import torch import gradio as gr from modeling_diffusion import DiffusionTextModel # ===================== # Load Model from Hub # ===================== model = DiffusionTextModel.from_pretrained("yasserrmd/diffusion-text-demo") model.eval() device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) PAD_TOKEN = "[PAD]" MASK_TOKEN = "[MASK]" vocab = {PAD_TOKEN: 0, MASK_TOKEN: 1} # Reverse mapping id_to_word = {i: w for w, i in vocab.items()} # Special token IDs pad_id = vocab[PAD_TOKEN] mask_id = vocab[MASK_TOKEN] # ===================== # Generation Function # ===================== def generate_with_prompt(model, input_text, max_length=50, T=10): # Ensure max_length does not exceed 99 max_length = min(max_length, 99) model.eval() input_tokens = input_text.split() input_ids = [vocab.get(tok, mask_id) for tok in input_tokens] seq = torch.full((1, max_length), mask_id, dtype=torch.long, device=device) seq[0, :len(input_ids)] = torch.tensor(input_ids, device=device) for step in range(T, 0, -1): with torch.no_grad(): logits = model(seq, torch.tensor([step], device=device)) probs = torch.softmax(logits, dim=-1) for pos in range(len(input_ids), max_length): if seq[0, pos].item() == mask_id: seq[0, pos] = torch.multinomial(probs[0, pos], 1) ids = seq[0].tolist() if pad_id in ids: ids = ids[:ids.index(pad_id)] return " ".join(id_to_word[i] for i in ids) # ===================== # Gradio App # ===================== def chat_fn(message, history, steps, max_len): response = generate_with_prompt(model, message, max_length=max_len, T=steps) history.append((message, response)) return "", history with gr.Blocks() as demo: gr.Markdown("## 🌀 DiffusionTextModel QA Chat Demo") chatbot = gr.Chatbot() msg = gr.Textbox(placeholder="Type your question or prompt here...") steps = gr.Slider(1, 50, value=10, step=1, label="Diffusion Steps (T)") max_len = gr.Slider(10, 99, value=50, step=1, label="Max Token Length (≤ 99)") clear = gr.Button("Clear") msg.submit(chat_fn, [msg, chatbot, steps, max_len], [msg, chatbot]) clear.click(lambda: None, None, chatbot, queue=False) demo.launch()