Spaces:
Sleeping
Sleeping
| # Diffusers 0.10.2からStable Diffusionに必要な部分だけを持ってくる | |
| # 条件分岐等で不要な部分は削除している | |
| # コードの多くはDiffusersからコピーしている | |
| # 制約として、モデルのstate_dictがDiffusers 0.10.2のものと同じ形式である必要がある | |
| # Copy from Diffusers 0.10.2 for Stable Diffusion. Most of the code is copied from Diffusers. | |
| # Unnecessary parts are deleted by condition branching. | |
| # As a constraint, the state_dict of the model must be in the same format as that of Diffusers 0.10.2 | |
| """ | |
| v1.5とv2.1の相違点は | |
| - attention_head_dimがintかlist[int]か | |
| - cross_attention_dimが768か1024か | |
| - use_linear_projection: trueがない(=False, 1.5)かあるか | |
| - upcast_attentionがFalse(1.5)かTrue(2.1)か | |
| - (以下は多分無視していい) | |
| - sample_sizeが64か96か | |
| - dual_cross_attentionがあるかないか | |
| - num_class_embedsがあるかないか | |
| - only_cross_attentionがあるかないか | |
| v1.5 | |
| { | |
| "_class_name": "UNet2DConditionModel", | |
| "_diffusers_version": "0.6.0", | |
| "act_fn": "silu", | |
| "attention_head_dim": 8, | |
| "block_out_channels": [ | |
| 320, | |
| 640, | |
| 1280, | |
| 1280 | |
| ], | |
| "center_input_sample": false, | |
| "cross_attention_dim": 768, | |
| "down_block_types": [ | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "DownBlock2D" | |
| ], | |
| "downsample_padding": 1, | |
| "flip_sin_to_cos": true, | |
| "freq_shift": 0, | |
| "in_channels": 4, | |
| "layers_per_block": 2, | |
| "mid_block_scale_factor": 1, | |
| "norm_eps": 1e-05, | |
| "norm_num_groups": 32, | |
| "out_channels": 4, | |
| "sample_size": 64, | |
| "up_block_types": [ | |
| "UpBlock2D", | |
| "CrossAttnUpBlock2D", | |
| "CrossAttnUpBlock2D", | |
| "CrossAttnUpBlock2D" | |
| ] | |
| } | |
| v2.1 | |
| { | |
| "_class_name": "UNet2DConditionModel", | |
| "_diffusers_version": "0.10.0.dev0", | |
| "act_fn": "silu", | |
| "attention_head_dim": [ | |
| 5, | |
| 10, | |
| 20, | |
| 20 | |
| ], | |
| "block_out_channels": [ | |
| 320, | |
| 640, | |
| 1280, | |
| 1280 | |
| ], | |
| "center_input_sample": false, | |
| "cross_attention_dim": 1024, | |
| "down_block_types": [ | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "DownBlock2D" | |
| ], | |
| "downsample_padding": 1, | |
| "dual_cross_attention": false, | |
| "flip_sin_to_cos": true, | |
| "freq_shift": 0, | |
| "in_channels": 4, | |
| "layers_per_block": 2, | |
| "mid_block_scale_factor": 1, | |
| "norm_eps": 1e-05, | |
| "norm_num_groups": 32, | |
| "num_class_embeds": null, | |
| "only_cross_attention": false, | |
| "out_channels": 4, | |
| "sample_size": 96, | |
| "up_block_types": [ | |
| "UpBlock2D", | |
| "CrossAttnUpBlock2D", | |
| "CrossAttnUpBlock2D", | |
| "CrossAttnUpBlock2D" | |
| ], | |
| "use_linear_projection": true, | |
| "upcast_attention": true | |
| } | |
| """ | |
| import math | |
| from types import SimpleNamespace | |
| from typing import Dict, Optional, Tuple, Union | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from einops import rearrange | |
| from library.utils import setup_logging | |
| setup_logging() | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| BLOCK_OUT_CHANNELS: Tuple[int] = (320, 640, 1280, 1280) | |
| TIMESTEP_INPUT_DIM = BLOCK_OUT_CHANNELS[0] | |
| TIME_EMBED_DIM = BLOCK_OUT_CHANNELS[0] * 4 | |
| IN_CHANNELS: int = 4 | |
| OUT_CHANNELS: int = 4 | |
| LAYERS_PER_BLOCK: int = 2 | |
| LAYERS_PER_BLOCK_UP: int = LAYERS_PER_BLOCK + 1 | |
| TIME_EMBED_FLIP_SIN_TO_COS: bool = True | |
| TIME_EMBED_FREQ_SHIFT: int = 0 | |
| NORM_GROUPS: int = 32 | |
| NORM_EPS: float = 1e-5 | |
| TRANSFORMER_NORM_NUM_GROUPS = 32 | |
| DOWN_BLOCK_TYPES = ["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"] | |
| UP_BLOCK_TYPES = ["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"] | |
| # region memory efficient attention | |
| # FlashAttentionを使うCrossAttention | |
| # based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py | |
| # LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE | |
| # constants | |
| EPSILON = 1e-6 | |
| # helper functions | |
| def exists(val): | |
| return val is not None | |
| def default(val, d): | |
| return val if exists(val) else d | |
| # flash attention forwards and backwards | |
| # https://arxiv.org/abs/2205.14135 | |
| class FlashAttentionFunction(torch.autograd.Function): | |
| def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): | |
| """Algorithm 2 in the paper""" | |
| device = q.device | |
| dtype = q.dtype | |
| max_neg_value = -torch.finfo(q.dtype).max | |
| qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) | |
| o = torch.zeros_like(q) | |
| all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device) | |
| all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device) | |
| scale = q.shape[-1] ** -0.5 | |
| if not exists(mask): | |
| mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) | |
| else: | |
| mask = rearrange(mask, "b n -> b 1 1 n") | |
| mask = mask.split(q_bucket_size, dim=-1) | |
| row_splits = zip( | |
| q.split(q_bucket_size, dim=-2), | |
| o.split(q_bucket_size, dim=-2), | |
| mask, | |
| all_row_sums.split(q_bucket_size, dim=-2), | |
| all_row_maxes.split(q_bucket_size, dim=-2), | |
| ) | |
| for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): | |
| q_start_index = ind * q_bucket_size - qk_len_diff | |
| col_splits = zip( | |
| k.split(k_bucket_size, dim=-2), | |
| v.split(k_bucket_size, dim=-2), | |
| ) | |
| for k_ind, (kc, vc) in enumerate(col_splits): | |
| k_start_index = k_ind * k_bucket_size | |
| attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale | |
| if exists(row_mask): | |
| attn_weights.masked_fill_(~row_mask, max_neg_value) | |
| if causal and q_start_index < (k_start_index + k_bucket_size - 1): | |
| causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu( | |
| q_start_index - k_start_index + 1 | |
| ) | |
| attn_weights.masked_fill_(causal_mask, max_neg_value) | |
| block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) | |
| attn_weights -= block_row_maxes | |
| exp_weights = torch.exp(attn_weights) | |
| if exists(row_mask): | |
| exp_weights.masked_fill_(~row_mask, 0.0) | |
| block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON) | |
| new_row_maxes = torch.maximum(block_row_maxes, row_maxes) | |
| exp_values = torch.einsum("... i j, ... j d -> ... i d", exp_weights, vc) | |
| exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) | |
| exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) | |
| new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums | |
| oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values) | |
| row_maxes.copy_(new_row_maxes) | |
| row_sums.copy_(new_row_sums) | |
| ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) | |
| ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes) | |
| return o | |
| def backward(ctx, do): | |
| """Algorithm 4 in the paper""" | |
| causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args | |
| q, k, v, o, l, m = ctx.saved_tensors | |
| device = q.device | |
| max_neg_value = -torch.finfo(q.dtype).max | |
| qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) | |
| dq = torch.zeros_like(q) | |
| dk = torch.zeros_like(k) | |
| dv = torch.zeros_like(v) | |
| row_splits = zip( | |
| q.split(q_bucket_size, dim=-2), | |
| o.split(q_bucket_size, dim=-2), | |
| do.split(q_bucket_size, dim=-2), | |
| mask, | |
| l.split(q_bucket_size, dim=-2), | |
| m.split(q_bucket_size, dim=-2), | |
| dq.split(q_bucket_size, dim=-2), | |
| ) | |
| for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits): | |
| q_start_index = ind * q_bucket_size - qk_len_diff | |
| col_splits = zip( | |
| k.split(k_bucket_size, dim=-2), | |
| v.split(k_bucket_size, dim=-2), | |
| dk.split(k_bucket_size, dim=-2), | |
| dv.split(k_bucket_size, dim=-2), | |
| ) | |
| for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): | |
| k_start_index = k_ind * k_bucket_size | |
| attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale | |
| if causal and q_start_index < (k_start_index + k_bucket_size - 1): | |
| causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu( | |
| q_start_index - k_start_index + 1 | |
| ) | |
| attn_weights.masked_fill_(causal_mask, max_neg_value) | |
| exp_attn_weights = torch.exp(attn_weights - mc) | |
| if exists(row_mask): | |
| exp_attn_weights.masked_fill_(~row_mask, 0.0) | |
| p = exp_attn_weights / lc | |
| dv_chunk = torch.einsum("... i j, ... i d -> ... j d", p, doc) | |
| dp = torch.einsum("... i d, ... j d -> ... i j", doc, vc) | |
| D = (doc * oc).sum(dim=-1, keepdims=True) | |
| ds = p * scale * (dp - D) | |
| dq_chunk = torch.einsum("... i j, ... j d -> ... i d", ds, kc) | |
| dk_chunk = torch.einsum("... i j, ... i d -> ... j d", ds, qc) | |
| dqc.add_(dq_chunk) | |
| dkc.add_(dk_chunk) | |
| dvc.add_(dv_chunk) | |
| return dq, dk, dv, None, None, None, None | |
| # endregion | |
| def get_parameter_dtype(parameter: torch.nn.Module): | |
| return next(parameter.parameters()).dtype | |
| def get_parameter_device(parameter: torch.nn.Module): | |
| return next(parameter.parameters()).device | |
| def get_timestep_embedding( | |
| timesteps: torch.Tensor, | |
| embedding_dim: int, | |
| flip_sin_to_cos: bool = False, | |
| downscale_freq_shift: float = 1, | |
| scale: float = 1, | |
| max_period: int = 10000, | |
| ): | |
| """ | |
| This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. | |
| :param timesteps: a 1-D Tensor of N indices, one per batch element. | |
| These may be fractional. | |
| :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the | |
| embeddings. :return: an [N x dim] Tensor of positional embeddings. | |
| """ | |
| assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" | |
| half_dim = embedding_dim // 2 | |
| exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device) | |
| exponent = exponent / (half_dim - downscale_freq_shift) | |
| emb = torch.exp(exponent) | |
| emb = timesteps[:, None].float() * emb[None, :] | |
| # scale embeddings | |
| emb = scale * emb | |
| # concat sine and cosine embeddings | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) | |
| # flip sine and cosine embeddings | |
| if flip_sin_to_cos: | |
| emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) | |
| # zero pad | |
| if embedding_dim % 2 == 1: | |
| emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) | |
| return emb | |
| # Deep Shrink: We do not common this function, because minimize dependencies. | |
| def resize_like(x, target, mode="bicubic", align_corners=False): | |
| org_dtype = x.dtype | |
| if org_dtype == torch.bfloat16: | |
| x = x.to(torch.float32) | |
| if x.shape[-2:] != target.shape[-2:]: | |
| if mode == "nearest": | |
| x = F.interpolate(x, size=target.shape[-2:], mode=mode) | |
| else: | |
| x = F.interpolate(x, size=target.shape[-2:], mode=mode, align_corners=align_corners) | |
| if org_dtype == torch.bfloat16: | |
| x = x.to(org_dtype) | |
| return x | |
| class SampleOutput: | |
| def __init__(self, sample): | |
| self.sample = sample | |
| class TimestepEmbedding(nn.Module): | |
| def __init__(self, in_channels: int, time_embed_dim: int, act_fn: str = "silu", out_dim: int = None): | |
| super().__init__() | |
| self.linear_1 = nn.Linear(in_channels, time_embed_dim) | |
| self.act = None | |
| if act_fn == "silu": | |
| self.act = nn.SiLU() | |
| elif act_fn == "mish": | |
| self.act = nn.Mish() | |
| if out_dim is not None: | |
| time_embed_dim_out = out_dim | |
| else: | |
| time_embed_dim_out = time_embed_dim | |
| self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out) | |
| def forward(self, sample): | |
| sample = self.linear_1(sample) | |
| if self.act is not None: | |
| sample = self.act(sample) | |
| sample = self.linear_2(sample) | |
| return sample | |
| class Timesteps(nn.Module): | |
| def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float): | |
| super().__init__() | |
| self.num_channels = num_channels | |
| self.flip_sin_to_cos = flip_sin_to_cos | |
| self.downscale_freq_shift = downscale_freq_shift | |
| def forward(self, timesteps): | |
| t_emb = get_timestep_embedding( | |
| timesteps, | |
| self.num_channels, | |
| flip_sin_to_cos=self.flip_sin_to_cos, | |
| downscale_freq_shift=self.downscale_freq_shift, | |
| ) | |
| return t_emb | |
| class ResnetBlock2D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| ): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.norm1 = torch.nn.GroupNorm(num_groups=NORM_GROUPS, num_channels=in_channels, eps=NORM_EPS, affine=True) | |
| self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
| self.time_emb_proj = torch.nn.Linear(TIME_EMBED_DIM, out_channels) | |
| self.norm2 = torch.nn.GroupNorm(num_groups=NORM_GROUPS, num_channels=out_channels, eps=NORM_EPS, affine=True) | |
| self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
| # if non_linearity == "swish": | |
| self.nonlinearity = lambda x: F.silu(x) | |
| self.use_in_shortcut = self.in_channels != self.out_channels | |
| self.conv_shortcut = None | |
| if self.use_in_shortcut: | |
| self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
| def forward(self, input_tensor, temb): | |
| hidden_states = input_tensor | |
| hidden_states = self.norm1(hidden_states) | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.conv1(hidden_states) | |
| temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] | |
| hidden_states = hidden_states + temb | |
| hidden_states = self.norm2(hidden_states) | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.conv2(hidden_states) | |
| if self.conv_shortcut is not None: | |
| input_tensor = self.conv_shortcut(input_tensor) | |
| output_tensor = input_tensor + hidden_states | |
| return output_tensor | |
| class DownBlock2D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| add_downsample=True, | |
| ): | |
| super().__init__() | |
| self.has_cross_attention = False | |
| resnets = [] | |
| for i in range(LAYERS_PER_BLOCK): | |
| in_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock2D( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_downsample: | |
| self.downsamplers = [Downsample2D(out_channels, out_channels=out_channels)] | |
| else: | |
| self.downsamplers = None | |
| self.gradient_checkpointing = False | |
| def set_use_memory_efficient_attention(self, xformers, mem_eff): | |
| pass | |
| def set_use_sdpa(self, sdpa): | |
| pass | |
| def forward(self, hidden_states, temb=None): | |
| output_states = () | |
| for resnet in self.resnets: | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| output_states += (hidden_states,) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| output_states += (hidden_states,) | |
| return hidden_states, output_states | |
| class Downsample2D(nn.Module): | |
| def __init__(self, channels, out_channels): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels | |
| self.conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=2, padding=1) | |
| def forward(self, hidden_states): | |
| assert hidden_states.shape[1] == self.channels | |
| hidden_states = self.conv(hidden_states) | |
| return hidden_states | |
| class CrossAttention(nn.Module): | |
| def __init__( | |
| self, | |
| query_dim: int, | |
| cross_attention_dim: Optional[int] = None, | |
| heads: int = 8, | |
| dim_head: int = 64, | |
| upcast_attention: bool = False, | |
| ): | |
| super().__init__() | |
| inner_dim = dim_head * heads | |
| cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
| self.upcast_attention = upcast_attention | |
| self.scale = dim_head**-0.5 | |
| self.heads = heads | |
| self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
| self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=False) | |
| self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=False) | |
| self.to_out = nn.ModuleList([]) | |
| self.to_out.append(nn.Linear(inner_dim, query_dim)) | |
| # no dropout here | |
| self.use_memory_efficient_attention_xformers = False | |
| self.use_memory_efficient_attention_mem_eff = False | |
| self.use_sdpa = False | |
| # Attention processor | |
| self.processor = None | |
| def set_use_memory_efficient_attention(self, xformers, mem_eff): | |
| self.use_memory_efficient_attention_xformers = xformers | |
| self.use_memory_efficient_attention_mem_eff = mem_eff | |
| def set_use_sdpa(self, sdpa): | |
| self.use_sdpa = sdpa | |
| def reshape_heads_to_batch_dim(self, tensor): | |
| batch_size, seq_len, dim = tensor.shape | |
| head_size = self.heads | |
| tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
| tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) | |
| return tensor | |
| def reshape_batch_dim_to_heads(self, tensor): | |
| batch_size, seq_len, dim = tensor.shape | |
| head_size = self.heads | |
| tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
| tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
| return tensor | |
| def set_processor(self): | |
| return self.processor | |
| def get_processor(self): | |
| return self.processor | |
| def forward(self, hidden_states, context=None, mask=None, **kwargs): | |
| if self.processor is not None: | |
| ( | |
| hidden_states, | |
| encoder_hidden_states, | |
| attention_mask, | |
| ) = translate_attention_names_from_diffusers( | |
| hidden_states=hidden_states, context=context, mask=mask, **kwargs | |
| ) | |
| return self.processor( | |
| attn=self, | |
| hidden_states=hidden_states, | |
| encoder_hidden_states=context, | |
| attention_mask=mask, | |
| **kwargs | |
| ) | |
| if self.use_memory_efficient_attention_xformers: | |
| return self.forward_memory_efficient_xformers(hidden_states, context, mask) | |
| if self.use_memory_efficient_attention_mem_eff: | |
| return self.forward_memory_efficient_mem_eff(hidden_states, context, mask) | |
| if self.use_sdpa: | |
| return self.forward_sdpa(hidden_states, context, mask) | |
| query = self.to_q(hidden_states) | |
| context = context if context is not None else hidden_states | |
| key = self.to_k(context) | |
| value = self.to_v(context) | |
| query = self.reshape_heads_to_batch_dim(query) | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| hidden_states = self._attention(query, key, value) | |
| # linear proj | |
| hidden_states = self.to_out[0](hidden_states) | |
| # hidden_states = self.to_out[1](hidden_states) # no dropout | |
| return hidden_states | |
| def _attention(self, query, key, value): | |
| if self.upcast_attention: | |
| query = query.float() | |
| key = key.float() | |
| attention_scores = torch.baddbmm( | |
| torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), | |
| query, | |
| key.transpose(-1, -2), | |
| beta=0, | |
| alpha=self.scale, | |
| ) | |
| attention_probs = attention_scores.softmax(dim=-1) | |
| # cast back to the original dtype | |
| attention_probs = attention_probs.to(value.dtype) | |
| # compute attention output | |
| hidden_states = torch.bmm(attention_probs, value) | |
| # reshape hidden_states | |
| hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
| return hidden_states | |
| # TODO support Hypernetworks | |
| def forward_memory_efficient_xformers(self, x, context=None, mask=None): | |
| import xformers.ops | |
| h = self.heads | |
| q_in = self.to_q(x) | |
| context = context if context is not None else x | |
| context = context.to(x.dtype) | |
| k_in = self.to_k(context) | |
| v_in = self.to_v(context) | |
| q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b n h d", h=h), (q_in, k_in, v_in)) | |
| del q_in, k_in, v_in | |
| q = q.contiguous() | |
| k = k.contiguous() | |
| v = v.contiguous() | |
| out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる | |
| out = rearrange(out, "b n h d -> b n (h d)", h=h) | |
| out = self.to_out[0](out) | |
| return out | |
| def forward_memory_efficient_mem_eff(self, x, context=None, mask=None): | |
| flash_func = FlashAttentionFunction | |
| q_bucket_size = 512 | |
| k_bucket_size = 1024 | |
| h = self.heads | |
| q = self.to_q(x) | |
| context = context if context is not None else x | |
| context = context.to(x.dtype) | |
| k = self.to_k(context) | |
| v = self.to_v(context) | |
| del context, x | |
| q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v)) | |
| out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size) | |
| out = rearrange(out, "b h n d -> b n (h d)") | |
| out = self.to_out[0](out) | |
| return out | |
| def forward_sdpa(self, x, context=None, mask=None): | |
| h = self.heads | |
| q_in = self.to_q(x) | |
| context = context if context is not None else x | |
| context = context.to(x.dtype) | |
| k_in = self.to_k(context) | |
| v_in = self.to_v(context) | |
| q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q_in, k_in, v_in)) | |
| del q_in, k_in, v_in | |
| out = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False) | |
| out = rearrange(out, "b h n d -> b n (h d)", h=h) | |
| out = self.to_out[0](out) | |
| return out | |
| def translate_attention_names_from_diffusers( | |
| hidden_states: torch.FloatTensor, | |
| context: Optional[torch.FloatTensor] = None, | |
| mask: Optional[torch.FloatTensor] = None, | |
| # HF naming | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None | |
| ): | |
| # translate from hugging face diffusers | |
| context = context if context is not None else encoder_hidden_states | |
| # translate from hugging face diffusers | |
| mask = mask if mask is not None else attention_mask | |
| return hidden_states, context, mask | |
| # feedforward | |
| class GEGLU(nn.Module): | |
| r""" | |
| A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. | |
| Parameters: | |
| dim_in (`int`): The number of channels in the input. | |
| dim_out (`int`): The number of channels in the output. | |
| """ | |
| def __init__(self, dim_in: int, dim_out: int): | |
| super().__init__() | |
| self.proj = nn.Linear(dim_in, dim_out * 2) | |
| def gelu(self, gate): | |
| if gate.device.type != "mps": | |
| return F.gelu(gate) | |
| # mps: gelu is not implemented for float16 | |
| return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) | |
| def forward(self, hidden_states): | |
| hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) | |
| return hidden_states * self.gelu(gate) | |
| class FeedForward(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| ): | |
| super().__init__() | |
| inner_dim = int(dim * 4) # mult is always 4 | |
| self.net = nn.ModuleList([]) | |
| # project in | |
| self.net.append(GEGLU(dim, inner_dim)) | |
| # project dropout | |
| self.net.append(nn.Identity()) # nn.Dropout(0)) # dummy for dropout with 0 | |
| # project out | |
| self.net.append(nn.Linear(inner_dim, dim)) | |
| def forward(self, hidden_states): | |
| for module in self.net: | |
| hidden_states = module(hidden_states) | |
| return hidden_states | |
| class BasicTransformerBlock(nn.Module): | |
| def __init__( | |
| self, dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: int, upcast_attention: bool = False | |
| ): | |
| super().__init__() | |
| # 1. Self-Attn | |
| self.attn1 = CrossAttention( | |
| query_dim=dim, | |
| cross_attention_dim=None, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| upcast_attention=upcast_attention, | |
| ) | |
| self.ff = FeedForward(dim) | |
| # 2. Cross-Attn | |
| self.attn2 = CrossAttention( | |
| query_dim=dim, | |
| cross_attention_dim=cross_attention_dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| upcast_attention=upcast_attention, | |
| ) | |
| self.norm1 = nn.LayerNorm(dim) | |
| self.norm2 = nn.LayerNorm(dim) | |
| # 3. Feed-forward | |
| self.norm3 = nn.LayerNorm(dim) | |
| def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool): | |
| self.attn1.set_use_memory_efficient_attention(xformers, mem_eff) | |
| self.attn2.set_use_memory_efficient_attention(xformers, mem_eff) | |
| def set_use_sdpa(self, sdpa: bool): | |
| self.attn1.set_use_sdpa(sdpa) | |
| self.attn2.set_use_sdpa(sdpa) | |
| def forward(self, hidden_states, context=None, timestep=None): | |
| # 1. Self-Attention | |
| norm_hidden_states = self.norm1(hidden_states) | |
| hidden_states = self.attn1(norm_hidden_states) + hidden_states | |
| # 2. Cross-Attention | |
| norm_hidden_states = self.norm2(hidden_states) | |
| hidden_states = self.attn2(norm_hidden_states, context=context) + hidden_states | |
| # 3. Feed-forward | |
| hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
| return hidden_states | |
| class Transformer2DModel(nn.Module): | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 16, | |
| attention_head_dim: int = 88, | |
| in_channels: Optional[int] = None, | |
| cross_attention_dim: Optional[int] = None, | |
| use_linear_projection: bool = False, | |
| upcast_attention: bool = False, | |
| ): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.num_attention_heads = num_attention_heads | |
| self.attention_head_dim = attention_head_dim | |
| inner_dim = num_attention_heads * attention_head_dim | |
| self.use_linear_projection = use_linear_projection | |
| self.norm = torch.nn.GroupNorm(num_groups=TRANSFORMER_NORM_NUM_GROUPS, num_channels=in_channels, eps=1e-6, affine=True) | |
| if use_linear_projection: | |
| self.proj_in = nn.Linear(in_channels, inner_dim) | |
| else: | |
| self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| cross_attention_dim=cross_attention_dim, | |
| upcast_attention=upcast_attention, | |
| ) | |
| ] | |
| ) | |
| if use_linear_projection: | |
| self.proj_out = nn.Linear(in_channels, inner_dim) | |
| else: | |
| self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
| def set_use_memory_efficient_attention(self, xformers, mem_eff): | |
| for transformer in self.transformer_blocks: | |
| transformer.set_use_memory_efficient_attention(xformers, mem_eff) | |
| def set_use_sdpa(self, sdpa): | |
| for transformer in self.transformer_blocks: | |
| transformer.set_use_sdpa(sdpa) | |
| def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True): | |
| # 1. Input | |
| batch, _, height, weight = hidden_states.shape | |
| residual = hidden_states | |
| hidden_states = self.norm(hidden_states) | |
| if not self.use_linear_projection: | |
| hidden_states = self.proj_in(hidden_states) | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
| else: | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
| hidden_states = self.proj_in(hidden_states) | |
| # 2. Blocks | |
| for block in self.transformer_blocks: | |
| hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep) | |
| # 3. Output | |
| if not self.use_linear_projection: | |
| hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
| hidden_states = self.proj_out(hidden_states) | |
| else: | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
| output = hidden_states + residual | |
| if not return_dict: | |
| return (output,) | |
| return SampleOutput(sample=output) | |
| class CrossAttnDownBlock2D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| add_downsample=True, | |
| cross_attention_dim=1280, | |
| attn_num_head_channels=1, | |
| use_linear_projection=False, | |
| upcast_attention=False, | |
| ): | |
| super().__init__() | |
| self.has_cross_attention = True | |
| resnets = [] | |
| attentions = [] | |
| self.attn_num_head_channels = attn_num_head_channels | |
| for i in range(LAYERS_PER_BLOCK): | |
| in_channels = in_channels if i == 0 else out_channels | |
| resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels)) | |
| attentions.append( | |
| Transformer2DModel( | |
| attn_num_head_channels, | |
| out_channels // attn_num_head_channels, | |
| in_channels=out_channels, | |
| cross_attention_dim=cross_attention_dim, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_downsample: | |
| self.downsamplers = nn.ModuleList([Downsample2D(out_channels, out_channels)]) | |
| else: | |
| self.downsamplers = None | |
| self.gradient_checkpointing = False | |
| def set_use_memory_efficient_attention(self, xformers, mem_eff): | |
| for attn in self.attentions: | |
| attn.set_use_memory_efficient_attention(xformers, mem_eff) | |
| def set_use_sdpa(self, sdpa): | |
| for attn in self.attentions: | |
| attn.set_use_sdpa(sdpa) | |
| def forward(self, hidden_states, temb=None, encoder_hidden_states=None): | |
| output_states = () | |
| for resnet, attn in zip(self.resnets, self.attentions): | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states | |
| )[0] | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample | |
| output_states += (hidden_states,) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| output_states += (hidden_states,) | |
| return hidden_states, output_states | |
| class UNetMidBlock2DCrossAttn(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| attn_num_head_channels=1, | |
| cross_attention_dim=1280, | |
| use_linear_projection=False, | |
| ): | |
| super().__init__() | |
| self.has_cross_attention = True | |
| self.attn_num_head_channels = attn_num_head_channels | |
| # Middle block has two resnets and one attention | |
| resnets = [ | |
| ResnetBlock2D( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| ), | |
| ResnetBlock2D( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| ), | |
| ] | |
| attentions = [ | |
| Transformer2DModel( | |
| attn_num_head_channels, | |
| in_channels // attn_num_head_channels, | |
| in_channels=in_channels, | |
| cross_attention_dim=cross_attention_dim, | |
| use_linear_projection=use_linear_projection, | |
| ) | |
| ] | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.gradient_checkpointing = False | |
| def set_use_memory_efficient_attention(self, xformers, mem_eff): | |
| for attn in self.attentions: | |
| attn.set_use_memory_efficient_attention(xformers, mem_eff) | |
| def set_use_sdpa(self, sdpa): | |
| for attn in self.attentions: | |
| attn.set_use_sdpa(sdpa) | |
| def forward(self, hidden_states, temb=None, encoder_hidden_states=None): | |
| for i, resnet in enumerate(self.resnets): | |
| attn = None if i == 0 else self.attentions[i - 1] | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| if attn is not None: | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states | |
| )[0] | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
| else: | |
| if attn is not None: | |
| hidden_states = attn(hidden_states, encoder_hidden_states).sample | |
| hidden_states = resnet(hidden_states, temb) | |
| return hidden_states | |
| class Upsample2D(nn.Module): | |
| def __init__(self, channels, out_channels): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels | |
| self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1) | |
| def forward(self, hidden_states, output_size): | |
| assert hidden_states.shape[1] == self.channels | |
| # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 | |
| # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch | |
| # https://github.com/pytorch/pytorch/issues/86679 | |
| dtype = hidden_states.dtype | |
| if dtype == torch.bfloat16: | |
| hidden_states = hidden_states.to(torch.float32) | |
| # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
| if hidden_states.shape[0] >= 64: | |
| hidden_states = hidden_states.contiguous() | |
| # if `output_size` is passed we force the interpolation output size and do not make use of `scale_factor=2` | |
| if output_size is None: | |
| hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") | |
| else: | |
| hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") | |
| # If the input is bfloat16, we cast back to bfloat16 | |
| if dtype == torch.bfloat16: | |
| hidden_states = hidden_states.to(dtype) | |
| hidden_states = self.conv(hidden_states) | |
| return hidden_states | |
| class UpBlock2D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| prev_output_channel: int, | |
| out_channels: int, | |
| add_upsample=True, | |
| ): | |
| super().__init__() | |
| self.has_cross_attention = False | |
| resnets = [] | |
| for i in range(LAYERS_PER_BLOCK_UP): | |
| res_skip_channels = in_channels if (i == LAYERS_PER_BLOCK_UP - 1) else out_channels | |
| resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock2D( | |
| in_channels=resnet_in_channels + res_skip_channels, | |
| out_channels=out_channels, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_upsample: | |
| self.upsamplers = nn.ModuleList([Upsample2D(out_channels, out_channels)]) | |
| else: | |
| self.upsamplers = None | |
| self.gradient_checkpointing = False | |
| def set_use_memory_efficient_attention(self, xformers, mem_eff): | |
| pass | |
| def set_use_sdpa(self, sdpa): | |
| pass | |
| def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None): | |
| for resnet in self.resnets: | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |
| class CrossAttnUpBlock2D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| prev_output_channel: int, | |
| attn_num_head_channels=1, | |
| cross_attention_dim=1280, | |
| add_upsample=True, | |
| use_linear_projection=False, | |
| upcast_attention=False, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| attentions = [] | |
| self.has_cross_attention = True | |
| self.attn_num_head_channels = attn_num_head_channels | |
| for i in range(LAYERS_PER_BLOCK_UP): | |
| res_skip_channels = in_channels if (i == LAYERS_PER_BLOCK_UP - 1) else out_channels | |
| resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock2D( | |
| in_channels=resnet_in_channels + res_skip_channels, | |
| out_channels=out_channels, | |
| ) | |
| ) | |
| attentions.append( | |
| Transformer2DModel( | |
| attn_num_head_channels, | |
| out_channels // attn_num_head_channels, | |
| in_channels=out_channels, | |
| cross_attention_dim=cross_attention_dim, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_upsample: | |
| self.upsamplers = nn.ModuleList([Upsample2D(out_channels, out_channels)]) | |
| else: | |
| self.upsamplers = None | |
| self.gradient_checkpointing = False | |
| def set_use_memory_efficient_attention(self, xformers, mem_eff): | |
| for attn in self.attentions: | |
| attn.set_use_memory_efficient_attention(xformers, mem_eff) | |
| def set_use_sdpa(self, sdpa): | |
| for attn in self.attentions: | |
| attn.set_use_sdpa(sdpa) | |
| def forward( | |
| self, | |
| hidden_states, | |
| res_hidden_states_tuple, | |
| temb=None, | |
| encoder_hidden_states=None, | |
| upsample_size=None, | |
| ): | |
| for resnet, attn in zip(self.resnets, self.attentions): | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states | |
| )[0] | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |
| def get_down_block( | |
| down_block_type, | |
| in_channels, | |
| out_channels, | |
| add_downsample, | |
| attn_num_head_channels, | |
| cross_attention_dim, | |
| use_linear_projection, | |
| upcast_attention, | |
| ): | |
| if down_block_type == "DownBlock2D": | |
| return DownBlock2D( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| add_downsample=add_downsample, | |
| ) | |
| elif down_block_type == "CrossAttnDownBlock2D": | |
| return CrossAttnDownBlock2D( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| add_downsample=add_downsample, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attn_num_head_channels, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| ) | |
| def get_up_block( | |
| up_block_type, | |
| in_channels, | |
| out_channels, | |
| prev_output_channel, | |
| add_upsample, | |
| attn_num_head_channels, | |
| cross_attention_dim=None, | |
| use_linear_projection=False, | |
| upcast_attention=False, | |
| ): | |
| if up_block_type == "UpBlock2D": | |
| return UpBlock2D( | |
| in_channels=in_channels, | |
| prev_output_channel=prev_output_channel, | |
| out_channels=out_channels, | |
| add_upsample=add_upsample, | |
| ) | |
| elif up_block_type == "CrossAttnUpBlock2D": | |
| return CrossAttnUpBlock2D( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| prev_output_channel=prev_output_channel, | |
| attn_num_head_channels=attn_num_head_channels, | |
| cross_attention_dim=cross_attention_dim, | |
| add_upsample=add_upsample, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| ) | |
| class UNet2DConditionModel(nn.Module): | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| sample_size: Optional[int] = None, | |
| attention_head_dim: Union[int, Tuple[int]] = 8, | |
| cross_attention_dim: int = 1280, | |
| use_linear_projection: bool = False, | |
| upcast_attention: bool = False, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| assert sample_size is not None, "sample_size must be specified" | |
| logger.info( | |
| f"UNet2DConditionModel: {sample_size}, {attention_head_dim}, {cross_attention_dim}, {use_linear_projection}, {upcast_attention}" | |
| ) | |
| # 外部からの参照用に定義しておく | |
| self.in_channels = IN_CHANNELS | |
| self.out_channels = OUT_CHANNELS | |
| self.sample_size = sample_size | |
| self.prepare_config(sample_size=sample_size) | |
| # state_dictの書式が変わるのでmoduleの持ち方は変えられない | |
| # input | |
| self.conv_in = nn.Conv2d(IN_CHANNELS, BLOCK_OUT_CHANNELS[0], kernel_size=3, padding=(1, 1)) | |
| # time | |
| self.time_proj = Timesteps(BLOCK_OUT_CHANNELS[0], TIME_EMBED_FLIP_SIN_TO_COS, TIME_EMBED_FREQ_SHIFT) | |
| self.time_embedding = TimestepEmbedding(TIMESTEP_INPUT_DIM, TIME_EMBED_DIM) | |
| self.down_blocks = nn.ModuleList([]) | |
| self.mid_block = None | |
| self.up_blocks = nn.ModuleList([]) | |
| if isinstance(attention_head_dim, int): | |
| attention_head_dim = (attention_head_dim,) * 4 | |
| # down | |
| output_channel = BLOCK_OUT_CHANNELS[0] | |
| for i, down_block_type in enumerate(DOWN_BLOCK_TYPES): | |
| input_channel = output_channel | |
| output_channel = BLOCK_OUT_CHANNELS[i] | |
| is_final_block = i == len(BLOCK_OUT_CHANNELS) - 1 | |
| down_block = get_down_block( | |
| down_block_type, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| add_downsample=not is_final_block, | |
| attn_num_head_channels=attention_head_dim[i], | |
| cross_attention_dim=cross_attention_dim, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| ) | |
| self.down_blocks.append(down_block) | |
| # mid | |
| self.mid_block = UNetMidBlock2DCrossAttn( | |
| in_channels=BLOCK_OUT_CHANNELS[-1], | |
| attn_num_head_channels=attention_head_dim[-1], | |
| cross_attention_dim=cross_attention_dim, | |
| use_linear_projection=use_linear_projection, | |
| ) | |
| # count how many layers upsample the images | |
| self.num_upsamplers = 0 | |
| # up | |
| reversed_block_out_channels = list(reversed(BLOCK_OUT_CHANNELS)) | |
| reversed_attention_head_dim = list(reversed(attention_head_dim)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(UP_BLOCK_TYPES): | |
| is_final_block = i == len(BLOCK_OUT_CHANNELS) - 1 | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| input_channel = reversed_block_out_channels[min(i + 1, len(BLOCK_OUT_CHANNELS) - 1)] | |
| # add upsample block for all BUT final layer | |
| if not is_final_block: | |
| add_upsample = True | |
| self.num_upsamplers += 1 | |
| else: | |
| add_upsample = False | |
| up_block = get_up_block( | |
| up_block_type, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=prev_output_channel, | |
| add_upsample=add_upsample, | |
| attn_num_head_channels=reversed_attention_head_dim[i], | |
| cross_attention_dim=cross_attention_dim, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| ) | |
| self.up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| # out | |
| self.conv_norm_out = nn.GroupNorm(num_channels=BLOCK_OUT_CHANNELS[0], num_groups=NORM_GROUPS, eps=NORM_EPS) | |
| self.conv_act = nn.SiLU() | |
| self.conv_out = nn.Conv2d(BLOCK_OUT_CHANNELS[0], OUT_CHANNELS, kernel_size=3, padding=1) | |
| # region diffusers compatibility | |
| def prepare_config(self, *args, **kwargs): | |
| self.config = SimpleNamespace(**kwargs) | |
| def dtype(self) -> torch.dtype: | |
| # `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). | |
| return get_parameter_dtype(self) | |
| def device(self) -> torch.device: | |
| # `torch.device`: The device on which the module is (assuming that all the module parameters are on the same device). | |
| return get_parameter_device(self) | |
| def set_attention_slice(self, slice_size): | |
| raise NotImplementedError("Attention slicing is not supported for this model.") | |
| def is_gradient_checkpointing(self) -> bool: | |
| return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules()) | |
| def enable_gradient_checkpointing(self): | |
| self.set_gradient_checkpointing(value=True) | |
| def disable_gradient_checkpointing(self): | |
| self.set_gradient_checkpointing(value=False) | |
| def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool) -> None: | |
| modules = self.down_blocks + [self.mid_block] + self.up_blocks | |
| for module in modules: | |
| module.set_use_memory_efficient_attention(xformers, mem_eff) | |
| def set_use_sdpa(self, sdpa: bool) -> None: | |
| modules = self.down_blocks + [self.mid_block] + self.up_blocks | |
| for module in modules: | |
| module.set_use_sdpa(sdpa) | |
| def set_gradient_checkpointing(self, value=False): | |
| modules = self.down_blocks + [self.mid_block] + self.up_blocks | |
| for module in modules: | |
| logger.info(f"{module.__class__.__name__} {module.gradient_checkpointing} -> {value}") | |
| module.gradient_checkpointing = value | |
| # endregion | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| encoder_hidden_states: torch.Tensor, | |
| class_labels: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
| mid_block_additional_residual: Optional[torch.Tensor] = None, | |
| ) -> Union[Dict, Tuple]: | |
| r""" | |
| Args: | |
| sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor | |
| timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps | |
| encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a dict instead of a plain tuple. | |
| Returns: | |
| `SampleOutput` or `tuple`: | |
| `SampleOutput` if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. | |
| """ | |
| # By default samples have to be AT least a multiple of the overall upsampling factor. | |
| # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). | |
| # However, the upsampling interpolation output size can be forced to fit any upsampling size | |
| # on the fly if necessary. | |
| # デフォルトではサンプルは「2^アップサンプルの数」、つまり64の倍数である必要がある | |
| # ただそれ以外のサイズにも対応できるように、必要ならアップサンプルのサイズを変更する | |
| # 多分画質が悪くなるので、64で割り切れるようにしておくのが良い | |
| default_overall_up_factor = 2**self.num_upsamplers | |
| # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
| # 64で割り切れないときはupsamplerにサイズを伝える | |
| forward_upsample_size = False | |
| upsample_size = None | |
| if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
| # logger.info("Forward upsample size to force interpolation output size.") | |
| forward_upsample_size = True | |
| # 1. time | |
| timesteps = timestep | |
| timesteps = self.handle_unusual_timesteps(sample, timesteps) # 変な時だけ処理 | |
| t_emb = self.time_proj(timesteps) | |
| # timesteps does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| # timestepsは重みを含まないので常にfloat32のテンソルを返す | |
| # しかしtime_embeddingはfp16で動いているかもしれないので、ここでキャストする必要がある | |
| # time_projでキャストしておけばいいんじゃね? | |
| t_emb = t_emb.to(dtype=self.dtype) | |
| emb = self.time_embedding(t_emb) | |
| # 2. pre-process | |
| sample = self.conv_in(sample) | |
| down_block_res_samples = (sample,) | |
| for downsample_block in self.down_blocks: | |
| # downblockはforwardで必ずencoder_hidden_statesを受け取るようにしても良さそうだけど、 | |
| # まあこちらのほうがわかりやすいかもしれない | |
| if downsample_block.has_cross_attention: | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| ) | |
| else: | |
| sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
| down_block_res_samples += res_samples | |
| # skip connectionにControlNetの出力を追加する | |
| if down_block_additional_residuals is not None: | |
| down_block_res_samples = list(down_block_res_samples) | |
| for i in range(len(down_block_res_samples)): | |
| down_block_res_samples[i] += down_block_additional_residuals[i] | |
| down_block_res_samples = tuple(down_block_res_samples) | |
| # 4. mid | |
| sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states) | |
| # ControlNetの出力を追加する | |
| if mid_block_additional_residual is not None: | |
| sample += mid_block_additional_residual | |
| # 5. up | |
| for i, upsample_block in enumerate(self.up_blocks): | |
| is_final_block = i == len(self.up_blocks) - 1 | |
| res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
| down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] # skip connection | |
| # if we have not reached the final block and need to forward the upsample size, we do it here | |
| # 前述のように最後のブロック以外ではupsample_sizeを伝える | |
| if not is_final_block and forward_upsample_size: | |
| upsample_size = down_block_res_samples[-1].shape[2:] | |
| if upsample_block.has_cross_attention: | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| encoder_hidden_states=encoder_hidden_states, | |
| upsample_size=upsample_size, | |
| ) | |
| else: | |
| sample = upsample_block( | |
| hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size | |
| ) | |
| # 6. post-process | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| if not return_dict: | |
| return (sample,) | |
| return SampleOutput(sample=sample) | |
| def handle_unusual_timesteps(self, sample, timesteps): | |
| r""" | |
| timestampsがTensorでない場合、Tensorに変換する。またOnnx/Core MLと互換性のあるようにbatchサイズまでbroadcastする。 | |
| """ | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timesteps, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timesteps = timesteps.expand(sample.shape[0]) | |
| return timesteps | |
| class InferUNet2DConditionModel: | |
| def __init__(self, original_unet: UNet2DConditionModel): | |
| self.delegate = original_unet | |
| # override original model's forward method: because forward is not called by `__call__` | |
| # overriding `__call__` is not enough, because nn.Module.forward has a special handling | |
| self.delegate.forward = self.forward | |
| # override original model's up blocks' forward method | |
| for up_block in self.delegate.up_blocks: | |
| if up_block.__class__.__name__ == "UpBlock2D": | |
| def resnet_wrapper(func, block): | |
| def forward(*args, **kwargs): | |
| return func(block, *args, **kwargs) | |
| return forward | |
| up_block.forward = resnet_wrapper(self.up_block_forward, up_block) | |
| elif up_block.__class__.__name__ == "CrossAttnUpBlock2D": | |
| def cross_attn_up_wrapper(func, block): | |
| def forward(*args, **kwargs): | |
| return func(block, *args, **kwargs) | |
| return forward | |
| up_block.forward = cross_attn_up_wrapper(self.cross_attn_up_block_forward, up_block) | |
| # Deep Shrink | |
| self.ds_depth_1 = None | |
| self.ds_depth_2 = None | |
| self.ds_timesteps_1 = None | |
| self.ds_timesteps_2 = None | |
| self.ds_ratio = None | |
| # call original model's methods | |
| def __getattr__(self, name): | |
| return getattr(self.delegate, name) | |
| def __call__(self, *args, **kwargs): | |
| return self.delegate(*args, **kwargs) | |
| def set_deep_shrink(self, ds_depth_1, ds_timesteps_1=650, ds_depth_2=None, ds_timesteps_2=None, ds_ratio=0.5): | |
| if ds_depth_1 is None: | |
| logger.info("Deep Shrink is disabled.") | |
| self.ds_depth_1 = None | |
| self.ds_timesteps_1 = None | |
| self.ds_depth_2 = None | |
| self.ds_timesteps_2 = None | |
| self.ds_ratio = None | |
| else: | |
| logger.info( | |
| f"Deep Shrink is enabled: [depth={ds_depth_1}/{ds_depth_2}, timesteps={ds_timesteps_1}/{ds_timesteps_2}, ratio={ds_ratio}]" | |
| ) | |
| self.ds_depth_1 = ds_depth_1 | |
| self.ds_timesteps_1 = ds_timesteps_1 | |
| self.ds_depth_2 = ds_depth_2 if ds_depth_2 is not None else -1 | |
| self.ds_timesteps_2 = ds_timesteps_2 if ds_timesteps_2 is not None else 1000 | |
| self.ds_ratio = ds_ratio | |
| def up_block_forward(self, _self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None): | |
| for resnet in _self.resnets: | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| # Deep Shrink | |
| if res_hidden_states.shape[-2:] != hidden_states.shape[-2:]: | |
| hidden_states = resize_like(hidden_states, res_hidden_states) | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| hidden_states = resnet(hidden_states, temb) | |
| if _self.upsamplers is not None: | |
| for upsampler in _self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |
| def cross_attn_up_block_forward( | |
| self, | |
| _self, | |
| hidden_states, | |
| res_hidden_states_tuple, | |
| temb=None, | |
| encoder_hidden_states=None, | |
| upsample_size=None, | |
| ): | |
| for resnet, attn in zip(_self.resnets, _self.attentions): | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| # Deep Shrink | |
| if res_hidden_states.shape[-2:] != hidden_states.shape[-2:]: | |
| hidden_states = resize_like(hidden_states, res_hidden_states) | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample | |
| if _self.upsamplers is not None: | |
| for upsampler in _self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| encoder_hidden_states: torch.Tensor, | |
| class_labels: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
| mid_block_additional_residual: Optional[torch.Tensor] = None, | |
| ) -> Union[Dict, Tuple]: | |
| r""" | |
| current implementation is a copy of `UNet2DConditionModel.forward()` with Deep Shrink. | |
| """ | |
| r""" | |
| Args: | |
| sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor | |
| timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps | |
| encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a dict instead of a plain tuple. | |
| Returns: | |
| `SampleOutput` or `tuple`: | |
| `SampleOutput` if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. | |
| """ | |
| _self = self.delegate | |
| # By default samples have to be AT least a multiple of the overall upsampling factor. | |
| # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). | |
| # However, the upsampling interpolation output size can be forced to fit any upsampling size | |
| # on the fly if necessary. | |
| # デフォルトではサンプルは「2^アップサンプルの数」、つまり64の倍数である必要がある | |
| # ただそれ以外のサイズにも対応できるように、必要ならアップサンプルのサイズを変更する | |
| # 多分画質が悪くなるので、64で割り切れるようにしておくのが良い | |
| default_overall_up_factor = 2**_self.num_upsamplers | |
| # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
| # 64で割り切れないときはupsamplerにサイズを伝える | |
| forward_upsample_size = False | |
| upsample_size = None | |
| if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
| # logger.info("Forward upsample size to force interpolation output size.") | |
| forward_upsample_size = True | |
| # 1. time | |
| timesteps = timestep | |
| timesteps = _self.handle_unusual_timesteps(sample, timesteps) # 変な時だけ処理 | |
| t_emb = _self.time_proj(timesteps) | |
| # timesteps does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| # timestepsは重みを含まないので常にfloat32のテンソルを返す | |
| # しかしtime_embeddingはfp16で動いているかもしれないので、ここでキャストする必要がある | |
| # time_projでキャストしておけばいいんじゃね? | |
| t_emb = t_emb.to(dtype=_self.dtype) | |
| emb = _self.time_embedding(t_emb) | |
| # 2. pre-process | |
| sample = _self.conv_in(sample) | |
| down_block_res_samples = (sample,) | |
| for depth, downsample_block in enumerate(_self.down_blocks): | |
| # Deep Shrink | |
| if self.ds_depth_1 is not None: | |
| if (depth == self.ds_depth_1 and timesteps[0] >= self.ds_timesteps_1) or ( | |
| self.ds_depth_2 is not None | |
| and depth == self.ds_depth_2 | |
| and timesteps[0] < self.ds_timesteps_1 | |
| and timesteps[0] >= self.ds_timesteps_2 | |
| ): | |
| org_dtype = sample.dtype | |
| if org_dtype == torch.bfloat16: | |
| sample = sample.to(torch.float32) | |
| sample = F.interpolate(sample, scale_factor=self.ds_ratio, mode="bicubic", align_corners=False).to(org_dtype) | |
| # downblockはforwardで必ずencoder_hidden_statesを受け取るようにしても良さそうだけど、 | |
| # まあこちらのほうがわかりやすいかもしれない | |
| if downsample_block.has_cross_attention: | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| ) | |
| else: | |
| sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
| down_block_res_samples += res_samples | |
| # skip connectionにControlNetの出力を追加する | |
| if down_block_additional_residuals is not None: | |
| down_block_res_samples = list(down_block_res_samples) | |
| for i in range(len(down_block_res_samples)): | |
| down_block_res_samples[i] += down_block_additional_residuals[i] | |
| down_block_res_samples = tuple(down_block_res_samples) | |
| # 4. mid | |
| sample = _self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states) | |
| # ControlNetの出力を追加する | |
| if mid_block_additional_residual is not None: | |
| sample += mid_block_additional_residual | |
| # 5. up | |
| for i, upsample_block in enumerate(_self.up_blocks): | |
| is_final_block = i == len(_self.up_blocks) - 1 | |
| res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
| down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] # skip connection | |
| # if we have not reached the final block and need to forward the upsample size, we do it here | |
| # 前述のように最後のブロック以外ではupsample_sizeを伝える | |
| if not is_final_block and forward_upsample_size: | |
| upsample_size = down_block_res_samples[-1].shape[2:] | |
| if upsample_block.has_cross_attention: | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| encoder_hidden_states=encoder_hidden_states, | |
| upsample_size=upsample_size, | |
| ) | |
| else: | |
| sample = upsample_block( | |
| hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size | |
| ) | |
| # 6. post-process | |
| sample = _self.conv_norm_out(sample) | |
| sample = _self.conv_act(sample) | |
| sample = _self.conv_out(sample) | |
| if not return_dict: | |
| return (sample,) | |
| return SampleOutput(sample=sample) | |