Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import glob | |
| from typing import Any, List, Optional, Tuple, Union | |
| import torch | |
| import numpy as np | |
| from transformers import CLIPTokenizer, T5TokenizerFast | |
| from library import flux_utils, train_util | |
| from library.strategy_base import LatentsCachingStrategy, TextEncodingStrategy, TokenizeStrategy, TextEncoderOutputsCachingStrategy | |
| from library.utils import setup_logging | |
| setup_logging() | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| CLIP_L_TOKENIZER_ID = "openai/clip-vit-large-patch14" | |
| T5_XXL_TOKENIZER_ID = "google/t5-v1_1-xxl" | |
| class FluxTokenizeStrategy(TokenizeStrategy): | |
| def __init__(self, t5xxl_max_length: int = 512, tokenizer_cache_dir: Optional[str] = None) -> None: | |
| self.t5xxl_max_length = t5xxl_max_length | |
| self.clip_l = self._load_tokenizer(CLIPTokenizer, CLIP_L_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir) | |
| self.t5xxl = self._load_tokenizer(T5TokenizerFast, T5_XXL_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir) | |
| def tokenize(self, text: Union[str, List[str]]) -> List[torch.Tensor]: | |
| text = [text] if isinstance(text, str) else text | |
| l_tokens = self.clip_l(text, max_length=77, padding="max_length", truncation=True, return_tensors="pt") | |
| t5_tokens = self.t5xxl(text, max_length=self.t5xxl_max_length, padding="max_length", truncation=True, return_tensors="pt") | |
| t5_attn_mask = t5_tokens["attention_mask"] | |
| l_tokens = l_tokens["input_ids"] | |
| t5_tokens = t5_tokens["input_ids"] | |
| return [l_tokens, t5_tokens, t5_attn_mask] | |
| class FluxTextEncodingStrategy(TextEncodingStrategy): | |
| def __init__(self, apply_t5_attn_mask: Optional[bool] = None) -> None: | |
| """ | |
| Args: | |
| apply_t5_attn_mask: Default value for apply_t5_attn_mask. | |
| """ | |
| self.apply_t5_attn_mask = apply_t5_attn_mask | |
| def encode_tokens( | |
| self, | |
| tokenize_strategy: TokenizeStrategy, | |
| models: List[Any], | |
| tokens: List[torch.Tensor], | |
| apply_t5_attn_mask: Optional[bool] = None, | |
| ) -> List[torch.Tensor]: | |
| # supports single model inference | |
| if apply_t5_attn_mask is None: | |
| apply_t5_attn_mask = self.apply_t5_attn_mask | |
| clip_l, t5xxl = models if len(models) == 2 else (models[0], None) | |
| l_tokens, t5_tokens = tokens[:2] | |
| t5_attn_mask = tokens[2] if len(tokens) > 2 else None | |
| # clip_l is None when using T5 only | |
| if clip_l is not None and l_tokens is not None: | |
| l_pooled = clip_l(l_tokens.to(clip_l.device))["pooler_output"] | |
| else: | |
| l_pooled = None | |
| # t5xxl is None when using CLIP only | |
| if t5xxl is not None and t5_tokens is not None: | |
| # t5_out is [b, max length, 4096] | |
| attention_mask = None if not apply_t5_attn_mask else t5_attn_mask.to(t5xxl.device) | |
| t5_out, _ = t5xxl(t5_tokens.to(t5xxl.device), attention_mask, return_dict=False, output_hidden_states=True) | |
| # if zero_pad_t5_output: | |
| # t5_out = t5_out * t5_attn_mask.to(t5_out.device).unsqueeze(-1) | |
| txt_ids = torch.zeros(t5_out.shape[0], t5_out.shape[1], 3, device=t5_out.device) | |
| else: | |
| t5_out = None | |
| txt_ids = None | |
| t5_attn_mask = None # caption may be dropped/shuffled, so t5_attn_mask should not be used to make sure the mask is same as the cached one | |
| return [l_pooled, t5_out, txt_ids, t5_attn_mask] # returns t5_attn_mask for attention mask in transformer | |
| class FluxTextEncoderOutputsCachingStrategy(TextEncoderOutputsCachingStrategy): | |
| FLUX_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX = "_flux_te.npz" | |
| def __init__( | |
| self, | |
| cache_to_disk: bool, | |
| batch_size: int, | |
| skip_disk_cache_validity_check: bool, | |
| is_partial: bool = False, | |
| apply_t5_attn_mask: bool = False, | |
| ) -> None: | |
| super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check, is_partial) | |
| self.apply_t5_attn_mask = apply_t5_attn_mask | |
| self.warn_fp8_weights = False | |
| def get_outputs_npz_path(self, image_abs_path: str) -> str: | |
| return os.path.splitext(image_abs_path)[0] + FluxTextEncoderOutputsCachingStrategy.FLUX_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX | |
| def is_disk_cached_outputs_expected(self, npz_path: str): | |
| if not self.cache_to_disk: | |
| return False | |
| if not os.path.exists(npz_path): | |
| return False | |
| if self.skip_disk_cache_validity_check: | |
| return True | |
| try: | |
| npz = np.load(npz_path) | |
| if "l_pooled" not in npz: | |
| return False | |
| if "t5_out" not in npz: | |
| return False | |
| if "txt_ids" not in npz: | |
| return False | |
| if "t5_attn_mask" not in npz: | |
| return False | |
| if "apply_t5_attn_mask" not in npz: | |
| return False | |
| npz_apply_t5_attn_mask = npz["apply_t5_attn_mask"] | |
| if npz_apply_t5_attn_mask != self.apply_t5_attn_mask: | |
| return False | |
| except Exception as e: | |
| logger.error(f"Error loading file: {npz_path}") | |
| raise e | |
| return True | |
| def load_outputs_npz(self, npz_path: str) -> List[np.ndarray]: | |
| data = np.load(npz_path) | |
| l_pooled = data["l_pooled"] | |
| t5_out = data["t5_out"] | |
| txt_ids = data["txt_ids"] | |
| t5_attn_mask = data["t5_attn_mask"] | |
| # apply_t5_attn_mask should be same as self.apply_t5_attn_mask | |
| return [l_pooled, t5_out, txt_ids, t5_attn_mask] | |
| def cache_batch_outputs( | |
| self, tokenize_strategy: TokenizeStrategy, models: List[Any], text_encoding_strategy: TextEncodingStrategy, infos: List | |
| ): | |
| if not self.warn_fp8_weights: | |
| if flux_utils.get_t5xxl_actual_dtype(models[1]) == torch.float8_e4m3fn: | |
| logger.warning( | |
| "T5 model is using fp8 weights for caching. This may affect the quality of the cached outputs." | |
| " / T5モデルはfp8の重みを使用しています。これはキャッシュの品質に影響を与える可能性があります。" | |
| ) | |
| self.warn_fp8_weights = True | |
| flux_text_encoding_strategy: FluxTextEncodingStrategy = text_encoding_strategy | |
| captions = [info.caption for info in infos] | |
| tokens_and_masks = tokenize_strategy.tokenize(captions) | |
| with torch.no_grad(): | |
| # attn_mask is applied in text_encoding_strategy.encode_tokens if apply_t5_attn_mask is True | |
| l_pooled, t5_out, txt_ids, _ = flux_text_encoding_strategy.encode_tokens(tokenize_strategy, models, tokens_and_masks) | |
| if l_pooled.dtype == torch.bfloat16: | |
| l_pooled = l_pooled.float() | |
| if t5_out.dtype == torch.bfloat16: | |
| t5_out = t5_out.float() | |
| if txt_ids.dtype == torch.bfloat16: | |
| txt_ids = txt_ids.float() | |
| l_pooled = l_pooled.cpu().numpy() | |
| t5_out = t5_out.cpu().numpy() | |
| txt_ids = txt_ids.cpu().numpy() | |
| t5_attn_mask = tokens_and_masks[2].cpu().numpy() | |
| for i, info in enumerate(infos): | |
| l_pooled_i = l_pooled[i] | |
| t5_out_i = t5_out[i] | |
| txt_ids_i = txt_ids[i] | |
| t5_attn_mask_i = t5_attn_mask[i] | |
| apply_t5_attn_mask_i = self.apply_t5_attn_mask | |
| if self.cache_to_disk: | |
| np.savez( | |
| info.text_encoder_outputs_npz, | |
| l_pooled=l_pooled_i, | |
| t5_out=t5_out_i, | |
| txt_ids=txt_ids_i, | |
| t5_attn_mask=t5_attn_mask_i, | |
| apply_t5_attn_mask=apply_t5_attn_mask_i, | |
| ) | |
| else: | |
| # it's fine that attn mask is not None. it's overwritten before calling the model if necessary | |
| info.text_encoder_outputs = (l_pooled_i, t5_out_i, txt_ids_i, t5_attn_mask_i) | |
| class FluxLatentsCachingStrategy(LatentsCachingStrategy): | |
| FLUX_LATENTS_NPZ_SUFFIX = "_flux.npz" | |
| def __init__(self, cache_to_disk: bool, batch_size: int, skip_disk_cache_validity_check: bool) -> None: | |
| super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check) | |
| def cache_suffix(self) -> str: | |
| return FluxLatentsCachingStrategy.FLUX_LATENTS_NPZ_SUFFIX | |
| def get_latents_npz_path(self, absolute_path: str, image_size: Tuple[int, int]) -> str: | |
| return ( | |
| os.path.splitext(absolute_path)[0] | |
| + f"_{image_size[0]:04d}x{image_size[1]:04d}" | |
| + FluxLatentsCachingStrategy.FLUX_LATENTS_NPZ_SUFFIX | |
| ) | |
| def is_disk_cached_latents_expected(self, bucket_reso: Tuple[int, int], npz_path: str, flip_aug: bool, alpha_mask: bool): | |
| return self._default_is_disk_cached_latents_expected(8, bucket_reso, npz_path, flip_aug, alpha_mask, multi_resolution=True) | |
| def load_latents_from_disk( | |
| self, npz_path: str, bucket_reso: Tuple[int, int] | |
| ) -> Tuple[Optional[np.ndarray], Optional[List[int]], Optional[List[int]], Optional[np.ndarray], Optional[np.ndarray]]: | |
| return self._default_load_latents_from_disk(8, npz_path, bucket_reso) # support multi-resolution | |
| # TODO remove circular dependency for ImageInfo | |
| def cache_batch_latents(self, vae, image_infos: List, flip_aug: bool, alpha_mask: bool, random_crop: bool): | |
| encode_by_vae = lambda img_tensor: vae.encode(img_tensor).to("cpu") | |
| vae_device = vae.device | |
| vae_dtype = vae.dtype | |
| self._default_cache_batch_latents( | |
| encode_by_vae, vae_device, vae_dtype, image_infos, flip_aug, alpha_mask, random_crop, multi_resolution=True | |
| ) | |
| if not train_util.HIGH_VRAM: | |
| train_util.clean_memory_on_device(vae.device) | |
| if __name__ == "__main__": | |
| # test code for FluxTokenizeStrategy | |
| # tokenizer = sd3_models.SD3Tokenizer() | |
| strategy = FluxTokenizeStrategy(256) | |
| text = "hello world" | |
| l_tokens, g_tokens, t5_tokens = strategy.tokenize(text) | |
| # print(l_tokens.shape) | |
| print(l_tokens) | |
| print(g_tokens) | |
| print(t5_tokens) | |
| texts = ["hello world", "the quick brown fox jumps over the lazy dog"] | |
| l_tokens_2 = strategy.clip_l(texts, max_length=77, padding="max_length", truncation=True, return_tensors="pt") | |
| g_tokens_2 = strategy.clip_g(texts, max_length=77, padding="max_length", truncation=True, return_tensors="pt") | |
| t5_tokens_2 = strategy.t5xxl( | |
| texts, max_length=strategy.t5xxl_max_length, padding="max_length", truncation=True, return_tensors="pt" | |
| ) | |
| print(l_tokens_2) | |
| print(g_tokens_2) | |
| print(t5_tokens_2) | |
| # compare | |
| print(torch.allclose(l_tokens, l_tokens_2["input_ids"][0])) | |
| print(torch.allclose(g_tokens, g_tokens_2["input_ids"][0])) | |
| print(torch.allclose(t5_tokens, t5_tokens_2["input_ids"][0])) | |
| text = ",".join(["hello world! this is long text"] * 50) | |
| l_tokens, g_tokens, t5_tokens = strategy.tokenize(text) | |
| print(l_tokens) | |
| print(g_tokens) | |
| print(t5_tokens) | |
| print(f"model max length l: {strategy.clip_l.model_max_length}") | |
| print(f"model max length g: {strategy.clip_g.model_max_length}") | |
| print(f"model max length t5: {strategy.t5xxl.model_max_length}") | |