yash-gupta-01 commited on
Commit
2ae5419
Β·
1 Parent(s): d0fac9e

pages old commit

Browse files
pages/01_introduction.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit_lottie import st_lottie
3
+ import requests
4
+
5
+ # Function to load Lottie animations
6
+ def load_lottie_url(url: str):
7
+ r = requests.get(url)
8
+ if r.status_code == 200:
9
+ return r.json()
10
+ else:
11
+ return None
12
+
13
+ # Function to display the content of each page
14
+ def show_content(topic):
15
+ if topic == "Introduction":
16
+ st.title("Understanding Data Science and Artificial Intelligence 🌟")
17
+ st.subheader("Overview of AI and Data Science")
18
+ st.write("""
19
+ Artificial Intelligence (AI) and Data Science have become buzzwords in today's tech-driven world.
20
+ But what do they really mean, and why are they so significant? Let’s explore these fascinating concepts step by step!
21
+ """)
22
+
23
+ # Load the Lottie animation
24
+ lottie_url = "https://assets4.lottiefiles.com/packages/lf20_tcbkqj.json"
25
+ animation_data = load_lottie_url(lottie_url)
26
+ if animation_data:
27
+ st_lottie(animation_data, speed=1, width=600, height=400)
28
+ else:
29
+ st.write("Unable to load animation.")
30
+
31
+ elif topic == "Understanding Intelligence":
32
+ st.title("Understanding Intelligence")
33
+ st.subheader("What is Natural Intelligence? 🐾")
34
+ st.write("""
35
+ **Definition**: NI refers to the intelligence naturally present in living beings.
36
+ **Examples**:
37
+ - A dog learning a trick. πŸ•
38
+ - Humans solving puzzles or making everyday decisions. 🧠
39
+ """)
40
+ st.subheader("What is Artificial Intelligence? πŸ€–")
41
+ st.write("""
42
+ **Definition**: Artificial intelligence (AI) is man-made intelligence where machines mimic human intelligence to perform tasks.
43
+ **Real-Life Examples**:
44
+ - Netflix recommending shows you’d love. 🎬
45
+ - Google Maps finding the fastest route. πŸ—ΊοΈ
46
+ - Alexa answering your questions. πŸŽ™οΈ
47
+ """)
48
+
49
+ elif topic == "AI Tools: ML, DL, and Gen-AI":
50
+ st.title("AI Tools: ML, DL, and Gen-AI")
51
+ st.subheader("Machine Learning (ML) πŸ–₯️")
52
+ st.write("""
53
+ - **What It Does**: ML enables machines to learn from patterns in data and make decisions.
54
+ - **How It Works**: Similar to teaching a toddler to recognize fruits, ML algorithms process large datasets to "learn" and predict outcomes.
55
+ - **Real-Life Applications**: Spam email detection πŸ“§, Predicting stock prices πŸ“ˆ.
56
+ """)
57
+ st.subheader("Deep Learning (DL) 🀿")
58
+ st.write("""
59
+ - **What It Does**: DL uses neural networks to process and analyze complex data.
60
+ - **How It Works**: DL processes data in layers, enabling machines to perform sophisticated tasks like facial recognition and medical imaging.
61
+ - **Real-Life Applications**: Self-driving cars πŸš—, Virtual assistants like Siri and Alexa. πŸŽ™οΈ
62
+ """)
63
+ st.subheader("Generative AI (Gen-AI) 🎨")
64
+ st.write("""
65
+ - **What It Does**: Gen-AI enables machines to generate new content like text, images, and music.
66
+ - **How It Works**: By learning patterns from data, Gen-AI creates outputs that feel original and human-like.
67
+ - **Real-Life Applications**: ChatGPT (text generation), DALLΒ·E (image creation).
68
+ """)
69
+
70
+ elif topic == "Real-Life Analogies and Examples":
71
+ st.title("Real-Life Analogies and Examples")
72
+ st.subheader("Analogy: Tools Are Like Pens and Pencils")
73
+ st.write("""
74
+ - ML: Learns patterns (like sketching with a pencil).
75
+ - DL: Adds depth and detail (like using a pen).
76
+ - Gen-AI: Creates entirely new outputs (like turning sketches into colorful artwork).
77
+ """)
78
+ st.subheader("Learning vs. Generating: The Art Example πŸ‘©β€πŸŽ¨")
79
+ st.write("""
80
+ Think of a child learning to draw:
81
+ - First, they learn the basics of drawing.
82
+ - Then they generate their own unique artwork.
83
+
84
+ AI follows the same process:
85
+ - Learning: ML and DL handle this part.
86
+ - Generating: Gen-AI takes over to create new outputs.
87
+ """)
88
+
89
+ elif topic == "What is Data Science?":
90
+ st.title("What is Data Science? πŸ“Š")
91
+ st.write("""
92
+ Data Science is the art of extracting meaningful insights from raw data. It combines AI with statistics, computer science, and domain expertise to solve real-world problems.
93
+ **Key Components of Data Science**:
94
+ - **Data Collection**: Gathering information from various sources.
95
+ - **Data Analysis**: Using tools to find patterns and trends.
96
+ - **Data Visualization**: Presenting findings through charts and graphs.
97
+ """)
98
+
99
+ elif topic == "The Role of a Data Scientist":
100
+ st.title("The Role of a Data Scientist")
101
+ st.write("""
102
+ A Data Scientist plays a crucial role in:
103
+ - Building predictive models.
104
+ - Analyzing customer behavior.
105
+ - Designing solutions for business challenges.
106
+
107
+ **Tools Used**: Python, R, SQL, Tableau, etc.
108
+ """)
109
+
110
+ elif topic == "Why AI and Data Science Matter":
111
+ st.title("Why AI and Data Science Matter")
112
+ st.write("""
113
+ AI and Data Science are transforming industries by:
114
+ - Automating tasks.
115
+ - Enhancing decision-making.
116
+ - Unlocking creative possibilities.
117
+
118
+ **Fun Fact**: By 2030, AI is expected to add $15.7 trillion to the global economy. πŸš€
119
+ """)
120
+
121
+ elif topic == "Did You Know?":
122
+ st.title("Did You Know?")
123
+ st.write("""
124
+ **AI is already being used to**:
125
+ - Detect diseases in medical imaging.
126
+ - Automate farming for higher crop yields.
127
+ - Generate movie scripts and music albums.
128
+ """)
129
+
130
+ # Set up sidebar navigation
131
+ topics = [
132
+ "Introduction",
133
+ "Understanding Intelligence",
134
+ "AI Tools: ML, DL, and Gen-AI",
135
+ "Real-Life Analogies and Examples",
136
+ "What is Data Science?",
137
+ "The Role of a Data Scientist",
138
+ "Why AI and Data Science Matter",
139
+ "Did You Know?"
140
+ ]
141
+
142
+ st.sidebar.title("Topics")
143
+ selection = st.sidebar.radio("Go to", topics)
144
+
145
+ # Initialize session state with the first topic as the default
146
+ if "page" not in st.session_state:
147
+ st.session_state.page = topics[0]
148
+
149
+ # Update session state automatically when sidebar selection changes
150
+ st.session_state.page = selection
151
+
152
+ # Display the selected content
153
+ show_content(st.session_state.page)
pages/02_ml_vs_dl.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import streamlit as st
2
+ # from streamlit_lottie import st_lottie
3
+ # import requests
4
+
5
+ # # Function to load Lottie animations
6
+ # def load_lottie_url(url: str):
7
+ # response = requests.get(url)
8
+ # if response.status_code != 200:
9
+ # return None
10
+ # return response.json()
11
+
12
+ # # Load Lottie animations (you can uncomment these as per your need)
13
+ # # lottie_ml = load_lottie_url("https://assets8.lottiefiles.com/packages/lf20_5eyehzdr.json")
14
+ # # lottie_dl = load_lottie_url("https://assets8.lottiefiles.com/packages/lf20_vfnu1k6m.json")
15
+
16
+ # # Sidebar navigation
17
+ # st.sidebar.title("Navigation")
18
+ # page = st.sidebar.radio("Go to:", ["Home", "ML vs DL", "Comparison Table"])
19
+
20
+ # # Add Navigate button to update page
21
+ # if st.sidebar.button("Navigate"):
22
+ # st.session_state.page = page
23
+
24
+ # # Set page to session state if not already defined
25
+ # if "page" not in st.session_state:
26
+ # st.session_state.page = page
27
+
28
+ # # Home page
29
+ # if st.session_state.page == "Home":
30
+ # st.title("Understanding Machine Learning and Deep Learning")
31
+ # st.markdown(
32
+ # """
33
+ # Welcome to the interactive guide on Machine Learning (ML) and Deep Learning (DL). This space helps you
34
+ # explore the differences, capabilities, and applications of ML and DL in a structured manner.
35
+ # """
36
+ # )
37
+ # # If lottie_ml is loaded, display it (uncomment the following line when using animations)
38
+ # # if lottie_ml:
39
+ # # st_lottie(lottie_ml, height=300, key="ml_home")
40
+
41
+ # # ML vs DL page
42
+ # elif st.session_state.page == "ML vs DL":
43
+ # st.title("Difference Between Machine Learning (ML) and Deep Learning (DL)")
44
+
45
+ # st.subheader("Machine Learning πŸ–₯️")
46
+ # st.markdown(
47
+ # """
48
+ # - Uses statistics to understand patterns in data and make predictions πŸ“Š.
49
+ # - Can learn with less data πŸ“‰.
50
+ # - Handles structured data; unstructured data must be converted to structured form πŸ”„.
51
+ # - Requires less memory πŸ§ πŸ’Ύ.
52
+ # - Trains models in less time ⏱️.
53
+ # - Can run efficiently on CPUs without requiring powerful hardware πŸ–₯️.
54
+ # """
55
+ # )
56
+
57
+ # st.subheader("Deep Learning πŸ€–")
58
+ # st.markdown(
59
+ # """
60
+ # - Uses neural networks to mimic brain-like learning and decision-making 🧠.
61
+ # - Requires large amounts of data for better accuracy πŸ½οΈπŸ“Š.
62
+ # - Handles both structured and unstructured data like images, text, and audio πŸ–ΌοΈπŸ“πŸŽ§.
63
+ # - Requires more memory and storage πŸ§ πŸ’Ύ.
64
+ # - Takes more time to train due to complex calculations ⏱️.
65
+ # - Needs GPUs and advanced hardware for efficient processing πŸ–₯οΈπŸ’‘.
66
+ # """
67
+ # )
68
+ # # If lottie_dl is loaded, display it (uncomment the following line when using animations)
69
+ # # if lottie_dl:
70
+ # # st_lottie(lottie_dl, height=300, key="dl_page")
71
+
72
+ # # Comparison Table page
73
+ # elif st.session_state.page == "Comparison Table":
74
+ # st.title("Comparison Table: ML vs DL")
75
+
76
+ # st.markdown(
77
+ # """
78
+ # | **Aspect** | **Machine Learning (ML)** | **Deep Learning (DL)** |
79
+ # |-------------------------|-------------------------------------------------|-------------------------------------------------|
80
+ # | **Definition** | Uses algorithms and statistics to learn from data. | Uses neural networks to mimic brain-like decision-making. |
81
+ # | **Data Dependency** | Works well with smaller datasets. | Requires large datasets for better accuracy. |
82
+ # | **Data Type** | Handles structured data only. | Handles both structured and unstructured data. |
83
+ # | **Training Time** | Requires less time to train. | Requires more time to train. |
84
+ # | **Hardware** | Can run on CPUs. | Requires GPUs and advanced hardware. |
85
+ # | **Memory Requirement** | Uses less memory. | Requires more memory and storage. |
86
+ # """
87
+ # )
88
+
89
+ # st.info(
90
+ # "Did you know? Deep Learning models are inspired by the human brain, making them exceptionally powerful for tasks like image recognition and natural language processing!"
91
+ # )
92
+
93
+ import streamlit as st
94
+ from streamlit_lottie import st_lottie
95
+ import requests
96
+
97
+ # Function to load Lottie animations
98
+ def load_lottie_url(url: str):
99
+ response = requests.get(url)
100
+ if response.status_code != 200:
101
+ return None
102
+ return response.json()
103
+
104
+ # Sidebar navigation
105
+ st.sidebar.title("Navigation")
106
+ page = st.sidebar.radio("Go to:", ["Home", "ML vs DL", "Comparison Table"])
107
+
108
+ # Initialize session state if not already done
109
+ if "page" not in st.session_state:
110
+ st.session_state.page = page
111
+ else:
112
+ st.session_state.page = page # Automatically update the session state when the radio selection changes
113
+
114
+ # Home page
115
+ if st.session_state.page == "Home":
116
+ st.title("Understanding Machine Learning and Deep Learning")
117
+ st.markdown(
118
+ """
119
+ Welcome to the interactive guide on Machine Learning (ML) and Deep Learning (DL). This space helps you
120
+ explore the differences, capabilities, and applications of ML and DL in a structured manner.
121
+ """
122
+ )
123
+
124
+ # ML vs DL page
125
+ elif st.session_state.page == "ML vs DL":
126
+ st.title("Difference Between Machine Learning (ML) and Deep Learning (DL)")
127
+
128
+ st.subheader("Machine Learning πŸ–₯️")
129
+ st.markdown(
130
+ """
131
+ - Uses statistics to understand patterns in data and make predictions πŸ“Š.
132
+ - Can learn with less data πŸ“‰.
133
+ - Handles structured data; unstructured data must be converted to structured form πŸ”„.
134
+ - Requires less memory πŸ§ πŸ’Ύ.
135
+ - Trains models in less time ⏱️.
136
+ - Can run efficiently on CPUs without requiring powerful hardware πŸ–₯️.
137
+ """
138
+ )
139
+
140
+ st.subheader("Deep Learning πŸ€–")
141
+ st.markdown(
142
+ """
143
+ - Uses neural networks to mimic brain-like learning and decision-making 🧠.
144
+ - Requires large amounts of data for better accuracy πŸ½οΈπŸ“Š.
145
+ - Handles both structured and unstructured data like images, text, and audio πŸ–ΌοΈπŸ“πŸŽ§.
146
+ - Requires more memory and storage πŸ§ πŸ’Ύ.
147
+ - Takes more time to train due to complex calculations ⏱️.
148
+ - Needs GPUs and advanced hardware for efficient processing πŸ–₯οΈπŸ’‘.
149
+ """
150
+ )
151
+
152
+ # Comparison Table page
153
+ elif st.session_state.page == "Comparison Table":
154
+ st.title("Comparison Table: ML vs DL")
155
+
156
+ st.markdown(
157
+ """
158
+ | **Aspect** | **Machine Learning (ML)** | **Deep Learning (DL)** |
159
+ |-------------------------|-------------------------------------------------|-------------------------------------------------|
160
+ | **Definition** | Uses algorithms and statistics to learn from data. | Uses neural networks to mimic brain-like decision-making. |
161
+ | **Data Dependency** | Works well with smaller datasets. | Requires large datasets for better accuracy. |
162
+ | **Data Type** | Handles structured data only. | Handles both structured and unstructured data. |
163
+ | **Training Time** | Requires less time to train. | Requires more time to train. |
164
+ | **Hardware** | Can run on CPUs. | Requires GPUs and advanced hardware. |
165
+ | **Memory Requirement** | Uses less memory. | Requires more memory and storage. |
166
+ """
167
+ )
168
+
169
+ st.info(
170
+ "Did you know? Deep Learning models are inspired by the human brain, making them exceptionally powerful for tasks like image recognition and natural language processing!"
171
+ )
pages/03_life_cycle_of_ml_project.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+ import numpy as np
3
+
4
+ def draw_lifecycle_diagram():
5
+ # Labels and colors for the lifecycle phases
6
+ labels = [
7
+ "1. Gathering Data",
8
+ "2. Data Preparation",
9
+ "3. Data Wrangling",
10
+ "4. Analyze Data",
11
+ "5. Train Model",
12
+ "6. Test Model",
13
+ "7. Deployment"
14
+ ]
15
+ colors = [
16
+ "#3CB371", "#8FBC8F", "#00CED1", "#1E90FF",
17
+ "#6A5ACD", "#FF8C00", "#DC143C"
18
+ ]
19
+
20
+ # Create a figure and axis with equal aspect ratio
21
+ fig, ax = plt.subplots(figsize=(9, 9), subplot_kw={"aspect": "equal"})
22
+ size = 0.3 # Width of the pie sections
23
+
24
+ # Create pie sections for the lifecycle phases
25
+ wedges, _ = ax.pie(
26
+ [1] * len(labels),
27
+ colors=colors,
28
+ radius=1,
29
+ startangle=90,
30
+ wedgeprops=dict(width=size, edgecolor='w')
31
+ )
32
+
33
+ # Add text labels around the circle
34
+ for i, wedge in enumerate(wedges):
35
+ # Calculate the angle for the label placement
36
+ angle = (wedge.theta2 - wedge.theta1) / 2.0 + wedge.theta1
37
+ x = np.cos(np.deg2rad(angle))
38
+ y = np.sin(np.deg2rad(angle))
39
+
40
+ # Add label text
41
+ ax.text(
42
+ 1.2 * x, 1.2 * y, labels[i],
43
+ ha="center", va="center", fontsize=10, weight="bold",
44
+ bbox=dict(boxstyle="round,pad=0.3", facecolor=colors[i], edgecolor="w")
45
+ )
46
+
47
+ # Add center text with a descriptive title
48
+ ax.text(
49
+ 0, 0, "Machine Learning\nLifecycle",
50
+ ha="center", va="center", fontsize=16, weight="bold", color="black",
51
+ bbox=dict(boxstyle="round,pad=0.5", facecolor="white", edgecolor="black")
52
+ )
53
+
54
+ # Clean up the diagram style
55
+ ax.set(aspect="equal", xticks=[], yticks=[], title="Machine Learning Lifecycle")
56
+ return fig
57
+
58
+ # Save the diagram or display it in Streamlit
59
+ if __name__ == "__main__":
60
+ # Display the diagram
61
+ fig = draw_lifecycle_diagram()
62
+ plt.show()
pages/04_data.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ def main():
4
+ st.set_page_config(page_title="Data Demystified", page_icon="πŸ“Š", layout="wide")
5
+
6
+ # Custom CSS for better engagement
7
+ st.markdown("""
8
+ <style>
9
+ .highlight-box {
10
+ padding: 1rem;
11
+ border-radius: 10px;
12
+ background: #f0f2f6;
13
+ margin: 1rem 0;
14
+ box-shadow: 0 2px 4px rgba(0,0,0,0.1);
15
+ }
16
+ .fun-fact {
17
+ color: #2e7d32;
18
+ font-weight: 500;
19
+ }
20
+ .emoji-header {
21
+ font-size: 2.5rem !important;
22
+ margin-bottom: 1rem;
23
+ }
24
+ </style>
25
+ """, unsafe_allow_html=True)
26
+
27
+ pages = {
28
+ "🏠 Introduction": intro_page,
29
+ "πŸ“š Data Types Overview": types_page,
30
+ "πŸ—‚οΈ Structured Data": structured_page,
31
+ "🧩 Semi-Structured Data": semi_structured_page,
32
+ "🎨 Unstructured Data": unstructured_page
33
+ }
34
+
35
+ with st.sidebar:
36
+ st.title("Navigation")
37
+ page = st.radio("Go to", list(pages.keys()))
38
+
39
+ pages[page]()
40
+
41
+ def intro_page():
42
+ st.markdown('<div class="emoji-header">πŸ“Š Welcome to Data Science Fundamentals</div>', unsafe_allow_html=True)
43
+
44
+ col1, col2 = st.columns([3, 2])
45
+ with col1:
46
+ st.write("""
47
+ ### What is Data Science?
48
+ Data Science is the art of extracting meaningful insights from raw data -
49
+ like being a digital detective uncovering hidden patterns in the numbers!
50
+
51
+ **Did you know?** πŸ€”
52
+ <span class="fun-fact">Every day, we create 2.5 quintillion bytes of data -
53
+ that's equivalent to 250,000 Libraries of Congress!</span>
54
+ """, unsafe_allow_html=True)
55
+
56
+ st.markdown("""
57
+ ### Why It Matters:
58
+ - Predict future trends 🌟
59
+ - Solve complex problems 🧩
60
+ - Power AI innovations πŸ€–
61
+ - Drive business decisions πŸ’Ό
62
+ """)
63
+
64
+ with col2:
65
+ st.image("https://cdn-uploads.huggingface.co/production/uploads/64c972774515835c4dadd754/qpmLGi47ucDCWYEi8eZhE.png",
66
+ caption="Data is Everywhere!", width=300)
67
+
68
+ def types_page():
69
+ st.header("πŸ“¦ The Three Data Superheroes")
70
+
71
+ with st.expander("πŸ” Quick Comparison"):
72
+ st.table({
73
+ "Type": ["Structured", "Semi-Structured", "Unstructured"],
74
+ "Organization": ["Perfectly Organized", "Partially Organized", "Chaotic Creativity"],
75
+ "Examples": ["SQL Databases, Excel", "JSON, XML, CSV", "Images, Videos, Text"]
76
+ })
77
+
78
+ cols = st.columns(3)
79
+ data_types = [
80
+ ("πŸ—‚οΈ Structured", "Neat rows & columns", "#e3f2fd"),
81
+ ("🧩 Semi-Structured", "Flexible tags & markers", "#f0f4c3"),
82
+ ("🎨 Unstructured", "Creative free-form", "#ffcdd2")
83
+ ]
84
+
85
+ for col, (icon, desc, color) in zip(cols, data_types):
86
+ with col:
87
+ st.markdown(f"""
88
+ <div style="background: {color}; padding: 1rem; border-radius: 10px;">
89
+ <h3>{icon} {desc.split()[0]}</h3>
90
+ <p>{' '.join(desc.split()[1:])}</p>
91
+ </div>
92
+ """, unsafe_allow_html=True)
93
+
94
+ def structured_page():
95
+ st.header("πŸ—‚οΈ Structured Data: The Organized Perfectionist")
96
+
97
+ with st.container():
98
+ st.markdown("""
99
+ ### Characteristics:
100
+ - Strict schema πŸ”’
101
+ - Tabular format πŸ“Š
102
+ - Easy to query πŸ”
103
+
104
+ **Did you know?** πŸ€”
105
+ <span class="fun-fact">The first computerized database appeared in 1963 -
106
+ it weighed more than a car! πŸš—πŸ’Ύ</span>
107
+ """, unsafe_allow_html=True)
108
+
109
+ st.image("https://cdn-uploads.huggingface.co/production/uploads/64c972774515835c4dadd754/dSbyOXaQ6N_Kg2TLxgEyt.png",
110
+ width=400, caption="Structured Data Example")
111
+
112
+ with st.expander("πŸ’‘ Real-World Examples"):
113
+ st.markdown("""
114
+ - Financial records πŸ’°
115
+ - Inventory systems πŸ“¦
116
+ - Student databases πŸŽ“
117
+ - Railway timetables πŸš„
118
+ """)
119
+
120
+ def semi_structured_page():
121
+ st.header("🧩 Semi-Structured Data: The Flexible Friend")
122
+
123
+ with st.container():
124
+ st.markdown("""
125
+ ### Why It's Special:
126
+ - Partial organization 🎭
127
+ - Self-describing formats πŸ“
128
+ - Web-friendly 🌐
129
+
130
+ **Did you know?** πŸ€”
131
+ <span class="fun-fact">JSON was created in 2001 -
132
+ the same year Wikipedia launched! πŸŽ‚πŸ“š</span>
133
+ """, unsafe_allow_html=True)
134
+
135
+ cols = st.columns(2)
136
+ with cols[0]:
137
+ st.code("""
138
+ {
139
+ "name": "Data Hero",
140
+ "skills": ["JSON", "XML", "CSV"],
141
+ "mission": "Bring order to chaos!"
142
+ }
143
+ """, language="json")
144
+
145
+ with cols[1]:
146
+ st.markdown("""
147
+ ### Common Formats:
148
+ - JSON (Web APIs) 🌍
149
+ - XML (Document markup) πŸ“„
150
+ - CSV (Spreadsheet data) πŸ“‹
151
+ - Email headers πŸ“§
152
+ """)
153
+
154
+ def unstructured_page():
155
+ st.header("🎨 Unstructured Data: The Creative Chaos")
156
+
157
+ with st.container():
158
+ st.markdown("""
159
+ ### The Wild West of Data:
160
+ - No predefined format 🎨
161
+ - Human-friendly formats 😊
162
+ - Requires AI processing πŸ€–
163
+
164
+ **Did you know?** πŸ€”
165
+ <span class="fun-fact">90% of all digital data is unstructured -
166
+ that's like having 1000 Netflix movies for every person on Earth! 🍿🌍</span>
167
+ """, unsafe_allow_html=True)
168
+
169
+ st.image("https://cdn-uploads.huggingface.co/production/uploads/64c972774515835c4dadd754/xhaNBRanDaj8esumqo9hl.png",
170
+ width=400, caption="Unstructured Data in Action")
171
+
172
+ with st.expander("🌐 Modern Applications"):
173
+ st.markdown("""
174
+ - Facial recognition systems πŸ‘©πŸ’»
175
+ - Voice assistants πŸ—£οΈ
176
+ - Medical image analysis πŸ₯
177
+ - Social media monitoring πŸ“±
178
+ """)
179
+
180
+ if __name__ == "__main__":
181
+ main()