Spaces:
Build error
Build error
Commit
·
4639788
1
Parent(s):
4d58c74
Deleted Files
Browse files- home.py +0 -137
- pages/01_home.py +0 -154
- pages/02_difference_between_mi_and_di.py +0 -0
- pages/03_ml_vs_dl.py +0 -91
- pages/04_life_cycle_of_mi.py +0 -0
- pages/05_life_cycle_of_ml.py +0 -115
- pages/06_data.py +0 -0
- pages/07_structured_data.py +0 -0
- pages/08_semi_structured_data.py +0 -0
- pages/09_unstructured_data.py +0 -0
- pages/10_types_of_data.py +0 -0
- pages/11_data_collection.py +0 -0
- pages/12_data_preprocessing.py +0 -0
- pages/13_exploratory_data_analysis.py +0 -0
- pages/14_simple_eda.py +0 -0
- pages/15_feature_engineering.py +0 -0
- pages/16_problem_statement.py +0 -0
- pages/17_choosing_the_right_model.py +0 -0
- pages/18_training_the_model.py +0 -0
- pages/19_testing_the_model.py +0 -0
- pages/20_deployment.py +0 -0
- pages/21_monitoring.py +0 -0
- pages/22_basic_operations_with_opencv.py +0 -0
- pages/23_how_to_work_on_image.py +0 -0
- pages/24_image.py +0 -0
- pages/25_image_augmentation.py +0 -0
- pages/26_handling_videos.py +0 -0
- pages/27_how_to_handle_videos.py +0 -0
- pages/28_converting_color_space.py +0 -0
- pages/29_splitting_and_merging_images.py +0 -0
- pages/30_transformation.py +0 -0
- pages/31_introduction_to_json.py +0 -0
- pages/32_lifecycle_of_ml.py +0 -0
- pages/33_sql.py +0 -0
- pages/34_xml.py +0 -0
- pages/35_excel.py +0 -0
- pages/36_projects.py +0 -0
- pages/image_augmentation.py +0 -183
- pages/introduction.py +0 -0
- pages/life_cycle_of_ml_project.py +0 -65
- pages/ml_vs_dl.py +0 -0
home.py
CHANGED
@@ -1,137 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from streamlit_lottie import st_lottie
|
3 |
-
import requests
|
4 |
-
|
5 |
-
# Function to load Lottie animation from a URL
|
6 |
-
def load_lottieurl(url: str):
|
7 |
-
"""Fetch Lottie animation JSON from a URL."""
|
8 |
-
try:
|
9 |
-
response = requests.get(url)
|
10 |
-
if response.status_code == 200:
|
11 |
-
return response.json()
|
12 |
-
except requests.exceptions.RequestException:
|
13 |
-
return None
|
14 |
-
|
15 |
-
# CSS Styling for light and dark modes
|
16 |
-
st.markdown("""
|
17 |
-
<style>
|
18 |
-
body {
|
19 |
-
margin: 0;
|
20 |
-
padding: 0;
|
21 |
-
font-family: 'Roboto', sans-serif;
|
22 |
-
background-color: var(--background-color, #f8f9fa);
|
23 |
-
color: var(--text-color, #212529);
|
24 |
-
}
|
25 |
-
h1 {
|
26 |
-
font-size: 3rem;
|
27 |
-
color: var(--primary-color, #007acc);
|
28 |
-
text-align: center;
|
29 |
-
margin-bottom: 15px;
|
30 |
-
}
|
31 |
-
h2, h3 {
|
32 |
-
font-size: 1.5rem;
|
33 |
-
color: var(--secondary-color, #005b96);
|
34 |
-
text-align: center;
|
35 |
-
margin-top: 20px;
|
36 |
-
}
|
37 |
-
p {
|
38 |
-
font-family: 'Georgia', serif;
|
39 |
-
color: var(--text-color, #212529);
|
40 |
-
line-height: 1.6;
|
41 |
-
text-align: justify;
|
42 |
-
}
|
43 |
-
.about-author {
|
44 |
-
background-color: var(--card-bg, #ffffff);
|
45 |
-
border-radius: 10px;
|
46 |
-
padding: 25px;
|
47 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
48 |
-
margin: 20px auto;
|
49 |
-
max-width: 700px;
|
50 |
-
text-align: center;
|
51 |
-
color: var(--text-color, #212529);
|
52 |
-
}
|
53 |
-
.social-icons {
|
54 |
-
display: flex;
|
55 |
-
justify-content: center;
|
56 |
-
gap: 20px;
|
57 |
-
margin-top: 15px;
|
58 |
-
}
|
59 |
-
.social-icons a img {
|
60 |
-
width: 40px;
|
61 |
-
height: 40px;
|
62 |
-
transition: transform 0.3s ease-in-out;
|
63 |
-
}
|
64 |
-
.social-icons a img:hover {
|
65 |
-
transform: scale(1.2);
|
66 |
-
}
|
67 |
-
footer {
|
68 |
-
margin-top: 50px;
|
69 |
-
text-align: center;
|
70 |
-
font-family: 'Georgia', serif;
|
71 |
-
color: var(--text-muted, #6c757d);
|
72 |
-
}
|
73 |
-
</style>
|
74 |
-
""", unsafe_allow_html=True)
|
75 |
-
|
76 |
-
# Title and Tagline
|
77 |
-
st.title("Mastering Machine Learning: From Basics To Brilliance 🚀🤖")
|
78 |
-
st.markdown("## Your Gateway To Become Master In Data Science")
|
79 |
-
|
80 |
-
# Display Lottie animation
|
81 |
-
animation_url = "https://lottie.host/a45f4739-ef78-4193-b3f9-2ea435a190d5/PsTVRgXekn.json"
|
82 |
-
lottie_animation = load_lottieurl(animation_url)
|
83 |
-
if lottie_animation:
|
84 |
-
st_lottie(lottie_animation, height=200, key="animation")
|
85 |
-
|
86 |
-
# About the App Section
|
87 |
-
st.subheader("About This Application")
|
88 |
-
st.markdown("""
|
89 |
-
This platform serves as a **comprehensive guide to Machine Learning and Data Science**.
|
90 |
-
From grasping the fundamentals to deploying models, it offers insights into the entire lifecycle:
|
91 |
-
- **Problem Definition**: Understand the business context and set clear objectives.
|
92 |
-
- **Data Handling**: Collect, clean, and explore datasets to uncover insights.
|
93 |
-
- **Model Development**: Build and optimize machine learning models.
|
94 |
-
- **Model Deployment**: Deliver real-world solutions and monitor performance.
|
95 |
-
|
96 |
-
Designed for both beginners and those looking to refine their skills, this app provides a structured learning path enriched with practical examples.
|
97 |
-
""")
|
98 |
-
|
99 |
-
# Key Takeaways Section
|
100 |
-
st.subheader("What You'll Learn Here")
|
101 |
-
st.markdown("""
|
102 |
-
1. **Step-by-Step Roadmaps**: Detailed guidance to help you navigate through data science challenges.
|
103 |
-
2. **Hands-on Projects**: Real-world examples and code snippets for applied learning.
|
104 |
-
3. **Visualizations**: Clear, intuitive graphs and plots to simplify complex concepts.
|
105 |
-
4. **Insights from Experience**: Lessons from my personal journey to help you avoid common pitfalls.
|
106 |
-
""")
|
107 |
-
|
108 |
-
# Author Section
|
109 |
-
st.markdown("""
|
110 |
-
<div class="about-author">
|
111 |
-
<h2>About the Author</h2>
|
112 |
-
<p>
|
113 |
-
Hello! I'm <strong>Yash Harish Gupta</strong>, an aspiring data scientist deeply passionate about machine learning.
|
114 |
-
My journey began with curiosity about how data drives decisions and has evolved into a mission to create impactful solutions.
|
115 |
-
Currently, I am learning and preparing to embark on my professional career in this exciting field.
|
116 |
-
</p>
|
117 |
-
</div>
|
118 |
-
""", unsafe_allow_html=True)
|
119 |
-
|
120 |
-
# Social Links Section
|
121 |
-
st.markdown("""
|
122 |
-
<div class="social-icons">
|
123 |
-
<a href="https://www.linkedin.com/in/yash-harish-gupta-71b011189/" target="_blank">
|
124 |
-
<img src="https://upload.wikimedia.org/wikipedia/commons/c/ca/LinkedIn_logo_initials.png" alt="LinkedIn">
|
125 |
-
</a>
|
126 |
-
<a href="https://github.com/YashGupta018" target="_blank">
|
127 |
-
<img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub">
|
128 |
-
</a>
|
129 |
-
</div>
|
130 |
-
""", unsafe_allow_html=True)
|
131 |
-
|
132 |
-
# Footer Section
|
133 |
-
st.markdown("""
|
134 |
-
<footer>
|
135 |
-
<p>Made with ❤️ by <strong>Yash Harish Gupta</strong> | © 2024</p>
|
136 |
-
</footer>
|
137 |
-
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/01_home.py
DELETED
@@ -1,154 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from streamlit_lottie import st_lottie
|
3 |
-
import requests
|
4 |
-
|
5 |
-
# Function to load Lottie animations
|
6 |
-
def load_lottie_url(url: str):
|
7 |
-
r = requests.get(url)
|
8 |
-
if r.status_code == 200:
|
9 |
-
return r.json()
|
10 |
-
else:
|
11 |
-
return None
|
12 |
-
|
13 |
-
# Function to display the content of each page
|
14 |
-
def show_content(topic):
|
15 |
-
if topic == "Introduction":
|
16 |
-
st.title("Understanding Data Science and Artificial Intelligence 🌟")
|
17 |
-
st.subheader("Overview of AI and Data Science")
|
18 |
-
st.write("""
|
19 |
-
Artificial Intelligence (AI) and Data Science have become buzzwords in today's tech-driven world.
|
20 |
-
But what do they really mean, and why are they so significant? Let’s explore these fascinating concepts step by step!
|
21 |
-
""")
|
22 |
-
|
23 |
-
# Load the Lottie animation
|
24 |
-
lottie_url = "https://assets4.lottiefiles.com/packages/lf20_tcbkqj.json"
|
25 |
-
animation_data = load_lottie_url(lottie_url)
|
26 |
-
if animation_data:
|
27 |
-
st_lottie(animation_data, speed=1, width=600, height=400)
|
28 |
-
else:
|
29 |
-
st.write("Unable to load animation.")
|
30 |
-
|
31 |
-
elif topic == "Understanding Intelligence":
|
32 |
-
st.title("Understanding Intelligence")
|
33 |
-
st.subheader("What is Natural Intelligence? 🐾")
|
34 |
-
st.write("""
|
35 |
-
**Definition**: NI refers to the intelligence naturally present in living beings.
|
36 |
-
**Examples**:
|
37 |
-
- A dog learning a trick. 🐕
|
38 |
-
- Humans solving puzzles or making everyday decisions. 🧠
|
39 |
-
""")
|
40 |
-
st.subheader("What is Artificial Intelligence? 🤖")
|
41 |
-
st.write("""
|
42 |
-
**Definition**: Artificial intelligence (AI) is man-made intelligence where machines mimic human intelligence to perform tasks.
|
43 |
-
**Real-Life Examples**:
|
44 |
-
- Netflix recommending shows you’d love. 🎬
|
45 |
-
- Google Maps finding the fastest route. 🗺️
|
46 |
-
- Alexa answering your questions. 🎙️
|
47 |
-
""")
|
48 |
-
|
49 |
-
elif topic == "AI Tools: ML, DL, and Gen-AI":
|
50 |
-
st.title("AI Tools: ML, DL, and Gen-AI")
|
51 |
-
st.subheader("Machine Learning (ML) 🖥️")
|
52 |
-
st.write("""
|
53 |
-
- **What It Does**: ML enables machines to learn from patterns in data and make decisions.
|
54 |
-
- **How It Works**: Similar to teaching a toddler to recognize fruits, ML algorithms process large datasets to "learn" and predict outcomes.
|
55 |
-
- **Real-Life Applications**: Spam email detection 📧, Predicting stock prices 📈.
|
56 |
-
""")
|
57 |
-
st.subheader("Deep Learning (DL) 🤿")
|
58 |
-
st.write("""
|
59 |
-
- **What It Does**: DL uses neural networks to process and analyze complex data.
|
60 |
-
- **How It Works**: DL processes data in layers, enabling machines to perform sophisticated tasks like facial recognition and medical imaging.
|
61 |
-
- **Real-Life Applications**: Self-driving cars 🚗, Virtual assistants like Siri and Alexa. 🎙️
|
62 |
-
""")
|
63 |
-
st.subheader("Generative AI (Gen-AI) 🎨")
|
64 |
-
st.write("""
|
65 |
-
- **What It Does**: Gen-AI enables machines to generate new content like text, images, and music.
|
66 |
-
- **How It Works**: By learning patterns from data, Gen-AI creates outputs that feel original and human-like.
|
67 |
-
- **Real-Life Applications**: ChatGPT (text generation), DALL·E (image creation).
|
68 |
-
""")
|
69 |
-
|
70 |
-
elif topic == "Real-Life Analogies and Examples":
|
71 |
-
st.title("Real-Life Analogies and Examples")
|
72 |
-
st.subheader("Analogy: Tools Are Like Pens and Pencils")
|
73 |
-
st.write("""
|
74 |
-
- ML: Learns patterns (like sketching with a pencil).
|
75 |
-
- DL: Adds depth and detail (like using a pen).
|
76 |
-
- Gen-AI: Creates entirely new outputs (like turning sketches into colorful artwork).
|
77 |
-
""")
|
78 |
-
st.subheader("Learning vs. Generating: The Art Example 👩🎨")
|
79 |
-
st.write("""
|
80 |
-
Think of a child learning to draw:
|
81 |
-
- First, they learn the basics of drawing.
|
82 |
-
- Then they generate their own unique artwork.
|
83 |
-
|
84 |
-
AI follows the same process:
|
85 |
-
- Learning: ML and DL handle this part.
|
86 |
-
- Generating: Gen-AI takes over to create new outputs.
|
87 |
-
""")
|
88 |
-
|
89 |
-
elif topic == "What is Data Science?":
|
90 |
-
st.title("What is Data Science? 📊")
|
91 |
-
st.write("""
|
92 |
-
Data Science is the art of extracting meaningful insights from raw data. It combines AI with statistics, computer science, and domain expertise to solve real-world problems.
|
93 |
-
**Key Components of Data Science**:
|
94 |
-
- **Data Collection**: Gathering information from various sources.
|
95 |
-
- **Data Analysis**: Using tools to find patterns and trends.
|
96 |
-
- **Data Visualization**: Presenting findings through charts and graphs.
|
97 |
-
""")
|
98 |
-
|
99 |
-
elif topic == "The Role of a Data Scientist":
|
100 |
-
st.title("The Role of a Data Scientist")
|
101 |
-
st.write("""
|
102 |
-
A Data Scientist plays a crucial role in:
|
103 |
-
- Building predictive models.
|
104 |
-
- Analyzing customer behavior.
|
105 |
-
- Designing solutions for business challenges.
|
106 |
-
|
107 |
-
**Tools Used**: Python, R, SQL, Tableau, etc.
|
108 |
-
""")
|
109 |
-
|
110 |
-
elif topic == "Why AI and Data Science Matter":
|
111 |
-
st.title("Why AI and Data Science Matter")
|
112 |
-
st.write("""
|
113 |
-
AI and Data Science are transforming industries by:
|
114 |
-
- Automating tasks.
|
115 |
-
- Enhancing decision-making.
|
116 |
-
- Unlocking creative possibilities.
|
117 |
-
|
118 |
-
**Fun Fact**: By 2030, AI is expected to add $15.7 trillion to the global economy. 🚀
|
119 |
-
""")
|
120 |
-
|
121 |
-
elif topic == "Did You Know?":
|
122 |
-
st.title("Did You Know?")
|
123 |
-
st.write("""
|
124 |
-
**AI is already being used to**:
|
125 |
-
- Detect diseases in medical imaging.
|
126 |
-
- Automate farming for higher crop yields.
|
127 |
-
- Generate movie scripts and music albums.
|
128 |
-
""")
|
129 |
-
|
130 |
-
# Set up sidebar navigation
|
131 |
-
topics = [
|
132 |
-
"Introduction",
|
133 |
-
"Understanding Intelligence",
|
134 |
-
"AI Tools: ML, DL, and Gen-AI",
|
135 |
-
"Real-Life Analogies and Examples",
|
136 |
-
"What is Data Science?",
|
137 |
-
"The Role of a Data Scientist",
|
138 |
-
"Why AI and Data Science Matter",
|
139 |
-
"Did You Know?"
|
140 |
-
]
|
141 |
-
|
142 |
-
st.sidebar.title("Topics")
|
143 |
-
selection = st.sidebar.radio("Go to", topics)
|
144 |
-
|
145 |
-
# Initialize session state if not already done
|
146 |
-
if "page" not in st.session_state:
|
147 |
-
st.session_state.page = selection
|
148 |
-
|
149 |
-
# Update session state if sidebar selection is changed
|
150 |
-
if st.sidebar.button("Navigate"):
|
151 |
-
st.session_state.page = selection
|
152 |
-
|
153 |
-
# Display the selected content
|
154 |
-
show_content(st.session_state.page)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/02_difference_between_mi_and_di.py
DELETED
File without changes
|
pages/03_ml_vs_dl.py
DELETED
@@ -1,91 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from streamlit_lottie import st_lottie
|
3 |
-
import requests
|
4 |
-
|
5 |
-
# Function to load Lottie animations
|
6 |
-
def load_lottie_url(url: str):
|
7 |
-
response = requests.get(url)
|
8 |
-
if response.status_code != 200:
|
9 |
-
return None
|
10 |
-
return response.json()
|
11 |
-
|
12 |
-
# Load Lottie animations (you can uncomment these as per your need)
|
13 |
-
# lottie_ml = load_lottie_url("https://assets8.lottiefiles.com/packages/lf20_5eyehzdr.json")
|
14 |
-
# lottie_dl = load_lottie_url("https://assets8.lottiefiles.com/packages/lf20_vfnu1k6m.json")
|
15 |
-
|
16 |
-
# Sidebar navigation
|
17 |
-
st.sidebar.title("Navigation")
|
18 |
-
page = st.sidebar.radio("Go to:", ["Home", "ML vs DL", "Comparison Table"])
|
19 |
-
|
20 |
-
# Add Navigate button to update page
|
21 |
-
if st.sidebar.button("Navigate"):
|
22 |
-
st.session_state.page = page
|
23 |
-
|
24 |
-
# Set page to session state if not already defined
|
25 |
-
if "page" not in st.session_state:
|
26 |
-
st.session_state.page = page
|
27 |
-
|
28 |
-
# Home page
|
29 |
-
if st.session_state.page == "Home":
|
30 |
-
st.title("Understanding Machine Learning and Deep Learning")
|
31 |
-
st.markdown(
|
32 |
-
"""
|
33 |
-
Welcome to the interactive guide on Machine Learning (ML) and Deep Learning (DL). This space helps you
|
34 |
-
explore the differences, capabilities, and applications of ML and DL in a structured manner.
|
35 |
-
"""
|
36 |
-
)
|
37 |
-
# If lottie_ml is loaded, display it (uncomment the following line when using animations)
|
38 |
-
# if lottie_ml:
|
39 |
-
# st_lottie(lottie_ml, height=300, key="ml_home")
|
40 |
-
|
41 |
-
# ML vs DL page
|
42 |
-
elif st.session_state.page == "ML vs DL":
|
43 |
-
st.title("Difference Between Machine Learning (ML) and Deep Learning (DL)")
|
44 |
-
|
45 |
-
st.subheader("Machine Learning 🖥️")
|
46 |
-
st.markdown(
|
47 |
-
"""
|
48 |
-
- Uses statistics to understand patterns in data and make predictions 📊.
|
49 |
-
- Can learn with less data 📉.
|
50 |
-
- Handles structured data; unstructured data must be converted to structured form 🔄.
|
51 |
-
- Requires less memory 🧠💾.
|
52 |
-
- Trains models in less time ⏱️.
|
53 |
-
- Can run efficiently on CPUs without requiring powerful hardware 🖥️.
|
54 |
-
"""
|
55 |
-
)
|
56 |
-
|
57 |
-
st.subheader("Deep Learning 🤖")
|
58 |
-
st.markdown(
|
59 |
-
"""
|
60 |
-
- Uses neural networks to mimic brain-like learning and decision-making 🧠.
|
61 |
-
- Requires large amounts of data for better accuracy 🍽️📊.
|
62 |
-
- Handles both structured and unstructured data like images, text, and audio 🖼️📝🎧.
|
63 |
-
- Requires more memory and storage 🧠💾.
|
64 |
-
- Takes more time to train due to complex calculations ⏱️.
|
65 |
-
- Needs GPUs and advanced hardware for efficient processing 🖥️💡.
|
66 |
-
"""
|
67 |
-
)
|
68 |
-
# If lottie_dl is loaded, display it (uncomment the following line when using animations)
|
69 |
-
# if lottie_dl:
|
70 |
-
# st_lottie(lottie_dl, height=300, key="dl_page")
|
71 |
-
|
72 |
-
# Comparison Table page
|
73 |
-
elif st.session_state.page == "Comparison Table":
|
74 |
-
st.title("Comparison Table: ML vs DL")
|
75 |
-
|
76 |
-
st.markdown(
|
77 |
-
"""
|
78 |
-
| **Aspect** | **Machine Learning (ML)** | **Deep Learning (DL)** |
|
79 |
-
|-------------------------|-------------------------------------------------|-------------------------------------------------|
|
80 |
-
| **Definition** | Uses algorithms and statistics to learn from data. | Uses neural networks to mimic brain-like decision-making. |
|
81 |
-
| **Data Dependency** | Works well with smaller datasets. | Requires large datasets for better accuracy. |
|
82 |
-
| **Data Type** | Handles structured data only. | Handles both structured and unstructured data. |
|
83 |
-
| **Training Time** | Requires less time to train. | Requires more time to train. |
|
84 |
-
| **Hardware** | Can run on CPUs. | Requires GPUs and advanced hardware. |
|
85 |
-
| **Memory Requirement** | Uses less memory. | Requires more memory and storage. |
|
86 |
-
"""
|
87 |
-
)
|
88 |
-
|
89 |
-
st.info(
|
90 |
-
"Did you know? Deep Learning models are inspired by the human brain, making them exceptionally powerful for tasks like image recognition and natural language processing!"
|
91 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/04_life_cycle_of_mi.py
DELETED
File without changes
|
pages/05_life_cycle_of_ml.py
DELETED
@@ -1,115 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
# Configure the Streamlit app
|
4 |
-
st.set_page_config(
|
5 |
-
page_title="ML Project Lifecycle",
|
6 |
-
page_icon="📊",
|
7 |
-
layout="wide"
|
8 |
-
)
|
9 |
-
|
10 |
-
# Sidebar navigation
|
11 |
-
st.sidebar.title("Navigation")
|
12 |
-
page = st.sidebar.radio(
|
13 |
-
"Choose a page:",
|
14 |
-
[
|
15 |
-
"Overview of ML Project Lifecycle",
|
16 |
-
"1. Problem Definition",
|
17 |
-
"2. Data Collection and Exploration",
|
18 |
-
"3. Data Preprocessing",
|
19 |
-
"4. Feature Engineering",
|
20 |
-
"5. Model Selection and Training",
|
21 |
-
"6. Model Evaluation",
|
22 |
-
"7. Model Deployment"
|
23 |
-
]
|
24 |
-
)
|
25 |
-
|
26 |
-
# Main page content
|
27 |
-
if page == "Overview of ML Project Lifecycle":
|
28 |
-
st.markdown("<h1 style='text-align: center; color: white;'>Machine Learning Project Lifecycle</h1>", unsafe_allow_html=True)
|
29 |
-
st.markdown("""
|
30 |
-
This application provides a comprehensive overview of the **Machine Learning Project Lifecycle**.
|
31 |
-
Explore the different stages of building an ML project by navigating through the pages on the left.
|
32 |
-
|
33 |
-
### The ML Project Lifecycle Includes:
|
34 |
-
1. **Problem Definition**
|
35 |
-
2. **Data Collection and Exploration**
|
36 |
-
3. **Data Preprocessing**
|
37 |
-
4. **Feature Engineering**
|
38 |
-
5. **Model Selection and Training**
|
39 |
-
6. **Model Evaluation**
|
40 |
-
7. **Model Deployment**
|
41 |
-
""")
|
42 |
-
st.image(
|
43 |
-
"https://www.researchgate.net/profile/Hazem-El-Sayed/publication/335522887/figure/fig1/AS:798613045346310@1567359745828/Typical-ML-project-lifecycle.ppm",
|
44 |
-
caption="Typical ML Project Lifecycle",
|
45 |
-
use_column_width=True
|
46 |
-
)
|
47 |
-
st.markdown("Navigate through the stages using the sidebar to explore each phase in detail.")
|
48 |
-
|
49 |
-
# Pages for individual lifecycle stages
|
50 |
-
elif page == "1. Problem Definition":
|
51 |
-
st.title("1. Problem Definition")
|
52 |
-
st.markdown("""
|
53 |
-
In this stage, the focus is on:
|
54 |
-
- Understanding the business context and objectives.
|
55 |
-
- Identifying the problem you are solving.
|
56 |
-
- Breaking the problem into manageable sub-problems.
|
57 |
-
""")
|
58 |
-
|
59 |
-
elif page == "2. Data Collection and Exploration":
|
60 |
-
st.title("2. Data Collection and Exploration")
|
61 |
-
st.markdown("""
|
62 |
-
This stage involves:
|
63 |
-
- Gathering data from relevant sources (APIs, databases, web scraping, etc.).
|
64 |
-
- Performing Exploratory Data Analysis (EDA) to understand patterns, trends, and outliers.
|
65 |
-
- Visualizing data using tools like `Matplotlib` and `Seaborn`.
|
66 |
-
""")
|
67 |
-
|
68 |
-
elif page == "3. Data Preprocessing":
|
69 |
-
st.title("3. Data Preprocessing")
|
70 |
-
st.markdown("""
|
71 |
-
Preprocessing involves:
|
72 |
-
- Cleaning the data (handling missing values, duplicates, and errors).
|
73 |
-
- Scaling and normalizing features.
|
74 |
-
- Encoding categorical variables into numerical formats.
|
75 |
-
""")
|
76 |
-
|
77 |
-
elif page == "4. Feature Engineering":
|
78 |
-
st.title("4. Feature Engineering")
|
79 |
-
st.markdown("""
|
80 |
-
Feature engineering includes:
|
81 |
-
- Selecting the most relevant features for the model.
|
82 |
-
- Creating new features using domain knowledge.
|
83 |
-
- Reducing data dimensionality using techniques like PCA.
|
84 |
-
""")
|
85 |
-
|
86 |
-
elif page == "5. Model Selection and Training":
|
87 |
-
st.title("5. Model Selection and Training")
|
88 |
-
st.markdown("""
|
89 |
-
This phase involves:
|
90 |
-
- Choosing the right machine learning algorithm based on the problem type (classification, regression, clustering, etc.).
|
91 |
-
- Training the model using the training dataset.
|
92 |
-
- Fine-tuning hyperparameters to optimize performance.
|
93 |
-
""")
|
94 |
-
|
95 |
-
elif page == "6. Model Evaluation":
|
96 |
-
st.title("6. Model Evaluation")
|
97 |
-
st.markdown("""
|
98 |
-
Model evaluation ensures:
|
99 |
-
- Validation using techniques like cross-validation.
|
100 |
-
- Testing on unseen data to estimate real-world performance.
|
101 |
-
- Comparing multiple models and choosing the best one based on metrics like accuracy, F1-score, etc.
|
102 |
-
""")
|
103 |
-
|
104 |
-
elif page == "7. Model Deployment":
|
105 |
-
st.title("7. Model Deployment")
|
106 |
-
st.markdown("""
|
107 |
-
In this stage:
|
108 |
-
- The model is deployed into production using tools like Flask, FastAPI, or cloud platforms (AWS, GCP, Azure).
|
109 |
-
- Monitoring the model to track its performance over time.
|
110 |
-
- Setting up pipelines for periodic retraining with new data.
|
111 |
-
""")
|
112 |
-
|
113 |
-
# Footer
|
114 |
-
st.sidebar.markdown("---")
|
115 |
-
st.sidebar.markdown("<p style='text-align: center;'>© 2024 Yash Harish Gupta</p>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/06_data.py
DELETED
File without changes
|
pages/07_structured_data.py
DELETED
File without changes
|
pages/08_semi_structured_data.py
DELETED
File without changes
|
pages/09_unstructured_data.py
DELETED
File without changes
|
pages/10_types_of_data.py
DELETED
File without changes
|
pages/11_data_collection.py
DELETED
File without changes
|
pages/12_data_preprocessing.py
DELETED
File without changes
|
pages/13_exploratory_data_analysis.py
DELETED
File without changes
|
pages/14_simple_eda.py
DELETED
File without changes
|
pages/15_feature_engineering.py
DELETED
File without changes
|
pages/16_problem_statement.py
DELETED
File without changes
|
pages/17_choosing_the_right_model.py
DELETED
File without changes
|
pages/18_training_the_model.py
DELETED
File without changes
|
pages/19_testing_the_model.py
DELETED
File without changes
|
pages/20_deployment.py
DELETED
File without changes
|
pages/21_monitoring.py
DELETED
File without changes
|
pages/22_basic_operations_with_opencv.py
DELETED
File without changes
|
pages/23_how_to_work_on_image.py
DELETED
File without changes
|
pages/24_image.py
DELETED
File without changes
|
pages/25_image_augmentation.py
DELETED
File without changes
|
pages/26_handling_videos.py
DELETED
File without changes
|
pages/27_how_to_handle_videos.py
DELETED
File without changes
|
pages/28_converting_color_space.py
DELETED
File without changes
|
pages/29_splitting_and_merging_images.py
DELETED
File without changes
|
pages/30_transformation.py
DELETED
File without changes
|
pages/31_introduction_to_json.py
DELETED
File without changes
|
pages/32_lifecycle_of_ml.py
DELETED
File without changes
|
pages/33_sql.py
DELETED
File without changes
|
pages/34_xml.py
DELETED
File without changes
|
pages/35_excel.py
DELETED
File without changes
|
pages/36_projects.py
DELETED
File without changes
|
pages/image_augmentation.py
DELETED
@@ -1,183 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from PIL import Image, ImageOps
|
3 |
-
import numpy as np
|
4 |
-
import io
|
5 |
-
|
6 |
-
# Improved App Styling
|
7 |
-
st.set_page_config(
|
8 |
-
page_title="Modern Image Augmentation",
|
9 |
-
page_icon="✨",
|
10 |
-
layout="wide",
|
11 |
-
)
|
12 |
-
|
13 |
-
# Custom CSS for modern look
|
14 |
-
st.markdown(
|
15 |
-
"""
|
16 |
-
<style>
|
17 |
-
/* App Background */
|
18 |
-
.stApp {
|
19 |
-
background: linear-gradient(135deg, #1f1f1f, #000000);
|
20 |
-
color: #ffffff;
|
21 |
-
}
|
22 |
-
|
23 |
-
/* Title Styling */
|
24 |
-
h1 {
|
25 |
-
text-align: center;
|
26 |
-
color: #00ffcc;
|
27 |
-
font-family: 'Arial Black', sans-serif;
|
28 |
-
}
|
29 |
-
|
30 |
-
/* Sidebar Styling */
|
31 |
-
[data-testid="stSidebar"] {
|
32 |
-
background-color: #1c1c1c;
|
33 |
-
border-right: 2px solid #00ffcc;
|
34 |
-
}
|
35 |
-
|
36 |
-
/* Slider Styling */
|
37 |
-
[class^="css-qbe2hs"] {
|
38 |
-
color: #00ffcc !important;
|
39 |
-
}
|
40 |
-
|
41 |
-
/* Buttons */
|
42 |
-
button {
|
43 |
-
background-color: #00ffcc !important;
|
44 |
-
border: none;
|
45 |
-
font-weight: bold;
|
46 |
-
}
|
47 |
-
|
48 |
-
button:hover {
|
49 |
-
background-color: #00e6b8 !important;
|
50 |
-
}
|
51 |
-
|
52 |
-
/* Image Uploader */
|
53 |
-
[data-testid="stFileUploadDropzone"] {
|
54 |
-
background: #1c1c1c;
|
55 |
-
border: 2px dashed #00ffcc;
|
56 |
-
border-radius: 10px;
|
57 |
-
}
|
58 |
-
|
59 |
-
/* Augmentation Options Styling */
|
60 |
-
[class^="stRadio"] > div > label {
|
61 |
-
color: #ffffff;
|
62 |
-
}
|
63 |
-
</style>
|
64 |
-
""",
|
65 |
-
unsafe_allow_html=True,
|
66 |
-
)
|
67 |
-
|
68 |
-
st.title("✨ Modern Image Data Augmentation ✨")
|
69 |
-
|
70 |
-
# File uploader for image
|
71 |
-
uploaded_image = st.file_uploader("Upload an Image to Get Started", type=["jpg", "png", "jpeg"])
|
72 |
-
|
73 |
-
if uploaded_image:
|
74 |
-
try:
|
75 |
-
image = Image.open(uploaded_image)
|
76 |
-
col1, col2 = st.columns(2)
|
77 |
-
|
78 |
-
# Display original image
|
79 |
-
with col1:
|
80 |
-
st.subheader("Original Image")
|
81 |
-
st.image(image, caption="Uploaded Image", use_container_width=True)
|
82 |
-
|
83 |
-
st.subheader("✨ Select an Augmentation")
|
84 |
-
|
85 |
-
# Augmentation options
|
86 |
-
augmentation_option = st.radio(
|
87 |
-
"Choose an Augmentation Type:",
|
88 |
-
[
|
89 |
-
"None",
|
90 |
-
"Cropping",
|
91 |
-
"Flipping",
|
92 |
-
"Rotation",
|
93 |
-
"Zooming In",
|
94 |
-
"Zooming Out",
|
95 |
-
"Translation",
|
96 |
-
"Shearing",
|
97 |
-
],
|
98 |
-
)
|
99 |
-
|
100 |
-
augmented_image = image
|
101 |
-
|
102 |
-
# Augmentation Logic
|
103 |
-
if augmentation_option == "Cropping":
|
104 |
-
st.info("Adjust the crop sliders to modify the image.")
|
105 |
-
left = st.slider("Left Crop", 0, image.width // 2, 0)
|
106 |
-
top = st.slider("Top Crop", 0, image.height // 2, 0)
|
107 |
-
right = st.slider("Right Crop", 0, image.width // 2, 0)
|
108 |
-
bottom = st.slider("Bottom Crop", 0, image.height // 2, 0)
|
109 |
-
augmented_image = image.crop((left, top, image.width - right, image.height - bottom))
|
110 |
-
|
111 |
-
elif augmentation_option == "Flipping":
|
112 |
-
flip_option = st.selectbox("Choose Flip Type", ["Horizontal", "Vertical"])
|
113 |
-
if flip_option == "Horizontal":
|
114 |
-
augmented_image = ImageOps.mirror(image)
|
115 |
-
elif flip_option == "Vertical":
|
116 |
-
augmented_image = ImageOps.flip(image)
|
117 |
-
|
118 |
-
elif augmentation_option == "Rotation":
|
119 |
-
rotation_angle = st.slider("Rotation Angle (°)", 0, 360, 0)
|
120 |
-
if rotation_angle:
|
121 |
-
augmented_image = image.rotate(rotation_angle, expand=True)
|
122 |
-
|
123 |
-
elif augmentation_option == "Zooming In":
|
124 |
-
zoom_factor = st.slider("Zoom Factor (%)", 100, 200, 100) / 100.0
|
125 |
-
if zoom_factor != 1.0:
|
126 |
-
width, height = image.size
|
127 |
-
new_width = int(width * zoom_factor)
|
128 |
-
new_height = int(height * zoom_factor)
|
129 |
-
zoomed_image = image.resize((new_width, new_height))
|
130 |
-
augmented_image = zoomed_image.crop(((new_width - width) // 2, (new_height - height) // 2,
|
131 |
-
(new_width + width) // 2, (new_height + height) // 2))
|
132 |
-
|
133 |
-
elif augmentation_option == "Zooming Out":
|
134 |
-
zoom_factor = st.slider("Zoom Factor (%)", 50, 100, 100) / 100.0
|
135 |
-
if zoom_factor != 1.0:
|
136 |
-
width, height = image.size
|
137 |
-
new_width = int(width * zoom_factor)
|
138 |
-
new_height = int(height * zoom_factor)
|
139 |
-
zoomed_image = image.resize((new_width, new_height))
|
140 |
-
padded_image = Image.new("RGB", (width, height), (0, 0, 0)) # Black padding
|
141 |
-
padded_image.paste(zoomed_image, ((width - new_width) // 2, (height - new_height) // 2))
|
142 |
-
augmented_image = padded_image
|
143 |
-
|
144 |
-
elif augmentation_option == "Translation":
|
145 |
-
translation_x = st.slider("Horizontal Shift (Pixels)", -100, 100, 0)
|
146 |
-
translation_y = st.slider("Vertical Shift (Pixels)", -100, 100, 0)
|
147 |
-
if translation_x or translation_y:
|
148 |
-
translation_matrix = (1, 0, translation_x, 0, 1, translation_y)
|
149 |
-
augmented_image = image.transform(
|
150 |
-
image.size, Image.AFFINE, translation_matrix, fillcolor=(0, 0, 0)
|
151 |
-
)
|
152 |
-
|
153 |
-
elif augmentation_option == "Shearing":
|
154 |
-
shear_angle = st.slider("Shearing Angle (°)", -45, 45, 0)
|
155 |
-
if shear_angle:
|
156 |
-
shear_matrix = (1, np.tan(np.radians(shear_angle)), 0, 0, 1, 0)
|
157 |
-
augmented_image = image.transform(
|
158 |
-
(image.width + abs(int(image.height * np.tan(np.radians(shear_angle)))), image.height),
|
159 |
-
Image.AFFINE,
|
160 |
-
shear_matrix,
|
161 |
-
fillcolor=(0, 0, 0),
|
162 |
-
)
|
163 |
-
|
164 |
-
# Display Augmented Image
|
165 |
-
with col2:
|
166 |
-
st.subheader(f"{augmentation_option} Applied")
|
167 |
-
st.image(augmented_image, caption="Augmented Image", use_container_width=True)
|
168 |
-
|
169 |
-
# Download button
|
170 |
-
buffer = io.BytesIO()
|
171 |
-
augmented_image.save(buffer, format="PNG")
|
172 |
-
buffer.seek(0)
|
173 |
-
st.download_button(
|
174 |
-
"🎉 Download Augmented Image 🎉",
|
175 |
-
buffer,
|
176 |
-
file_name="augmented_image.png",
|
177 |
-
mime="image/png",
|
178 |
-
)
|
179 |
-
|
180 |
-
except Exception as e:
|
181 |
-
st.error(f"An error occurred: {e}")
|
182 |
-
else:
|
183 |
-
st.warning("Please upload an image to begin.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/introduction.py
DELETED
File without changes
|
pages/life_cycle_of_ml_project.py
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
<<<<<<< HEAD
|
2 |
-
=======
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
def draw_lifecycle_diagram():
|
7 |
-
# Labels and colors for the lifecycle phases
|
8 |
-
labels = [
|
9 |
-
"1. Gathering Data",
|
10 |
-
"2. Data Preparation",
|
11 |
-
"3. Data Wrangling",
|
12 |
-
"4. Analyze Data",
|
13 |
-
"5. Train Model",
|
14 |
-
"6. Test Model",
|
15 |
-
"7. Deployment"
|
16 |
-
]
|
17 |
-
colors = [
|
18 |
-
"#3CB371", "#8FBC8F", "#00CED1", "#1E90FF",
|
19 |
-
"#6A5ACD", "#FF8C00", "#DC143C"
|
20 |
-
]
|
21 |
-
|
22 |
-
# Create a figure and axis with equal aspect ratio
|
23 |
-
fig, ax = plt.subplots(figsize=(9, 9), subplot_kw={"aspect": "equal"})
|
24 |
-
size = 0.3 # Width of the pie sections
|
25 |
-
|
26 |
-
# Create pie sections for the lifecycle phases
|
27 |
-
wedges, _ = ax.pie(
|
28 |
-
[1] * len(labels),
|
29 |
-
colors=colors,
|
30 |
-
radius=1,
|
31 |
-
startangle=90,
|
32 |
-
wedgeprops=dict(width=size, edgecolor='w')
|
33 |
-
)
|
34 |
-
|
35 |
-
# Add text labels around the circle
|
36 |
-
for i, wedge in enumerate(wedges):
|
37 |
-
# Calculate the angle for the label placement
|
38 |
-
angle = (wedge.theta2 - wedge.theta1) / 2.0 + wedge.theta1
|
39 |
-
x = np.cos(np.deg2rad(angle))
|
40 |
-
y = np.sin(np.deg2rad(angle))
|
41 |
-
|
42 |
-
# Add label text
|
43 |
-
ax.text(
|
44 |
-
1.2 * x, 1.2 * y, labels[i],
|
45 |
-
ha="center", va="center", fontsize=10, weight="bold",
|
46 |
-
bbox=dict(boxstyle="round,pad=0.3", facecolor=colors[i], edgecolor="w")
|
47 |
-
)
|
48 |
-
|
49 |
-
# Add center text with a descriptive title
|
50 |
-
ax.text(
|
51 |
-
0, 0, "Machine Learning\nLifecycle",
|
52 |
-
ha="center", va="center", fontsize=16, weight="bold", color="black",
|
53 |
-
bbox=dict(boxstyle="round,pad=0.5", facecolor="white", edgecolor="black")
|
54 |
-
)
|
55 |
-
|
56 |
-
# Clean up the diagram style
|
57 |
-
ax.set(aspect="equal", xticks=[], yticks=[], title="Machine Learning Lifecycle")
|
58 |
-
return fig
|
59 |
-
|
60 |
-
# Save the diagram or display it in Streamlit
|
61 |
-
if __name__ == "__main__":
|
62 |
-
# Display the diagram
|
63 |
-
fig = draw_lifecycle_diagram()
|
64 |
-
plt.show()
|
65 |
-
>>>>>>> 8f9a0e1fa29de18412c739d9d5c3da24894df34d
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/ml_vs_dl.py
DELETED
File without changes
|