import torch from diffusers import FluxPipeline from transformers import pipeline import gradio as gr import spaces device=torch.device('cuda') pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) pipe.to("cuda") # Load the NSFW classifier image_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection",device=device) #text_classifier = pipeline("text-classification", model="eliasalbouzidi/distilbert-nsfw-text-classifier",device=device) NSFW_THRESHOLD = 0.3 # Define the function to generate the sketch @spaces.GPU def generate_sketch(prompt,style, num_inference_steps, guidance_scale): # Classify the text for NSFW content #text_classification = text_classifier(prompt) #print(text_classification) # Check the classification results #for result in text_classification: # if result['label'] == 'nsfw' and result['score'] > NSFW_THRESHOLD: # return gr.update(visible=False),gr.Text(value="Inappropriate prompt detected. Please try another prompt.") print(prompt) match style: case 'shou_xin': prompt = "shou_xin, " + prompt pipe.load_lora_weights("Datou1111/shou_xin", weight_name="shou_xin.safetensors") case 'sketched': prompt = "sketched style, " + prompt pipe.load_lora_weights("Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch", weight_name="FLUX-dev-lora-children-simple-sketch.safetensors") case 'sketch_paint': prompt = "Sketch paint, " + prompt pipe.load_lora_weights("strangerzonehf/Sketch-Paint", weight_name="Sketch-Paint.safetensors") case 'sketch_sized': prompt = "Sketch Sized, " + prompt pipe.load_lora_weights("strangerzonehf/Flux-Sketch-Sized-LoRA", weight_name="Flux-Sketch-Sized-LoRA.safetensors") case _: prompt = "shou_xin, " + prompt pipe.load_lora_weights("Datou1111/shou_xin", weight_name="shou_xin.safetensors") pipe.fuse_lora(lora_scale=1.5) image = pipe("sketched style, " + prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, ).images[0] # Classify the image for NSFW content image_classification = image_classifier(image) print(image_classification) # Check the classification results for result in image_classification: if result['label'] == 'nsfw' and result['score'] > NSFW_THRESHOLD: return None,"Inappropriate content detected. Please try another prompt." #return gr.update(visible=False),gr.Text(value="Inappropriate content detected. Please try another prompt.") image_path = "generated_sketch.png" image.save(image_path) return image_path,None #gr.Image(value=image_path), gr.update(visible=False) # Gradio interface with sliders for num_inference_steps and guidance_scale interface = gr.Interface( fn=generate_sketch, inputs=[ "text", # Prompt input gr.Dropdown( ["sketched", "shou_xin","Sketch-Paint","Flux-Sketch-Sized-LoRA"],value='sketched', label="Style" ), gr.Slider(5, 50, value=24, step=1, label="Number of Inference Steps"), # Slider for num_inference_steps gr.Slider(1.0, 10.0, value=3.5, step=0.1, label="Guidance Scale") # Slider for guidance_scale ], outputs=[ gr.Image(label="Generated Sketch"), gr.Textbox(label="Message") ], title="Kids Sketch Generator", description="Enter a text prompt and generate a fun sketch for kids with customizable inference steps and guidance scale." ) # Launch the app interface.launch()