Spaces:
Sleeping
Sleeping
| import math | |
| import torch | |
| from transformers import Adafactor | |
| # stochastic rounding for bfloat16 | |
| # The implementation was provided by 2kpr. Thank you very much! | |
| def copy_stochastic_(target: torch.Tensor, source: torch.Tensor): | |
| """ | |
| copies source into target using stochastic rounding | |
| Args: | |
| target: the target tensor with dtype=bfloat16 | |
| source: the target tensor with dtype=float32 | |
| """ | |
| # create a random 16 bit integer | |
| result = torch.randint_like(source, dtype=torch.int32, low=0, high=(1 << 16)) | |
| # add the random number to the lower 16 bit of the mantissa | |
| result.add_(source.view(dtype=torch.int32)) | |
| # mask off the lower 16 bit of the mantissa | |
| result.bitwise_and_(-65536) # -65536 = FFFF0000 as a signed int32 | |
| # copy the higher 16 bit into the target tensor | |
| target.copy_(result.view(dtype=torch.float32)) | |
| del result | |
| def adafactor_step_param(self, p, group): | |
| if p.grad is None: | |
| return | |
| grad = p.grad | |
| if grad.dtype in {torch.float16, torch.bfloat16}: | |
| grad = grad.float() | |
| if grad.is_sparse: | |
| raise RuntimeError("Adafactor does not support sparse gradients.") | |
| state = self.state[p] | |
| grad_shape = grad.shape | |
| factored, use_first_moment = Adafactor._get_options(group, grad_shape) | |
| # State Initialization | |
| if len(state) == 0: | |
| state["step"] = 0 | |
| if use_first_moment: | |
| # Exponential moving average of gradient values | |
| state["exp_avg"] = torch.zeros_like(grad) | |
| if factored: | |
| state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad) | |
| state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad) | |
| else: | |
| state["exp_avg_sq"] = torch.zeros_like(grad) | |
| state["RMS"] = 0 | |
| else: | |
| if use_first_moment: | |
| state["exp_avg"] = state["exp_avg"].to(grad) | |
| if factored: | |
| state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad) | |
| state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad) | |
| else: | |
| state["exp_avg_sq"] = state["exp_avg_sq"].to(grad) | |
| p_data_fp32 = p | |
| if p.dtype in {torch.float16, torch.bfloat16}: | |
| p_data_fp32 = p_data_fp32.float() | |
| state["step"] += 1 | |
| state["RMS"] = Adafactor._rms(p_data_fp32) | |
| lr = Adafactor._get_lr(group, state) | |
| beta2t = 1.0 - math.pow(state["step"], group["decay_rate"]) | |
| update = (grad**2) + group["eps"][0] | |
| if factored: | |
| exp_avg_sq_row = state["exp_avg_sq_row"] | |
| exp_avg_sq_col = state["exp_avg_sq_col"] | |
| exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=(1.0 - beta2t)) | |
| exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=(1.0 - beta2t)) | |
| # Approximation of exponential moving average of square of gradient | |
| update = Adafactor._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col) | |
| update.mul_(grad) | |
| else: | |
| exp_avg_sq = state["exp_avg_sq"] | |
| exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t)) | |
| update = exp_avg_sq.rsqrt().mul_(grad) | |
| update.div_((Adafactor._rms(update) / group["clip_threshold"]).clamp_(min=1.0)) | |
| update.mul_(lr) | |
| if use_first_moment: | |
| exp_avg = state["exp_avg"] | |
| exp_avg.mul_(group["beta1"]).add_(update, alpha=(1 - group["beta1"])) | |
| update = exp_avg | |
| if group["weight_decay"] != 0: | |
| p_data_fp32.add_(p_data_fp32, alpha=(-group["weight_decay"] * lr)) | |
| p_data_fp32.add_(-update) | |
| # if p.dtype in {torch.float16, torch.bfloat16}: | |
| # p.copy_(p_data_fp32) | |
| if p.dtype == torch.bfloat16: | |
| copy_stochastic_(p, p_data_fp32) | |
| elif p.dtype == torch.float16: | |
| p.copy_(p_data_fp32) | |
| def adafactor_step(self, closure=None): | |
| """ | |
| Performs a single optimization step | |
| Arguments: | |
| closure (callable, optional): A closure that reevaluates the model | |
| and returns the loss. | |
| """ | |
| loss = None | |
| if closure is not None: | |
| loss = closure() | |
| for group in self.param_groups: | |
| for p in group["params"]: | |
| adafactor_step_param(self, p, group) | |
| return loss | |
| def patch_adafactor_fused(optimizer: Adafactor): | |
| optimizer.step_param = adafactor_step_param.__get__(optimizer) | |
| optimizer.step = adafactor_step.__get__(optimizer) | |