Spaces:
Sleeping
Sleeping
Update career_data.py
Browse files- career_data.py +14 -33
career_data.py
CHANGED
|
@@ -1,50 +1,31 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
import torch
|
| 3 |
|
| 4 |
-
# Load
|
| 5 |
-
|
| 6 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 7 |
-
model = AutoModel.from_pretrained(model_name)
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
career_options
|
| 11 |
-
|
| 12 |
-
"skills": "programming, problem-solving",
|
| 13 |
-
"interests": "technology, innovation"
|
| 14 |
-
},
|
| 15 |
-
"Graphic Designer": {
|
| 16 |
-
"skills": "design, creativity",
|
| 17 |
-
"interests": "art, visual communication"
|
| 18 |
-
},
|
| 19 |
-
"Project Manager": {
|
| 20 |
-
"skills": "management, organization",
|
| 21 |
-
"interests": "leadership, strategy"
|
| 22 |
-
},
|
| 23 |
-
# Add more careers as needed
|
| 24 |
-
}
|
| 25 |
-
|
| 26 |
-
# Generate embeddings for career options
|
| 27 |
-
def get_embedding(text):
|
| 28 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 29 |
-
with torch.no_grad():
|
| 30 |
-
embedding = model(**inputs).last_hidden_state.mean(dim=1).squeeze()
|
| 31 |
-
return embedding
|
| 32 |
|
|
|
|
| 33 |
career_embeddings = {}
|
| 34 |
for career, attributes in career_options.items():
|
| 35 |
combined_text = attributes["skills"] + ", " + attributes["interests"]
|
| 36 |
-
career_embeddings[career] =
|
| 37 |
|
| 38 |
-
# Function to
|
| 39 |
def get_career_recommendations(skills: str, interests: str):
|
| 40 |
user_input = skills + ", " + interests
|
| 41 |
-
user_embedding =
|
| 42 |
-
|
| 43 |
recommendations = []
|
| 44 |
for career, career_embedding in career_embeddings.items():
|
| 45 |
-
similarity = torch.cosine_similarity(user_embedding, career_embedding, dim=0).item()
|
| 46 |
recommendations.append((career, similarity))
|
| 47 |
|
|
|
|
| 48 |
recommendations.sort(key=lambda x: x[1], reverse=True)
|
| 49 |
|
| 50 |
return [f"{career} (Similarity: {similarity:.2f})" for career, similarity in recommendations[:5]]
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from model2vec import StaticModel
|
| 3 |
import torch
|
| 4 |
|
| 5 |
+
# Load the Model2Vec pretrained model
|
| 6 |
+
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Load career options from JSON file
|
| 9 |
+
with open("career_options.json", "r") as file:
|
| 10 |
+
career_options = json.load(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
# Precompute embeddings for career options
|
| 13 |
career_embeddings = {}
|
| 14 |
for career, attributes in career_options.items():
|
| 15 |
combined_text = attributes["skills"] + ", " + attributes["interests"]
|
| 16 |
+
career_embeddings[career] = model.encode([combined_text])[0]
|
| 17 |
|
| 18 |
+
# Function to generate career recommendations
|
| 19 |
def get_career_recommendations(skills: str, interests: str):
|
| 20 |
user_input = skills + ", " + interests
|
| 21 |
+
user_embedding = model.encode([user_input])[0]
|
| 22 |
+
|
| 23 |
recommendations = []
|
| 24 |
for career, career_embedding in career_embeddings.items():
|
| 25 |
+
similarity = torch.cosine_similarity(torch.tensor(user_embedding), torch.tensor(career_embedding), dim=0).item()
|
| 26 |
recommendations.append((career, similarity))
|
| 27 |
|
| 28 |
+
# Sort by similarity score
|
| 29 |
recommendations.sort(key=lambda x: x[1], reverse=True)
|
| 30 |
|
| 31 |
return [f"{career} (Similarity: {similarity:.2f})" for career, similarity in recommendations[:5]]
|