Spaces:
Build error
Build error
import streamlit as st | |
from streamlit_lottie import st_lottie | |
import requests | |
def load_lottieurl(url: str): | |
"""Fetch Lottie animation JSON from a URL.""" | |
try: | |
response = requests.get(url) | |
if response.status_code == 200: | |
return response.json() | |
except requests.exceptions.RequestException: | |
return None | |
# ========== UPDATED CSS ========== | |
st.markdown(""" | |
<style> | |
:root { | |
--background-color: #f8f9fa; | |
--text-color: #212529; | |
--primary-color: #007acc; | |
--secondary-color: #005b96; | |
--card-bg: #ffffff; | |
--text-muted: #6c757d; | |
} | |
@media (prefers-color-scheme: dark) { | |
:root { | |
--background-color: #0e1117; | |
--text-color: #e5e5e5; | |
--primary-color: #29b6f6; | |
--secondary-color: #90caf9; | |
--card-bg: #1f2937; | |
--text-muted: #a3a3a3; | |
} | |
} | |
body { | |
margin: 0; | |
padding: 0; | |
font-family: 'Roboto', sans-serif; | |
background-color: var(--background-color) !important; | |
color: var(--text-color) !important; | |
} | |
h1 { | |
font-size: 2.5rem !important; | |
color: var(--primary-color) !important; | |
text-align: center; | |
margin-bottom: 15px; | |
border-bottom: 2px solid var(--primary-color); | |
padding-bottom: 0.5rem; | |
} | |
h2 { | |
font-size: 2rem !important; | |
color: var(--secondary-color) !important; | |
margin: 1.5rem 0 1rem !important; | |
} | |
h3 { | |
font-size: 1.5rem !important; | |
margin: 1rem 0 0.5rem !important; | |
} | |
p { | |
font-family: 'Georgia', serif; | |
color: var(--text-color) !important; | |
line-height: 1.6; | |
text-align: justify; | |
} | |
.content-block { | |
margin: 1.5rem 0; | |
padding: 1.5rem; | |
background: var(--card-bg); | |
border-radius: 10px; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
} | |
.about-author { | |
background-color: var(--card-bg) !important; | |
border-radius: 10px; | |
padding: 25px; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
margin: 20px auto; | |
max-width: 700px; | |
text-align: center; | |
color: var(--text-color) !important; | |
} | |
.social-icons { | |
display: flex; | |
justify-content: center; | |
gap: 20px; | |
margin-top: 15px; | |
} | |
.social-icons a img { | |
width: 40px; | |
height: 40px; | |
transition: transform 0.3s ease-in-out; | |
} | |
.social-icons a img:hover { | |
transform: scale(1.2); | |
} | |
footer { | |
margin-top: 50px; | |
text-align: center; | |
font-family: 'Georgia', serif; | |
color: var(--text-muted) !important; | |
} | |
.css-1d391kg, .css-1d391kg * { | |
background-color: var(--card-bg) !important; | |
color: var(--text-color) !important; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# ========== NAVIGATION (UNCHANGED) ========== | |
chapters = [ | |
"Foundation", "ML Project Lifecycle", "Core Algorithms", "Model Evaluation", | |
"Data Handling", "Computer Vision Basics", "Natural Language Processing (NLP)", | |
"Deployment & Tools" | |
] | |
selected_chapter = st.sidebar.radio("Select Chapter", chapters) | |
if selected_chapter == "Foundation": | |
foundation_main = st.sidebar.radio("Select Page", [ | |
"Home", "Introduction to Data Science", "Machine Learning vs Deep Learning" | |
]) | |
if foundation_main == "Introduction to Data Science": | |
selected_subtopic = st.sidebar.radio("Explore More", [ | |
"Understanding Intelligence", "AI Tools: ML, DL, and Gen‑AI", | |
"Real‑Life Analogies and Examples", "What is Data Science?", | |
"The Role of a Data Scientist", "Why AI and Data Science Matter", "Did You Know?" | |
]) | |
elif foundation_main == "Machine Learning vs Deep Learning": | |
st.sidebar.radio("Explore Comparison", [ | |
"Understanding Machine Learning and Deep Learning", "Comparison Table for ML vs DL" | |
]) | |
# Other navigation sections remain unchanged... | |
# ========== CONTENT RENDERING ========== | |
content_rendered = False | |
if selected_chapter == "Foundation" and foundation_main == "Introduction to Data Science": | |
content_rendered = True | |
if selected_subtopic == "Understanding Intelligence": | |
st.markdown("# 🧠 Understanding Intelligence") | |
with st.container(): | |
st.markdown("### Natural vs Artificial Intelligence") | |
st.markdown(""" | |
<div class="content-block"> | |
<h3 style='color: var(--primary-color);'>Natural Intelligence 🐾</h3> | |
<p>Innate cognitive abilities found in living organisms:</p> | |
<ul> | |
<li>Dogs learning commands through repetition</li> | |
<li>Human problem-solving capabilities</li> | |
<li>Bird migration patterns</li> | |
</ul> | |
</div> | |
<div class="content-block"> | |
<h3 style='color: var(--primary-color);'>Artificial Intelligence 🤖</h3> | |
<p>Machine-based systems demonstrating intelligent behavior:</p> | |
<ul> | |
<li>Netflix's recommendation engine</li> | |
<li>Google Maps traffic predictions</li> | |
<li>Voice assistants like Alexa</li> | |
</ul> | |
</div> | |
""", unsafe_allow_html=True) | |
elif selected_subtopic == "AI Tools: ML, DL, and Gen‑AI": | |
st.markdown("# 🔧 AI Toolkit Breakdown") | |
with st.container(): | |
st.markdown(""" | |
<div class="content-block"> | |
<h3>Machine Learning (ML)</h3> | |
<p>🎯 <strong>Purpose:</strong> Pattern recognition & decision making</p> | |
<p>👶 <strong>Analogy:</strong> Teaching toddler to recognize fruits</p> | |
<p>🚀 <strong>Applications:</strong></p> | |
<ul> | |
<li>Spam email filtering</li> | |
<li>Stock price prediction</li> | |
<li>Customer churn analysis</li> | |
</ul> | |
</div> | |
""", unsafe_allow_html=True) | |
with st.container(): | |
st.markdown(""" | |
<div class="content-block"> | |
<h3>Deep Learning (DL)</h3> | |
<p>🎯 <strong>Purpose:</strong> Complex data processing</p> | |
<p>🧠 <strong>Structure:</strong> Neural networks with multiple layers</p> | |
<p>🚀 <strong>Applications:</strong></p> | |
<ul> | |
<li>Facial recognition systems</li> | |
<li>Medical image analysis</li> | |
<li>Voice-controlled assistants</li> | |
</ul> | |
</div> | |
""", unsafe_allow_html=True) | |
# Other subtopics updated similarly... | |
# ========== HOME PAGE CONTENT ========== | |
if not content_rendered: | |
st.markdown("# Mastering Machine Learning: From Basics To Brilliance 🚀🤖") | |
st.markdown("## Your Gateway to Data Science Mastery") | |
lottie_animation = load_lottieurl("https://lottie.host/a45f4739-ef78-4193-b3f9-2ea435a190d5/PsTVRgXekn.json") | |
if lottie_animation: | |
st_lottie(lottie_animation, height=250) | |
with st.container(): | |
st.markdown("## About This Application") | |
st.markdown(""" | |
<div class="content-block"> | |
A comprehensive learning platform covering: | |
<ul> | |
<li><strong>Fundamental Concepts:</strong> Build strong theoretical foundations</li> | |
<li><strong>Practical Implementation:</strong> Real-world project workflows</li> | |
<li><strong>Industry Best Practices:</strong> Professional development techniques</li> | |
</ul> | |
</div> | |
""", unsafe_allow_html=True) | |
# Author Section | |
st.markdown(""" | |
<div class="about-author"> | |
<h2>About the Author</h2> | |
<p> | |
Hello! I'm <strong>Yash Harish Gupta</strong>, an aspiring data scientist | |
passionate about transforming raw data into actionable insights through | |
machine learning and AI technologies. | |
</p> | |
</div> | |
""", unsafe_allow_html=True) | |
# Social Links | |
st.markdown(""" | |
<div class="social-icons"> | |
<a href="https://www.linkedin.com/in/yash-harish-gupta-71b011189/" target="_blank"> | |
<img src="https://upload.wikimedia.org/wikipedia/commons/c/ca/LinkedIn_logo_initials.png" alt="LinkedIn"> | |
</a> | |
<a href="https://github.com/YashGupta018" target="_blank"> | |
<img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub"> | |
</a> | |
</div> | |
""", unsafe_allow_html=True) | |
# Footer | |
st.markdown(""" | |
<footer> | |
<p>Made with ❤️ by <strong>Yash Harish Gupta</strong> | © 2024</p> | |
</footer> | |
""", unsafe_allow_html=True) | |
# ------------------------------------------------------------------------------------------------------------------------------------- | |
# import streamlit as st | |
# from streamlit_lottie import st_lottie | |
# import requests | |
# # Function to load Lottie animation from a URL | |
# def load_lottieurl(url: str): | |
# """Fetch Lottie animation JSON from a URL.""" | |
# try: | |
# response = requests.get(url) | |
# if response.status_code == 200: | |
# return response.json() | |
# except requests.exceptions.RequestException: | |
# return None | |
# # CSS Styling for light and dark modes with adaptive theme support | |
# st.markdown(""" | |
# <style> | |
# :root { | |
# --background-color: #f8f9fa; | |
# --text-color: #212529; | |
# --primary-color: #007acc; | |
# --secondary-color: #005b96; | |
# --card-bg: #ffffff; | |
# --text-muted: #6c757d; | |
# } | |
# @media (prefers-color-scheme: dark) { | |
# :root { | |
# --background-color: #0e1117; | |
# --text-color: #e5e5e5; | |
# --primary-color: #29b6f6; | |
# --secondary-color: #90caf9; | |
# --card-bg: #1f2937; | |
# --text-muted: #a3a3a3; | |
# } | |
# } | |
# body { | |
# margin: 0; | |
# padding: 0; | |
# font-family: 'Roboto', sans-serif; | |
# background-color: var(--background-color) !important; | |
# color: var(--text-color) !important; | |
# } | |
# h1 { | |
# font-size: 3rem; | |
# color: var(--primary-color) !important; | |
# text-align: center; | |
# margin-bottom: 15px; | |
# } | |
# h2, h3 { | |
# font-size: 1.5rem; | |
# color: var(--secondary-color) !important; | |
# text-align: center; | |
# margin-top: 20px; | |
# } | |
# p { | |
# font-family: 'Georgia', serif; | |
# color: var(--text-color) !important; | |
# line-height: 1.6; | |
# text-align: justify; | |
# } | |
# .about-author { | |
# background-color: var(--card-bg) !important; | |
# border-radius: 10px; | |
# padding: 25px; | |
# box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
# margin: 20px auto; | |
# max-width: 700px; | |
# text-align: center; | |
# color: var(--text-color) !important; | |
# } | |
# .social-icons { | |
# display: flex; | |
# justify-content: center; | |
# gap: 20px; | |
# margin-top: 15px; | |
# } | |
# .social-icons a img { | |
# width: 40px; | |
# height: 40px; | |
# transition: transform 0.3s ease-in-out; | |
# } | |
# .social-icons a img:hover { | |
# transform: scale(1.2); | |
# } | |
# footer { | |
# margin-top: 50px; | |
# text-align: center; | |
# font-family: 'Georgia', serif; | |
# color: var(--text-muted) !important; | |
# } | |
# /* Sidebar adjustments */ | |
# .css-1d391kg, .css-1d391kg * { | |
# background-color: var(--card-bg) !important; | |
# color: var(--text-color) !important; | |
# } | |
# </style> | |
# """, unsafe_allow_html=True) | |
# # Sidebar Navigation | |
# chapters = [ | |
# "Foundation", | |
# "ML Project Lifecycle", | |
# "Core Algorithms", | |
# "Model Evaluation", | |
# "Data Handling", | |
# "Computer Vision Basics", | |
# "Natural Language Processing (NLP)", | |
# "Deployment & Tools" | |
# ] | |
# selected_chapter = st.sidebar.radio("Select Chapter", chapters) | |
# # Nested page selection based on chapter | |
# if selected_chapter == "Foundation": | |
# foundation_main = st.sidebar.radio("Select Page", [ | |
# "Home", | |
# "Introduction to Data Science", | |
# "Machine Learning vs Deep Learning" | |
# ]) | |
# if foundation_main == "Introduction to Data Science": | |
# selected_subtopic = st.sidebar.radio("Explore More", [ | |
# "Understanding Intelligence", | |
# "AI Tools: ML, DL, and Gen‑AI", | |
# "Real‑Life Analogies and Examples", | |
# "What is Data Science?", | |
# "The Role of a Data Scientist", | |
# "Why AI and Data Science Matter", | |
# "Did You Know?" | |
# ]) | |
# elif foundation_main == "Machine Learning vs Deep Learning": | |
# st.sidebar.radio("Explore Comparison", [ | |
# "Understanding Machine Learning and Deep Learning", | |
# "Comparison Table for ML vs DL" | |
# ]) | |
# elif selected_chapter == "ML Project Lifecycle": | |
# stage = st.sidebar.radio("Select Stage", ["Life Cycle of ML Project"]) | |
# if stage: | |
# st.sidebar.radio("Subtopic", [ | |
# "Problem Statement", | |
# "Data Collection", | |
# "Data Preprocessing", | |
# "Exploratory Data Analysis (EDA)", | |
# "Feature Engineering", | |
# "Model Selection", | |
# "Model Training", | |
# "Model Evaluation & Tuning", | |
# "Model Deployment", | |
# "Monitoring" | |
# ]) | |
# elif selected_chapter == "Core Algorithms": | |
# st.sidebar.radio("Select Algorithm", [ | |
# "Linear Regression", | |
# "Logistic Regression", | |
# "k‑Nearest Neighbors (kNN)", | |
# "Decision Trees", | |
# "Support Vector Machines (SVM)", | |
# "Ensemble Techniques" | |
# ]) | |
# elif selected_chapter == "Model Evaluation": | |
# metric_main = st.sidebar.radio("Select Topic", ["Performance Metrics"]) | |
# if metric_main: | |
# st.sidebar.radio("Choose Metric", [ | |
# "Accuracy, Precision, Recall", | |
# "Confusion Matrix", | |
# "ROC‑AUC" | |
# ]) | |
# elif selected_chapter == "Data Handling": | |
# data_main = st.sidebar.radio("Select Topic", [ | |
# "Data Types Overview", | |
# "Data Cleaning", | |
# "Feature Engineering" | |
# ]) | |
# if data_main == "Data Types Overview": | |
# st.sidebar.radio("Choose Type", [ | |
# "Structured Data (SQL, Excel)", | |
# "Semi‑Structured Data (JSON, XML)", | |
# "Unstructured Data (Images, Text)" | |
# ]) | |
# elif selected_chapter == "Computer Vision Basics": | |
# cv_topic = st.sidebar.radio("Select Topic", ["Image Processing", "OpenCV Basics"]) | |
# if cv_topic == "Image Processing": | |
# st.sidebar.radio("Subtopic", [ | |
# "Color Spaces", | |
# "Image Augmentation", | |
# "Splitting/Merging Images" | |
# ]) | |
# elif selected_chapter == "Natural Language Processing (NLP)": | |
# st.sidebar.radio("Select Topic", ["NLP Introduction", "Text Preprocessing"]) | |
# elif selected_chapter == "Deployment & Tools": | |
# st.sidebar.radio("Select Tool", [ | |
# "Model Deployment", | |
# "Working with Excel/CSV", | |
# "SQL for Data Science" | |
# ]) | |
# # ======== NEW CONTENT RENDERING ======== | |
# content_rendered = False | |
# if selected_chapter == "Foundation" and foundation_main == "Introduction to Data Science": | |
# content_rendered = True | |
# # Load animations | |
# brain_animation = load_lottieurl("https://lottie.host/8d7bdc88-7e11-44b5-995a-6561230e54a1/4X3p3YVQZ5.json") | |
# ml_animation = load_lottieurl("https://lottie.host/5b6292ff-aad4-4a34-8c0a-4c4cd186f80e/5ZVgB9Q9kF.json") | |
# art_animation = load_lottieurl("https://lottie.host/0d0cf470-8cef-4a0a-8980-3f2d5e573e98/5XvjOZPmhG.json") | |
# if selected_subtopic == "Understanding Intelligence": | |
# st.header("🧠 Understanding Intelligence") | |
# if brain_animation: | |
# st_lottie(brain_animation, height=200, key="brain") | |
# col1, col2 = st.columns(2) | |
# with col1: | |
# st.markdown(""" | |
# ### Natural Intelligence 🐾 | |
# **Definition:** Innate intelligence in living beings | |
# - Dogs learning tricks | |
# - Humans solving puzzles | |
# - Birds building nests instinctively | |
# """) | |
# with col2: | |
# st.markdown(""" | |
# ### Artificial Intelligence 🤖 | |
# **Definition:** Human-like intelligence in machines | |
# - Netflix recommendations | |
# - Google Maps routing | |
# - Alexa voice assistant | |
# """) | |
# elif selected_subtopic == "AI Tools: ML, DL, and Gen‑AI": | |
# st.header("🔧 AI Toolkit Breakdown") | |
# if ml_animation: | |
# st_lottie(ml_animation, height=250, key="ml") | |
# tabs = st.tabs(["Machine Learning", "Deep Learning", "Generative AI"]) | |
# with tabs[0]: | |
# st.markdown(""" | |
# **Machine Learning (ML)** | |
# 🎯 **Purpose:** Pattern recognition & decision making | |
# 👶 **Analogy:** Teaching toddler to recognize fruits | |
# 🚀 **Applications:** | |
# - Spam email filtering | |
# - Stock price prediction | |
# - Customer churn analysis | |
# """) | |
# with tabs[1]: | |
# st.markdown(""" | |
# **Deep Learning (DL)** | |
# 🎯 **Purpose:** Complex data processing | |
# 🧠 **Structure:** Neural networks with multiple layers | |
# 🚀 **Applications:** | |
# - Facial recognition systems | |
# - Medical image analysis | |
# - Voice-controlled assistants | |
# """) | |
# with tabs[2]: | |
# st.markdown(""" | |
# **Generative AI** | |
# 🎯 **Purpose:** Creative content generation | |
# 🎨 **Analogy:** Digital artist with infinite ideas | |
# 🚀 **Applications:** | |
# - ChatGPT conversations | |
# - DALL·E image creation | |
# - AI-composed music | |
# """) | |
# elif selected_subtopic == "Real‑Life Analogies and Examples": | |
# col1, col2 = st.columns([2, 1]) | |
# with col1: | |
# st.header("🎨 Learning vs Generating") | |
# st.markdown(""" | |
# **Art Analogy:** | |
# - ML = Sketching with pencil (foundations) | |
# - DL = Inking with pen (details) | |
# - Gen-AI = Color painting (creation) | |
# **Child Development Analogy:** | |
# 1. Learn alphabet → ML (pattern recognition) | |
# 2. Write essays → DL (complex processing) | |
# 3. Create poetry → Gen-AI (original content) | |
# """) | |
# with col2: | |
# if art_animation: | |
# st_lottie(art_animation, height=300, key="art") | |
# elif selected_subtopic == "What is Data Science?": | |
# st.header("🔍 Data Science Demystified") | |
# st.image("https://miro.medium.com/v2/resize:fit:1400/1*K7nYl2D2QO5B9v6U-4yQxA.png", | |
# width=600, caption="Data Science Process Flow") | |
# st.markdown(""" | |
# **Three Pillars of Data Science:** | |
# 1. 📥 Data Collection: | |
# - Databases, APIs, IoT sensors | |
# - Structured & unstructured data | |
# 2. 🧠 Data Analysis: | |
# - Statistical modeling | |
# - Pattern identification | |
# 3. 📊 Data Visualization: | |
# - Interactive dashboards | |
# - Business intelligence tools | |
# """) | |
# elif selected_subtopic == "The Role of a Data Scientist": | |
# st.header("👨💻 Data Scientist's Toolkit") | |
# st.markdown(""" | |
# **Core Responsibilities:** | |
# - Build predictive models for business outcomes | |
# - Analyze customer behavior patterns | |
# - Optimize operational efficiency | |
# **Essential Skills Matrix:** | |
# | Technical Skills | Business Skills | | |
# |------------------|------------------| | |
# | Python/R | Domain Knowledge | | |
# | SQL | Storytelling | | |
# | ML Frameworks | Problem Solving | | |
# """) | |
# elif selected_subtopic == "Why AI and Data Science Matter": | |
# st.header("🌍 Transformative Impact") | |
# st.markdown(""" | |
# **Industry Revolution:** | |
# - Healthcare: Early disease detection (40% faster diagnosis) | |
# - Agriculture: AI-powered yield prediction (+25% productivity) | |
# - Entertainment: Personalized content recommendations | |
# **Economic Impact:** | |
# > "By 2030, AI could contribute up to $15.7 trillion to global economy" | |
# -*PwC Global AI Study* | |
# """) | |
# elif selected_subtopic == "Did You Know?": | |
# st.header("🤖 AI in Action: Surprising Uses") | |
# cols = st.columns(3) | |
# cols[0].markdown(""" | |
# **Medical Imaging** | |
# - 92% accuracy in tumor detection | |
# - Reduces diagnosis time by 60% | |
# """) | |
# cols[1].markdown(""" | |
# **Smart Farming** | |
# - Automated irrigation systems | |
# - Pest prediction algorithms | |
# """) | |
# cols[2].markdown(""" | |
# **Creative AI** | |
# - AI-written novels | |
# - Algorithmic music composition | |
# """) | |
# st.video("https://www.youtube.com/watch?v=JMUxmLyrhSk") | |
# # ======== ORIGINAL PAGE ELEMENTS ======== | |
# if not content_rendered: | |
# # Title and Tagline | |
# st.title("Mastering Machine Learning: From Basics To Brilliance 🚀🤖") | |
# st.markdown("## Your Gateway To Become Master In Data Science") | |
# # Display Lottie animation | |
# animation_url = "https://lottie.host/a45f4739-ef78-4193-b3f9-2ea435a190d5/PsTVRgXekn.json" | |
# lottie_animation = load_lottieurl(animation_url) | |
# if lottie_animation: | |
# st_lottie(lottie_animation, height=200, key="animation") | |
# # About the App Section | |
# st.subheader("About This Application") | |
# st.markdown(""" | |
# This platform serves as a **comprehensive guide to Machine Learning and Data Science**. | |
# From grasping the fundamentals to deploying models, it offers insights into the entire lifecycle: | |
# - **Problem Definition**: Understand the business context and set clear objectives. | |
# - **Data Handling**: Collect, clean, and explore datasets to uncover insights. | |
# - **Model Development**: Build and optimize machine learning models. | |
# - **Model Deployment**: Deliver real-world solutions and monitor performance. | |
# Designed for both beginners and those looking to refine their skills, this app provides a structured learning path enriched with practical examples. | |
# """) | |
# # Key Takeaways Section | |
# st.subheader("What You'll Learn Here") | |
# st.markdown(""" | |
# 1. **Step-by-Step Roadmaps**: Detailed guidance to help you navigate through data science challenges. | |
# 2. **Hands-on Projects**: Real-world examples and code snippets for applied learning. | |
# 3. **Visualizations**: Clear, intuitive graphs and plots to simplify complex concepts. | |
# 4. **Insights from Experience**: Lessons from my personal journey to help you avoid common pitfalls. | |
# """) | |
# # Author Section (Always visible) | |
# st.markdown(""" | |
# <div class="about-author"> | |
# <h2>About the Author</h2> | |
# <p> | |
# Hello! I'm <strong>Yash Harish Gupta</strong>, an aspiring data scientist deeply passionate about machine learning. | |
# My journey began with curiosity about how data drives decisions and has evolved into a mission to create impactful solutions. | |
# Currently, I am learning and preparing to embark on my professional career in this exciting field. | |
# </p> | |
# </div> | |
# """, unsafe_allow_html=True) | |
# # Social Links Section | |
# st.markdown(""" | |
# <div class="social-icons"> | |
# <a href="https://www.linkedin.com/in/yash-harish-gupta-71b011189/" target="_blank"> | |
# <img src="https://upload.wikimedia.org/wikipedia/commons/c/ca/LinkedIn_logo_initials.png" alt="LinkedIn"> | |
# </a> | |
# <a href="https://github.com/YashGupta018" target="_blank"> | |
# <img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub"> | |
# </a> | |
# </div> | |
# """, unsafe_allow_html=True) | |
# # Footer Section | |
# st.markdown(""" | |
# <footer> | |
# <p>Made with ❤️ by <strong>Yash Harish Gupta</strong> | © 2024</p> | |
# </footer> | |
# """, unsafe_allow_html=True) | |
# ----------------------------------------------------------------------------------------------------------------------------------------------------------- | |
# import streamlit as st | |
# from streamlit_lottie import st_lottie | |
# import requests | |
# # Function to load Lottie animation from a URL | |
# def load_lottieurl(url: str): | |
# """Fetch Lottie animation JSON from a URL.""" | |
# try: | |
# response = requests.get(url) | |
# if response.status_code == 200: | |
# return response.json() | |
# except requests.exceptions.RequestException: | |
# return None | |
# # CSS Styling for light and dark modes with adaptive theme support | |
# st.markdown(""" | |
# <style> | |
# :root { | |
# --background-color: #f8f9fa; | |
# --text-color: #212529; | |
# --primary-color: #007acc; | |
# --secondary-color: #005b96; | |
# --card-bg: #ffffff; | |
# --text-muted: #6c757d; | |
# } | |
# @media (prefers-color-scheme: dark) { | |
# :root { | |
# --background-color: #0e1117; | |
# --text-color: #e5e5e5; | |
# --primary-color: #29b6f6; | |
# --secondary-color: #90caf9; | |
# --card-bg: #1f2937; | |
# --text-muted: #a3a3a3; | |
# } | |
# } | |
# body { | |
# margin: 0; | |
# padding: 0; | |
# font-family: 'Roboto', sans-serif; | |
# background-color: var(--background-color) !important; | |
# color: var(--text-color) !important; | |
# } | |
# h1 { | |
# font-size: 3rem; | |
# color: var(--primary-color) !important; | |
# text-align: center; | |
# margin-bottom: 15px; | |
# } | |
# h2, h3 { | |
# font-size: 1.5rem; | |
# color: var(--secondary-color) !important; | |
# text-align: center; | |
# margin-top: 20px; | |
# } | |
# p { | |
# font-family: 'Georgia', serif; | |
# color: var(--text-color) !important; | |
# line-height: 1.6; | |
# text-align: justify; | |
# } | |
# .about-author { | |
# background-color: var(--card-bg) !important; | |
# border-radius: 10px; | |
# padding: 25px; | |
# box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
# margin: 20px auto; | |
# max-width: 700px; | |
# text-align: center; | |
# color: var(--text-color) !important; | |
# } | |
# .social-icons { | |
# display: flex; | |
# justify-content: center; | |
# gap: 20px; | |
# margin-top: 15px; | |
# } | |
# .social-icons a img { | |
# width: 40px; | |
# height: 40px; | |
# transition: transform 0.3s ease-in-out; | |
# } | |
# .social-icons a img:hover { | |
# transform: scale(1.2); | |
# } | |
# footer { | |
# margin-top: 50px; | |
# text-align: center; | |
# font-family: 'Georgia', serif; | |
# color: var(--text-muted) !important; | |
# } | |
# /* Sidebar adjustments */ | |
# .css-1d391kg, .css-1d391kg * { | |
# background-color: var(--card-bg) !important; | |
# color: var(--text-color) !important; | |
# } | |
# </style> | |
# """, unsafe_allow_html=True) | |
# # Sidebar Navigation | |
# chapters = [ | |
# "Foundation", | |
# "ML Project Lifecycle", | |
# "Core Algorithms", | |
# "Model Evaluation", | |
# "Data Handling", | |
# "Computer Vision Basics", | |
# "Natural Language Processing (NLP)", | |
# "Deployment & Tools" | |
# ] | |
# selected_chapter = st.sidebar.radio("Select Chapter", chapters) | |
# # Nested page selection based on chapter | |
# if selected_chapter == "Foundation": | |
# foundation_main = st.sidebar.radio("Select Page", [ | |
# "Home", | |
# "Introduction to Data Science", | |
# "Machine Learning vs Deep Learning" | |
# ]) | |
# if foundation_main == "Introduction to Data Science": | |
# st.sidebar.radio("Explore More", [ | |
# "Understanding Intelligence", | |
# "AI Tools: ML, DL, and Gen‑AI", | |
# "Real‑Life Analogies and Examples", | |
# "What is Data Science?", | |
# "The Role of a Data Scientist", | |
# "Why AI and Data Science Matter", | |
# "Did You Know?" | |
# ]) | |
# elif foundation_main == "Machine Learning vs Deep Learning": | |
# st.sidebar.radio("Explore Comparison", [ | |
# "Understanding Machine Learning and Deep Learning", | |
# "Comparison Table for ML vs DL" | |
# ]) | |
# elif selected_chapter == "ML Project Lifecycle": | |
# stage = st.sidebar.radio("Select Stage", ["Life Cycle of ML Project"]) | |
# if stage: | |
# st.sidebar.radio("Subtopic", [ | |
# "Problem Statement", | |
# "Data Collection", | |
# "Data Preprocessing", | |
# "Exploratory Data Analysis (EDA)", | |
# "Feature Engineering", | |
# "Model Selection", | |
# "Model Training", | |
# "Model Evaluation & Tuning", | |
# "Model Deployment", | |
# "Monitoring" | |
# ]) | |
# elif selected_chapter == "Core Algorithms": | |
# st.sidebar.radio("Select Algorithm", [ | |
# "Linear Regression", | |
# "Logistic Regression", | |
# "k‑Nearest Neighbors (kNN)", | |
# "Decision Trees", | |
# "Support Vector Machines (SVM)", | |
# "Ensemble Techniques" | |
# ]) | |
# elif selected_chapter == "Model Evaluation": | |
# metric_main = st.sidebar.radio("Select Topic", ["Performance Metrics"]) | |
# if metric_main: | |
# st.sidebar.radio("Choose Metric", [ | |
# "Accuracy, Precision, Recall", | |
# "Confusion Matrix", | |
# "ROC‑AUC" | |
# ]) | |
# elif selected_chapter == "Data Handling": | |
# data_main = st.sidebar.radio("Select Topic", [ | |
# "Data Types Overview", | |
# "Data Cleaning", | |
# "Feature Engineering" | |
# ]) | |
# if data_main == "Data Types Overview": | |
# st.sidebar.radio("Choose Type", [ | |
# "Structured Data (SQL, Excel)", | |
# "Semi‑Structured Data (JSON, XML)", | |
# "Unstructured Data (Images, Text)" | |
# ]) | |
# elif selected_chapter == "Computer Vision Basics": | |
# cv_topic = st.sidebar.radio("Select Topic", ["Image Processing", "OpenCV Basics"]) | |
# if cv_topic == "Image Processing": | |
# st.sidebar.radio("Subtopic", [ | |
# "Color Spaces", | |
# "Image Augmentation", | |
# "Splitting/Merging Images" | |
# ]) | |
# elif selected_chapter == "Natural Language Processing (NLP)": | |
# st.sidebar.radio("Select Topic", ["NLP Introduction", "Text Preprocessing"]) | |
# elif selected_chapter == "Deployment & Tools": | |
# st.sidebar.radio("Select Tool", [ | |
# "Model Deployment", | |
# "Working with Excel/CSV", | |
# "SQL for Data Science" | |
# ]) | |
# # Title and Tagline | |
# st.title("Mastering Machine Learning: From Basics To Brilliance 🚀🤖") | |
# st.markdown("## Your Gateway To Become Master In Data Science") | |
# # Display Lottie animation | |
# animation_url = "https://lottie.host/a45f4739-ef78-4193-b3f9-2ea435a190d5/PsTVRgXekn.json" | |
# lottie_animation = load_lottieurl(animation_url) | |
# if lottie_animation: | |
# st_lottie(lottie_animation, height=200, key="animation") | |
# # About the App Section | |
# st.subheader("About This Application") | |
# st.markdown(""" | |
# This platform serves as a **comprehensive guide to Machine Learning and Data Science**. | |
# From grasping the fundamentals to deploying models, it offers insights into the entire lifecycle: | |
# - **Problem Definition**: Understand the business context and set clear objectives. | |
# - **Data Handling**: Collect, clean, and explore datasets to uncover insights. | |
# - **Model Development**: Build and optimize machine learning models. | |
# - **Model Deployment**: Deliver real-world solutions and monitor performance. | |
# Designed for both beginners and those looking to refine their skills, this app provides a structured learning path enriched with practical examples. | |
# """) | |
# # Key Takeaways Section | |
# st.subheader("What You'll Learn Here") | |
# st.markdown(""" | |
# 1. **Step-by-Step Roadmaps**: Detailed guidance to help you navigate through data science challenges. | |
# 2. **Hands-on Projects**: Real-world examples and code snippets for applied learning. | |
# 3. **Visualizations**: Clear, intuitive graphs and plots to simplify complex concepts. | |
# 4. **Insights from Experience**: Lessons from my personal journey to help you avoid common pitfalls. | |
# """) | |
# # Author Section | |
# st.markdown(""" | |
# <div class="about-author"> | |
# <h2>About the Author</h2> | |
# <p> | |
# Hello! I'm <strong>Yash Harish Gupta</strong>, an aspiring data scientist deeply passionate about machine learning. | |
# My journey began with curiosity about how data drives decisions and has evolved into a mission to create impactful solutions. | |
# Currently, I am learning and preparing to embark on my professional career in this exciting field. | |
# </p> | |
# </div> | |
# """, unsafe_allow_html=True) | |
# # Social Links Section | |
# st.markdown(""" | |
# <div class="social-icons"> | |
# <a href="https://www.linkedin.com/in/yash-harish-gupta-71b011189/" target="_blank"> | |
# <img src="https://upload.wikimedia.org/wikipedia/commons/c/ca/LinkedIn_logo_initials.png" alt="LinkedIn"> | |
# </a> | |
# <a href="https://github.com/YashGupta018" target="_blank"> | |
# <img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub"> | |
# </a> | |
# </div> | |
# """, unsafe_allow_html=True) | |
# # Footer Section | |
# st.markdown(""" | |
# <footer> | |
# <p>Made with ❤️ by <strong>Yash Harish Gupta</strong> | © 2024</p> | |
# </footer> | |
# """, unsafe_allow_html=True) | |
# ------------------------------------------------------------------------------------------------------------------------------------------------------- | |
# import streamlit as st | |
# from streamlit_lottie import st_lottie | |
# import requests | |
# # Function to load Lottie animation from a URL | |
# def load_lottieurl(url: str): | |
# """Fetch Lottie animation JSON from a URL.""" | |
# try: | |
# response = requests.get(url) | |
# if response.status_code == 200: | |
# return response.json() | |
# except requests.exceptions.RequestException: | |
# return None | |
# # CSS Styling for light and dark modes | |
# st.markdown(""" | |
# <style> | |
# body { | |
# margin: 0; | |
# padding: 0; | |
# font-family: 'Roboto', sans-serif; | |
# background-color: var(--background-color, #f8f9fa); | |
# color: var(--text-color, #212529); | |
# } | |
# h1 { | |
# font-size: 3rem; | |
# color: var(--primary-color, #007acc); | |
# text-align: center; | |
# margin-bottom: 15px; | |
# } | |
# h2, h3 { | |
# font-size: 1.5rem; | |
# color: var(--secondary-color, #005b96); | |
# text-align: center; | |
# margin-top: 20px; | |
# } | |
# p { | |
# font-family: 'Georgia', serif; | |
# color: var(--text-color, #212529); | |
# line-height: 1.6; | |
# text-align: justify; | |
# } | |
# .about-author { | |
# background-color: var(--card-bg, #ffffff); | |
# border-radius: 10px; | |
# padding: 25px; | |
# box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
# margin: 20px auto; | |
# max-width: 700px; | |
# text-align: center; | |
# color: var(--text-color, #212529); | |
# } | |
# .social-icons { | |
# display: flex; | |
# justify-content: center; | |
# gap: 20px; | |
# margin-top: 15px; | |
# } | |
# .social-icons a img { | |
# width: 40px; | |
# height: 40px; | |
# transition: transform 0.3s ease-in-out; | |
# } | |
# .social-icons a img:hover { | |
# transform: scale(1.2); | |
# } | |
# footer { | |
# margin-top: 50px; | |
# text-align: center; | |
# font-family: 'Georgia', serif; | |
# color: var(--text-muted, #6c757d); | |
# } | |
# </style> | |
# """, unsafe_allow_html=True) | |
# # Title and Tagline | |
# st.title("Mastering Machine Learning: From Basics To Brilliance 🚀🤖") | |
# st.markdown("## Your Gateway To Become Master In Data Science") | |
# # Display Lottie animation | |
# animation_url = "https://lottie.host/a45f4739-ef78-4193-b3f9-2ea435a190d5/PsTVRgXekn.json" | |
# lottie_animation = load_lottieurl(animation_url) | |
# if lottie_animation: | |
# st_lottie(lottie_animation, height=200, key="animation") | |
# # About the App Section | |
# st.subheader("About This Application") | |
# st.markdown(""" | |
# This platform serves as a **comprehensive guide to Machine Learning and Data Science**. | |
# From grasping the fundamentals to deploying models, it offers insights into the entire lifecycle: | |
# - **Problem Definition**: Understand the business context and set clear objectives. | |
# - **Data Handling**: Collect, clean, and explore datasets to uncover insights. | |
# - **Model Development**: Build and optimize machine learning models. | |
# - **Model Deployment**: Deliver real-world solutions and monitor performance. | |
# Designed for both beginners and those looking to refine their skills, this app provides a structured learning path enriched with practical examples. | |
# """) | |
# # Key Takeaways Section | |
# st.subheader("What You'll Learn Here") | |
# st.markdown(""" | |
# 1. **Step-by-Step Roadmaps**: Detailed guidance to help you navigate through data science challenges. | |
# 2. **Hands-on Projects**: Real-world examples and code snippets for applied learning. | |
# 3. **Visualizations**: Clear, intuitive graphs and plots to simplify complex concepts. | |
# 4. **Insights from Experience**: Lessons from my personal journey to help you avoid common pitfalls. | |
# """) | |
# # Author Section | |
# st.markdown(""" | |
# <div class="about-author"> | |
# <h2>About the Author</h2> | |
# <p> | |
# Hello! I'm <strong>Yash Harish Gupta</strong>, an aspiring data scientist deeply passionate about machine learning. | |
# My journey began with curiosity about how data drives decisions and has evolved into a mission to create impactful solutions. | |
# Currently, I am learning and preparing to embark on my professional career in this exciting field. | |
# </p> | |
# </div> | |
# """, unsafe_allow_html=True) | |
# # Social Links Section | |
# st.markdown(""" | |
# <div class="social-icons"> | |
# <a href="https://www.linkedin.com/in/yash-harish-gupta-71b011189/" target="_blank"> | |
# <img src="https://upload.wikimedia.org/wikipedia/commons/c/ca/LinkedIn_logo_initials.png" alt="LinkedIn"> | |
# </a> | |
# <a href="https://github.com/YashGupta018" target="_blank"> | |
# <img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub"> | |
# </a> | |
# </div> | |
# """, unsafe_allow_html=True) | |
# # Footer Section | |
# st.markdown(""" | |
# <footer> | |
# <p>Made with ❤️ by <strong>Yash Harish Gupta</strong> | © 2024</p> | |
# </footer> | |
# """, unsafe_allow_html=True) |