g_pooled | |
| g_out[non_drop_g_indices] = nd_g_out | |
| g_attn_mask[non_drop_g_indices] = nd_g_attn_mask | |
| lg_pooled = torch.cat((l_pooled, g_pooled), dim=-1) | |
| lg_out = torch.cat([l_out, g_out], dim=-1) | |
| if t5xxl is None or t5_tokens is None: | |
| t5_out = None | |
| t5_attn_mask = None | |
| else: | |
| # drop some members of the batch: we do not call t5xxl for dropped members | |
| batch_size, t5_seq_len = t5_tokens.shape | |
| non_drop_t5_indices = [] | |
| for i in range(t5_tokens.shape[0]): | |
| drop_t5 = enable_dropout and (self.t5_dropout_rate > 0.0 and random.random() < self.t5_dropout_rate) | |
| if not drop_t5: | |
| non_drop_t5_indices.append(i) | |
| # filter out dropped members | |
| if len(non_drop_t5_indices) > 0 and len(non_drop_t5_indices) < batch_size: | |
| t5_tokens = t5_tokens[non_drop_t5_indices] | |
| t5_attn_mask = t5_attn_mask[non_drop_t5_indices] | |
| # call t5xxl for non-dropped members | |
| if len(non_drop_t5_indices) > 0: | |
| nd_t5_attn_mask = t5_attn_mask.to(t5xxl.device) | |
| nd_t5_out, _ = t5xxl( | |
| t5_tokens.to(t5xxl.device), | |
| nd_t5_attn_mask if apply_t5_attn_mask else None, | |
| return_dict=False, | |
| output_hidden_states=True, | |
| ) | |
| # fill in the dropped members | |
| if len(non_drop_t5_indices) == batch_size: | |
| t5_out = nd_t5_out | |
| else: | |
| t5_out = torch.zeros((batch_size, t5_seq_len, 4096), device=t5xxl.device, dtype=torch.float32) | |
| t5_attn_mask = torch.zeros((batch_size, t5_seq_len), device=t5xxl.device, dtype=t5_attn_mask.dtype) | |
| if len(non_drop_t5_indices) > 0: | |
| t5_out[non_drop_t5_indices] = nd_t5_out | |
| t5_attn_mask[non_drop_t5_indices] = nd_t5_attn_mask | |
| # masks are used for attention masking in transformer | |
| return [lg_out, t5_out, lg_pooled, l_attn_mask, g_attn_mask, t5_attn_mask] | |
| def drop_cached_text_encoder_outputs( | |
| self, | |
| lg_out: torch.Tensor, | |
| t5_out: torch.Tensor, | |
| lg_pooled: torch.Tensor, | |
| l_attn_mask: torch.Tensor, | |
| g_attn_mask: torch.Tensor, | |
| t5_attn_mask: torch.Tensor, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| # dropout: if enable_dropout is True, dropout is not applied. dropout means zeroing out embeddings | |
| if lg_out is not None: | |
| for i in range(lg_out.shape[0]): | |
| drop_l = self.l_dropout_rate > 0.0 and random.random() < self.l_dropout_rate | |
| if drop_l: | |
| lg_out[i, :, :768] = torch.zeros_like(lg_out[i, :, :768]) | |
| lg_pooled[i, :768] = torch.zeros_like(lg_pooled[i, :768]) | |
| if l_attn_mask is not None: | |
| l_attn_mask[i] = torch.zeros_like(l_attn_mask[i]) | |
| drop_g = self.g_dropout_rate > 0.0 and random.random() < self.g_dropout_rate | |
| if drop_g: | |
| lg_out[i, :, 768:] = torch.zeros_like(lg_out[i, :, 768:]) | |
| lg_pooled[i, 768:] = torch.zeros_like(lg_pooled[i, 768:]) | |
| if g_attn_mask is not None: | |
| g_attn_mask[i] = torch.zeros_like(g_attn_mask[i]) | |
| if t5_out is not None: | |
| for i in range(t5_out.shape[0]): | |
| drop_t5 = self.t5_dropout_rate > 0.0 and random.random() < self.t5_dropout_rate | |
| if drop_t5: | |
| t5_out[i] = torch.zeros_like(t5_out[i]) | |
| if t5_attn_mask is not None: | |
| t5_attn_mask[i] = torch.zeros_like(t5_attn_mask[i]) | |
| return [lg_out, t5_out, lg_pooled, l_attn_mask, g_attn_mask, t5_attn_mask] | |
| def concat_encodings( | |
| self, lg_out: torch.Tensor, t5_out: Optional[torch.Tensor], lg_pooled: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1])) | |
| if t5_out is None: | |
| t5_out = torch.zeros((lg_out.shape[0], 77, 4096), device=lg_out.device, dtype=lg_out.dtype) | |
| return torch.cat([lg_out, t5_out], dim=-2), lg_pooled | |
| class Sd3TextEncoderOutputsCachingStrategy(TextEncoderOutputsCachingStrategy): | |
| SD3_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX = "_sd3_te.npz" | |
| def __init__( | |
| self, | |
| cache_to_disk: bool, | |
| batch_size: int, | |
| skip_disk_cache_validity_check: bool, | |
| is_partial: bool = False, | |
| apply_lg_attn_mask: bool = False, | |
| apply_t5_attn_mask: bool = False, | |
| ) -> None: | |
| super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check, is_partial) | |
| self.apply_lg_attn_mask = apply_lg_attn_mask | |
| self.apply_t5_attn_mask = apply_t5_attn_mask | |
| def get_outputs_npz_path(self, image_abs_path: str) -> str: | |
| return os.path.splitext(image_abs_path)[0] + Sd3TextEncoderOutputsCachingStrategy.SD3_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX | |
| def is_disk_cached_outputs_expected(self, npz_path: str): | |
| if not self.cache_to_disk: | |
| return False | |
| if not os.path.exists(npz_path): | |
| return False | |
| if self.skip_disk_cache_validity_check: | |
| return True | |
| try: | |
| npz = np.load(npz_path) | |
| if "lg_out" not in npz: | |
| return False | |
| if "lg_pooled" not in npz: | |
| return False | |
| if "clip_l_attn_mask" not in npz or "clip_g_attn_mask" not in npz: # necessary even if not used | |
| return False | |
| if "apply_lg_attn_mask" not in npz: | |
| return False | |
| if "t5_out" not in npz: | |
| return False | |
| if "t5_attn_mask" not in npz: | |
| return False | |
| npz_apply_lg_attn_mask = npz["apply_lg_attn_mask"] | |
| if npz_apply_lg_attn_mask != self.apply_lg_attn_mask: | |
| return False | |
| if "apply_t5_attn_mask" not in npz: | |
| return False | |
| npz_apply_t5_attn_mask = npz["apply_t5_attn_mask"] | |
| if npz_apply_t5_attn_mask != self.apply_t5_attn_mask: | |
| return False | |
| except Exception as e: | |
| logger.error(f"Error loading file: {npz_path}") | |
| raise e | |
| return True | |
| def load_outputs_npz(self, npz_path: str) -> List[np.ndarray]: | |
| data = np.load(npz_path) | |
| lg_out = data["lg_out"] | |
| lg_pooled = data["lg_pooled"] | |
| t5_out = data["t5_out"] | |
| l_attn_mask = data["clip_l_attn_mask"] | |
| g_attn_mask = data["clip_g_attn_mask"] | |
| t5_attn_mask = data["t5_attn_mask"] | |
| # apply_t5_attn_mask and apply_lg_attn_mask are same as self.apply_t5_attn_mask and self.apply_lg_attn_mask | |
| return [lg_out, t5_out, lg_pooled, l_attn_mask, g_attn_mask, t5_attn_mask] | |
| def cache_batch_outputs( | |
| self, tokenize_strategy: TokenizeStrategy, models: List[Any], text_encoding_strategy: TextEncodingStrategy, infos: List | |
| ): | |
| sd3_text_encoding_strategy: Sd3TextEncodingStrategy = text_encoding_strategy | |
| captions = [info.caption for info in infos] | |
| tokens_and_masks = tokenize_strategy.tokenize(captions) | |
| with torch.no_grad(): | |
| # always disable dropout during caching | |
| lg_out, t5_out, lg_pooled, l_attn_mask, g_attn_mask, t5_attn_mask = sd3_text_encoding_strategy.encode_tokens( | |
| tokenize_strategy, | |
| models, | |
| tokens_and_masks, | |
| apply_lg_attn_mask=self.apply_lg_attn_mask, | |
| apply_t5_attn_mask=self.apply_t5_attn_mask, | |
| enable_dropout=False, | |
| ) | |
| if lg_out.dtype == torch.bfloat16: | |
| lg_out = lg_out.float() | |
| if lg_pooled.dtype == torch.bfloat16: | |
| lg_pooled = lg_pooled.float() | |
| if t5_out.dtype == torch.bfloat16: | |
| t5_out = t5_out.float() | |
| lg_out = lg_out.cpu().numpy() | |
| lg_pooled = lg_pooled.cpu().numpy() | |
| t5_out = t5_out.cpu().numpy() | |
| l_attn_mask = tokens_and_masks[3].cpu().numpy() | |
| g_attn_mask = tokens_and_masks[4].cpu().numpy() | |
| t5_attn_mask = tokens_and_masks[5].cpu().numpy() | |
| for i, info in enumerate(infos): | |
| lg_out_i = lg_out[i] | |
| t5_out_i = t5_out[i] | |
| lg_pooled_i = lg_pooled[i] | |
| l_attn_mask_i = l_attn_mask[i] | |
| g_attn_mask_i = g_attn_mask[i] | |
| t5_attn_mask_i = t5_attn_mask[i] | |
| apply_lg_attn_mask = self.apply_lg_attn_mask | |
| apply_t5_attn_mask = self.apply_t5_attn_mask | |
| if self.cache_to_disk: | |
| np.savez( | |
| info.text_encoder_outputs_npz, | |
| lg_out=lg_out_i, | |
| lg_pooled=lg_pooled_i, | |
| t5_out=t5_out_i, | |
| clip_l_attn_mask=l_attn_mask_i, | |
| clip_g_attn_mask=g_attn_mask_i, | |
| t5_attn_mask=t5_attn_mask_i, | |
| apply_lg_attn_mask=apply_lg_attn_mask, | |
| apply_t5_attn_mask=apply_t5_attn_mask, | |
| ) | |
| else: | |
| # it's fine that attn mask is not None. it's overwritten before calling the model if necessary | |
| info.text_encoder_outputs = (lg_out_i, t5_out_i, lg_pooled_i, l_attn_mask_i, g_attn_mask_i, t5_attn_mask_i) | |
| class Sd3LatentsCachingStrategy(LatentsCachingStrategy): | |
| SD3_LATENTS_NPZ_SUFFIX = "_sd3.npz" | |
| def __init__(self, cache_to_disk: bool, batch_size: int, skip_disk_cache_validity_check: bool) -> None: | |
| super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check) | |
| def cache_suffix(self) -> str: | |
| return Sd3LatentsCachingStrategy.SD3_LATENTS_NPZ_SUFFIX | |
| def get_latents_npz_path(self, absolute_path: str, image_size: Tuple[int, int]) -> str: | |
| return ( | |
| os.path.splitext(absolute_path)[0] | |
| + f"_{image_size[0]:04d}x{image_size[1]:04d}" | |
| + Sd3LatentsCachingStrategy.SD3_LATENTS_NPZ_SUFFIX | |
| ) | |
| def is_disk_cached_latents_expected(self, bucket_reso: Tuple[int, int], npz_path: str, flip_aug: bool, alpha_mask: bool): | |
| return self._default_is_disk_cached_latents_expected(8, bucket_reso, npz_path, flip_aug, alpha_mask, multi_resolution=True) | |
| def load_latents_from_disk( | |
| self, npz_path: str, bucket_reso: Tuple[int, int] | |
| ) -> Tuple[Optional[np.ndarray], Optional[List[int]], Optional[List[int]], Optional[np.ndarray], Optional[np.ndarray]]: | |
| return self._default_load_latents_from_disk(8, npz_path, bucket_reso) # support multi-resolution | |
| # TODO remove circular dependency for ImageInfo | |
| def cache_batch_latents(self, vae, image_infos: List, flip_aug: bool, alpha_mask: bool, random_crop: bool): | |
| encode_by_vae = lambda img_tensor: vae.encode(img_tensor).to("cpu") | |
| vae_device = vae.device | |
| vae_dtype = vae.dtype | |
| self._default_cache_batch_latents( | |
| encode_by_vae, vae_device, vae_dtype, image_infos, flip_aug, alpha_mask, random_crop, multi_resolution=True | |
| ) | |
| if not train_util.HIGH_VRAM: | |
| train_util.clean_memory_on_device(vae.device) | |