Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| import os | |
| import torch | |
| import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import | |
| from functools import cache | |
| # pylint: disable=protected-access, missing-function-docstring, line-too-long | |
| # ARC GPUs can't allocate more than 4GB to a single block so we slice the attention layers | |
| sdpa_slice_trigger_rate = float(os.environ.get('IPEX_SDPA_SLICE_TRIGGER_RATE', 4)) | |
| attention_slice_rate = float(os.environ.get('IPEX_ATTENTION_SLICE_RATE', 4)) | |
| # Find something divisible with the input_tokens | |
| def find_slice_size(slice_size, slice_block_size): | |
| while (slice_size * slice_block_size) > attention_slice_rate: | |
| slice_size = slice_size // 2 | |
| if slice_size <= 1: | |
| slice_size = 1 | |
| break | |
| return slice_size | |
| # Find slice sizes for SDPA | |
| def find_sdpa_slice_sizes(query_shape, query_element_size): | |
| if len(query_shape) == 3: | |
| batch_size_attention, query_tokens, shape_three = query_shape | |
| shape_four = 1 | |
| else: | |
| batch_size_attention, query_tokens, shape_three, shape_four = query_shape | |
| slice_block_size = query_tokens * shape_three * shape_four / 1024 / 1024 * query_element_size | |
| block_size = batch_size_attention * slice_block_size | |
| split_slice_size = batch_size_attention | |
| split_2_slice_size = query_tokens | |
| split_3_slice_size = shape_three | |
| do_split = False | |
| do_split_2 = False | |
| do_split_3 = False | |
| if block_size > sdpa_slice_trigger_rate: | |
| do_split = True | |
| split_slice_size = find_slice_size(split_slice_size, slice_block_size) | |
| if split_slice_size * slice_block_size > attention_slice_rate: | |
| slice_2_block_size = split_slice_size * shape_three * shape_four / 1024 / 1024 * query_element_size | |
| do_split_2 = True | |
| split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size) | |
| if split_2_slice_size * slice_2_block_size > attention_slice_rate: | |
| slice_3_block_size = split_slice_size * split_2_slice_size * shape_four / 1024 / 1024 * query_element_size | |
| do_split_3 = True | |
| split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size) | |
| return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size | |
| # Find slice sizes for BMM | |
| def find_bmm_slice_sizes(input_shape, input_element_size, mat2_shape): | |
| batch_size_attention, input_tokens, mat2_atten_shape = input_shape[0], input_shape[1], mat2_shape[2] | |
| slice_block_size = input_tokens * mat2_atten_shape / 1024 / 1024 * input_element_size | |
| block_size = batch_size_attention * slice_block_size | |
| split_slice_size = batch_size_attention | |
| split_2_slice_size = input_tokens | |
| split_3_slice_size = mat2_atten_shape | |
| do_split = False | |
| do_split_2 = False | |
| do_split_3 = False | |
| if block_size > attention_slice_rate: | |
| do_split = True | |
| split_slice_size = find_slice_size(split_slice_size, slice_block_size) | |
| if split_slice_size * slice_block_size > attention_slice_rate: | |
| slice_2_block_size = split_slice_size * mat2_atten_shape / 1024 / 1024 * input_element_size | |
| do_split_2 = True | |
| split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size) | |
| if split_2_slice_size * slice_2_block_size > attention_slice_rate: | |
| slice_3_block_size = split_slice_size * split_2_slice_size / 1024 / 1024 * input_element_size | |
| do_split_3 = True | |
| split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size) | |
| return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size | |
| original_torch_bmm = torch.bmm | |
| def torch_bmm_32_bit(input, mat2, *, out=None): | |
| if input.device.type != "xpu": | |
| return original_torch_bmm(input, mat2, out=out) | |
| do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_bmm_slice_sizes(input.shape, input.element_size(), mat2.shape) | |
| # Slice BMM | |
| if do_split: | |
| batch_size_attention, input_tokens, mat2_atten_shape = input.shape[0], input.shape[1], mat2.shape[2] | |
| hidden_states = torch.zeros(input.shape[0], input.shape[1], mat2.shape[2], device=input.device, dtype=input.dtype) | |
| for i in range(batch_size_attention // split_slice_size): | |
| start_idx = i * split_slice_size | |
| end_idx = (i + 1) * split_slice_size | |
| if do_split_2: | |
| for i2 in range(input_tokens // split_2_slice_size): # pylint: disable=invalid-name | |
| start_idx_2 = i2 * split_2_slice_size | |
| end_idx_2 = (i2 + 1) * split_2_slice_size | |
| if do_split_3: | |
| for i3 in range(mat2_atten_shape // split_3_slice_size): # pylint: disable=invalid-name | |
| start_idx_3 = i3 * split_3_slice_size | |
| end_idx_3 = (i3 + 1) * split_3_slice_size | |
| hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = original_torch_bmm( | |
| input[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3], | |
| mat2[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3], | |
| out=out | |
| ) | |
| else: | |
| hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_torch_bmm( | |
| input[start_idx:end_idx, start_idx_2:end_idx_2], | |
| mat2[start_idx:end_idx, start_idx_2:end_idx_2], | |
| out=out | |
| ) | |
| else: | |
| hidden_states[start_idx:end_idx] = original_torch_bmm( | |
| input[start_idx:end_idx], | |
| mat2[start_idx:end_idx], | |
| out=out | |
| ) | |
| torch.xpu.synchronize(input.device) | |
| else: | |
| return original_torch_bmm(input, mat2, out=out) | |
| return hidden_states | |
| original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention | |
| def scaled_dot_product_attention_32_bit(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, **kwargs): | |
| if query.device.type != "xpu": | |
| return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs) | |
| do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_sdpa_slice_sizes(query.shape, query.element_size()) | |
| # Slice SDPA | |
| if do_split: | |
| batch_size_attention, query_tokens, shape_three = query.shape[0], query.shape[1], query.shape[2] | |
| hidden_states = torch.zeros(query.shape, device=query.device, dtype=query.dtype) | |
| for i in range(batch_size_attention // split_slice_size): | |
| start_idx = i * split_slice_size | |
| end_idx = (i + 1) * split_slice_size | |
| if do_split_2: | |
| for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name | |
| start_idx_2 = i2 * split_2_slice_size | |
| end_idx_2 = (i2 + 1) * split_2_slice_size | |
| if do_split_3: | |
| for i3 in range(shape_three // split_3_slice_size): # pylint: disable=invalid-name | |
| start_idx_3 = i3 * split_3_slice_size | |
| end_idx_3 = (i3 + 1) * split_3_slice_size | |
| hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = original_scaled_dot_product_attention( | |
| query[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3], | |
| key[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3], | |
| value[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3], | |
| attn_mask=attn_mask[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] if attn_mask is not None else attn_mask, | |
| dropout_p=dropout_p, is_causal=is_causal, **kwargs | |
| ) | |
| else: | |
| hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_scaled_dot_product_attention( | |
| query[start_idx:end_idx, start_idx_2:end_idx_2], | |
| key[start_idx:end_idx, start_idx_2:end_idx_2], | |
| value[start_idx:end_idx, start_idx_2:end_idx_2], | |
| attn_mask=attn_mask[start_idx:end_idx, start_idx_2:end_idx_2] if attn_mask is not None else attn_mask, | |
| dropout_p=dropout_p, is_causal=is_causal, **kwargs | |
| ) | |
| else: | |
| hidden_states[start_idx:end_idx] = original_scaled_dot_product_attention( | |
| query[start_idx:end_idx], | |
| key[start_idx:end_idx], | |
| value[start_idx:end_idx], | |
| attn_mask=attn_mask[start_idx:end_idx] if attn_mask is not None else attn_mask, | |
| dropout_p=dropout_p, is_causal=is_causal, **kwargs | |
| ) | |
| torch.xpu.synchronize(query.device) | |
| else: | |
| return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs) | |
| return hidden_states | |