File size: 43,803 Bytes
11d2a88
c3560a6
 
42ea9cb
 
ec7d97f
d0fac9e
c3560a6
d0fac9e
c3560a6
 
 
 
 
 
 
4cf42b6
c3560a6
d0fac9e
6b10e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42ea9cb
4cf42b6
 
 
42ea9cb
4cf42b6
 
 
 
 
d0fac9e
4cf42b6
ec7d97f
7a2bd4c
42ea9cb
7a2bd4c
 
 
 
 
 
 
 
 
42ea9cb
7a2bd4c
42ea9cb
4cf42b6
 
 
 
 
7a2bd4c
4cf42b6
 
 
 
7a2bd4c
4cf42b6
 
 
 
7a2bd4c
4cf42b6
 
7a2bd4c
4cf42b6
 
 
7a2bd4c
4cf42b6
 
 
7a2bd4c
4cf42b6
 
 
 
 
853dbc8
42ea9cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cf42b6
42ea9cb
4cf42b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42ea9cb
 
 
 
 
 
 
 
 
 
 
 
 
4cf42b6
42ea9cb
4cf42b6
 
7f342df
4cf42b6
7f342df
4cf42b6
 
 
7f342df
4cf42b6
 
 
42ea9cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cf42b6
 
 
 
 
 
7f342df
4cf42b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f342df
4cf42b6
 
 
 
 
 
 
 
 
 
 
 
7f342df
4cf42b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f342df
4cf42b6
853dbc8
6b10e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a2bd4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b10e8e
7a2bd4c
853dbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
import streamlit as st
from streamlit_lottie import st_lottie
import requests
import importlib.util
import os

# Function to load Lottie animation from a URL
def load_lottieurl(url: str):
    """Fetch Lottie animation JSON from a URL."""
    try:
        response = requests.get(url)
        if response.status_code == 200:
            return response.json()
    except requests.exceptions.RequestException:
        return None

# CSS Styling for adaptive light/dark modes
st.markdown("""
    <style>
    :root {
        --background-color: #f8f9fa;
        --text-color: #212529;
        --primary-color: #007acc;
        --secondary-color: #005b96;
        --card-bg: #ffffff;
        --text-muted: #6c757d;
    }
    @media (prefers-color-scheme: dark) {
        :root {
            --background-color: #0e1117;
            --text-color: #e5e5e5;
            --primary-color: #29b6f6;
            --secondary-color: #90caf9;
            --card-bg: #1f2937;
            --text-muted: #a3a3a3;
        }
    }
    body { margin: 0; padding: 0; font-family: 'Roboto', sans-serif; background-color: var(--background-color) !important; color: var(--text-color) !important; }
    h1 { font-size: 3rem; color: var(--primary-color) !important; text-align: center; margin-bottom: 15px; }
    h2, h3 { font-size: 1.5rem; color: var(--secondary-color) !important; text-align: center; margin-top: 20px; }
    p { font-family: 'Georgia', serif; color: var(--text-color) !important; line-height: 1.6; text-align: justify; }
    .about-author { background-color: var(--card-bg) !important; border-radius: 10px; padding: 25px; box-shadow: 0 4px 6px rgba(0,0,0,0.1); margin: 20px auto; max-width: 700px; text-align: center; color: var(--text-color) !important; }
    .social-icons { display: flex; justify-content: center; gap: 20px; margin-top: 15px; }
    .social-icons a img { width: 40px; height: 40px; transition: transform 0.3s ease-in-out; }
    .social-icons a img:hover { transform: scale(1.2); }
    footer { margin-top: 50px; text-align: center; font-family: 'Georgia', serif; color: var(--text-muted) !important; }
    .css-1d391kg, .css-1d391kg * { background-color: var(--card-bg) !important; color: var(--text-color) !important; }
    </style>
""", unsafe_allow_html=True)

# Sidebar Navigation
chapters = [
    "Foundation",
    "ML Project Lifecycle",
    "Core Algorithms",
    "Model Evaluation",
    "Data Handling",
    "Computer Vision Basics",
    "Natural Language Processing (NLP)",
    "Deployment & Tools"
]
chapter = st.sidebar.radio("Chapter", chapters)

# Nested page selection based on chapter
page = None
if chapter == "Foundation":
    page = st.sidebar.radio("Page", ["Home", "Introduction to Data Science", "Machine Learning vs Deep Learning"])
elif chapter == "ML Project Lifecycle":
    section = st.sidebar.radio("Section", ["Life Cycle of ML Project"])
    if section:
        page = st.sidebar.radio("Subtopic", [
            "Problem Statement", "Data Collection", "Data Preprocessing",
            "Exploratory Data Analysis (EDA)", "Feature Engineering", "Model Selection",
            "Model Training", "Model Evaluation & Tuning", "Model Deployment", "Monitoring"
        ])
elif chapter == "Core Algorithms":
    page = st.sidebar.radio("Page", [
        "Linear Regression", "Logistic Regression", "k-Nearest Neighbors (kNN)",
        "Decision Trees", "Support Vector Machines (SVM)", "Ensemble Techniques"
    ])
elif chapter == "Model Evaluation":
    page = st.sidebar.radio("Page", ["Performance Metrics"])
    if page == "Performance Metrics":
        page = st.sidebar.radio("Metric", ["Accuracy, Precision, Recall", "Confusion Matrix", "ROC-AUC"])
elif chapter == "Data Handling":
    page = st.sidebar.radio("Page", ["Data Types", "Data Cleaning", "Feature Engineering"])
    if page == "Data Types":
        page = st.sidebar.radio("Type", ["Structured Data (SQL, Excel)", "Semi-Structured Data (JSON, XML)", "Unstructured Data (Images, Text)"])
elif chapter == "Computer Vision Basics":
    page = st.sidebar.radio("Page", ["Image Processing", "OpenCV Basics"])
    if page == "Image Processing":
        page = st.sidebar.radio("Topic", ["Color Spaces", "Image Augmentation", "Splitting/Merging Images"])
elif chapter == "Natural Language Processing (NLP)":
    page = st.sidebar.radio("Page", ["NLP Introduction", "Text Preprocessing"])
elif chapter == "Deployment & Tools":
    page = st.sidebar.radio("Page", ["Model Deployment", "Working with Excel/CSV", "SQL for Data Science"])

# Map pages to external scripts
page_to_script = {
    "Introduction to Data Science": "01_introduction.py",
    "Machine Learning vs Deep Learning": "02_ml_vs_dl.py",
    "Life Cycle of ML Project": "03_life_cycle_of_ml_project.py",
    "Data Handling": "04_data.py"
}

# Helper to load and execute a module from path
def run_script(path, func_name=None, *args):
    full_path = os.path.join(os.path.dirname(__file__), path)
    spec = importlib.util.spec_from_file_location(path, full_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)
    if func_name:
        getattr(module, func_name)(*args)

# Content rendering
if page == "Home":
    # existing Home content
    st.title("Mastering Machine Learning: From Basics To Brilliance πŸš€πŸ€–")
    st.markdown("## Your Gateway To Become Master In Data Science")
    anim = load_lottieurl("https://lottie.host/a45f4739-ef78-4193-b3f9-2ea435a190d5/PsTVRgXekn.json")
    if anim:
        st_lottie(anim, height=200)
    st.subheader("About This Application")
    st.markdown("""
    This platform serves as a **comprehensive guide to Machine Learning and Data Science**.
    From grasping the fundamentals to deploying models, it offers insights into the entire lifecycle:
    - **Problem Definition**: Understand context and objectives.
    - **Data Handling**: Collect, clean, explore.
    - **Model Development**: Build and optimize.
    - **Model Deployment**: Deliver and monitor solutions.
    """)
    st.subheader("What You'll Learn Here")
    st.markdown("""
    1. **Roadmaps**: Navigate challenges step-by-step.
    2. **Hands-on Projects**: Applied examples.
    3. **Visualizations**: Intuitive graphs.
    4. **Insights**: Lessons from experience.
    """)
    st.markdown("""
    <div class='about-author'>
        <h2>About the Author</h2>
        <p>Hello! I'm <strong>Yash Harish Gupta</strong>, an aspiring data scientist passionate about ML.</p>
    </div>
    """, unsafe_allow_html=True)
    st.markdown("""
    <div class='social-icons'>
        <a href='https://www.linkedin.com/in/yash-harish-gupta-71b011189/' target='_blank'>
            <img src='https://upload.wikimedia.org/wikipedia/commons/c/ca/LinkedIn_logo_initials.png' alt='LinkedIn'>
        </a>
        <a href='https://github.com/YashGupta018' target='_blank'>
            <img src='https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png' alt='GitHub'>
        </a>
    </div>
    <footer>Made with ❀️ by <strong>Yash Harish Gupta</strong> | © 2024</footer>
    """, unsafe_allow_html=True)

elif page in page_to_script:
    script = page_to_script[page]
    # call appropriate function if needed
    if page == "Introduction to Data Science":
        run_script(script, "show_content", "Introduction")
    elif page == "Machine Learning vs Deep Learning":
        run_script(script)  # top-level execution handles its own nav
    elif page == "Life Cycle of ML Project":
        run_script(script, "draw_lifecycle_diagram")
    elif page == "Data Handling":
        run_script(script, "main")

else:
    # default placeholder for other pages
    st.header(page or chapter)
    st.write("Content for this page will go here.")

# ----------------------------------------------------------------------------------------------------------------------------------------------------------

# import streamlit as st
# from streamlit_lottie import st_lottie
# import requests

# # Function to load Lottie animation from a URL
# def load_lottieurl(url: str):
#     """Fetch Lottie animation JSON from a URL."""
#     try:
#         response = requests.get(url)
#         if response.status_code == 200:
#             return response.json()
#     except requests.exceptions.RequestException:
#         return None

# # CSS Styling for adaptive light/dark modes
# st.markdown("""
#     <style>
#     :root {
#         --background-color: #f8f9fa;
#         --text-color: #212529;
#         --primary-color: #007acc;
#         --secondary-color: #005b96;
#         --card-bg: #ffffff;
#         --text-muted: #6c757d;
#     }
#     @media (prefers-color-scheme: dark) {
#         :root {
#             --background-color: #0e1117;
#             --text-color: #e5e5e5;
#             --primary-color: #29b6f6;
#             --secondary-color: #90caf9;
#             --card-bg: #1f2937;
#             --text-muted: #a3a3a3;
#         }
#     }
#     body {
#         margin: 0;
#         padding: 0;
#         font-family: 'Roboto', sans-serif;
#         background-color: var(--background-color) !important;
#         color: var(--text-color) !important;
#     }
#     h1 { font-size: 3rem; color: var(--primary-color) !important; text-align: center; margin-bottom: 15px; }
#     h2, h3 { font-size: 1.5rem; color: var(--secondary-color) !important; text-align: center; margin-top: 20px; }
#     p { font-family: 'Georgia', serif; color: var(--text-color) !important; line-height: 1.6; text-align: justify; }
#     .about-author { background-color: var(--card-bg) !important; border-radius: 10px; padding: 25px;
#         box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); margin: 20px auto; max-width: 700px; text-align: center;
#         color: var(--text-color) !important; }
#     .social-icons { display: flex; justify-content: center; gap: 20px; margin-top: 15px; }
#     .social-icons a img { width: 40px; height: 40px; transition: transform 0.3s ease-in-out; }
#     .social-icons a img:hover { transform: scale(1.2); }
#     footer { margin-top: 50px; text-align: center; font-family: 'Georgia', serif; color: var(--text-muted) !important; }
#     .css-1d391kg, .css-1d391kg * { background-color: var(--card-bg) !important; color: var(--text-color) !important; }
#     </style>
# """, unsafe_allow_html=True)

# # Sidebar Navigation
# episodes = [
#     "Foundation",
#     "ML Project Lifecycle",
#     "Core Algorithms",
#     "Model Evaluation",
#     "Data Handling",
#     "Computer Vision Basics",
#     "Natural Language Processing (NLP)",
#     "Deployment & Tools"
# ]
# chapter = st.sidebar.radio("Chapter", episodes)

# # Initialize page variables
# page = None

# if chapter == "Foundation":
#     page = st.sidebar.radio("Page", ["Home", "Introduction to Data Science", "Machine Learning vs Deep Learning"])
# elif chapter == "ML Project Lifecycle":
#     section = st.sidebar.radio("Section", ["Life Cycle of ML Project"])
#     if section:
#         page = st.sidebar.radio("Subtopic", [
#             "Problem Statement", "Data Collection", "Data Preprocessing",
#             "Exploratory Data Analysis (EDA)", "Feature Engineering", "Model Selection",
#             "Model Training", "Model Evaluation & Tuning", "Model Deployment", "Monitoring"
#         ])
# elif chapter == "Core Algorithms":
#     page = st.sidebar.radio("Page", [
#         "Linear Regression", "Logistic Regression", "k-Nearest Neighbors (kNN)",
#         "Decision Trees", "Support Vector Machines (SVM)", "Ensemble Techniques"
#     ])
# elif chapter == "Model Evaluation":
#     page = st.sidebar.radio("Page", ["Performance Metrics"])
#     if page == "Performance Metrics":
#         page = st.sidebar.radio("Metric", ["Accuracy, Precision, Recall", "Confusion Matrix", "ROC-AUC"])
# elif chapter == "Data Handling":
#     page = st.sidebar.radio("Page", ["Data Types", "Data Cleaning", "Feature Engineering"])
#     if page == "Data Types":
#         page = st.sidebar.radio("Type", ["Structured Data (SQL, Excel)", "Semi-Structured Data (JSON, XML)", "Unstructured Data (Images, Text)"])
# elif chapter == "Computer Vision Basics":
#     page = st.sidebar.radio("Page", ["Image Processing", "OpenCV Basics"])
#     if page == "Image Processing":
#         page = st.sidebar.radio("Topic", ["Color Spaces", "Image Augmentation", "Splitting/Merging Images"])
# elif chapter == "Natural Language Processing (NLP)":
#     page = st.sidebar.radio("Page", ["NLP Introduction", "Text Preprocessing"])
# elif chapter == "Deployment & Tools":
#     page = st.sidebar.radio("Page", ["Model Deployment", "Working with Excel/CSV", "SQL for Data Science"])

# # Content rendering based on selection
# if page == "Home":
#     st.title("Mastering Machine Learning: From Basics To Brilliance πŸš€πŸ€–")
#     st.markdown("## Your Gateway To Become Master In Data Science")
#     anim = load_lottieurl("https://lottie.host/a45f4739-ef78-4193-b3f9-2ea435a190d5/PsTVRgXekn.json")
#     if anim:
#         st_lottie(anim, height=200)
#     st.subheader("About This Application")
#     st.markdown("""
#     This platform serves as a **comprehensive guide to Machine Learning and Data Science**.
#     From grasping the fundamentals to deploying models, it offers insights into the entire lifecycle:
#     - **Problem Definition**: Understand context and objectives.
#     - **Data Handling**: Collect, clean, explore.
#     - **Model Development**: Build and optimize.
#     - **Model Deployment**: Deliver and monitor solutions.
#     """)
#     st.subheader("What You'll Learn Here")
#     st.markdown("""
#     1. **Roadmaps**: Navigate challenges step-by-step.
#     2. **Hands-on Projects**: Applied examples.
#     3. **Visualizations**: Intuitive graphs.
#     4. **Insights**: Lessons from experience.
#     """)
#     st.markdown("""
#     <div class='about-author'>
#         <h2>About the Author</h2>
#         <p>Hello! I'm <strong>Yash Harish Gupta</strong>, an aspiring data scientist passionate about ML.</p>
#     </div>
#     """, unsafe_allow_html=True)
#     st.markdown("""
#     <div class='social-icons'>
#         <a href='https://www.linkedin.com/in/yash-harish-gupta-71b011189/' target='_blank'>
#             <img src='https://upload.wikimedia.org/wikipedia/commons/c/ca/LinkedIn_logo_initials.png' alt='LinkedIn'>
#         </a>
#         <a href='https://github.com/YashGupta018' target='_blank'>
#             <img src='https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png' alt='GitHub'>
#         </a>
#     </div>
#     <footer>Made with ❀️ by <strong>Yash Harish Gupta</strong> | © 2024</footer>
#     """, unsafe_allow_html=True)
# else:
#     st.header(page or chapter)
#     st.write("Content for this page will go here.")

# ----------------------------------------------------------------------------------------------------------------------------------------------------------

# import streamlit as st
# from streamlit_lottie import st_lottie
# import requests

# # Function to load Lottie animation from a URL
# def load_lottieurl(url: str):
#     """Fetch Lottie animation JSON from a URL."""
#     try:
#         response = requests.get(url)
#         if response.status_code == 200:
#             return response.json()
#     except requests.exceptions.RequestException:
#         return None

# # CSS Styling for light and dark modes with adaptive theme support
# st.markdown("""
#     <style>
#     :root {
#         --background-color: #f8f9fa;
#         --text-color: #212529;
#         --primary-color: #007acc;
#         --secondary-color: #005b96;
#         --card-bg: #ffffff;
#         --text-muted: #6c757d;
#     }
#     @media (prefers-color-scheme: dark) {
#         :root {
#             --background-color: #0e1117;
#             --text-color: #e5e5e5;
#             --primary-color: #29b6f6;
#             --secondary-color: #90caf9;
#             --card-bg: #1f2937;
#             --text-muted: #a3a3a3;
#         }
#     }
#     body {
#         margin: 0;
#         padding: 0;
#         font-family: 'Roboto', sans-serif;
#         background-color: var(--background-color) !important;
#         color: var(--text-color) !important;
#     }
#     h1 {
#         font-size: 3rem;
#         color: var(--primary-color) !important;
#         text-align: center;
#         margin-bottom: 15px;
#     }
#     h2, h3 {
#         font-size: 1.5rem;
#         color: var(--secondary-color) !important;
#         text-align: center;
#         margin-top: 20px;
#     }
#     p {
#         font-family: 'Georgia', serif;
#         color: var(--text-color) !important;
#         line-height: 1.6;
#         text-align: justify;
#     }
#     .about-author {
#         background-color: var(--card-bg) !important;
#         border-radius: 10px;
#         padding: 25px;
#         box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
#         margin: 20px auto;
#         max-width: 700px;
#         text-align: center;
#         color: var(--text-color) !important;
#     }
#     .social-icons {
#         display: flex;
#         justify-content: center;
#         gap: 20px;
#         margin-top: 15px;
#     }
#     .social-icons a img {
#         width: 40px;
#         height: 40px;
#         transition: transform 0.3s ease-in-out;
#     }
#     .social-icons a img:hover {
#         transform: scale(1.2);
#     }
#     footer {
#         margin-top: 50px;
#         text-align: center;
#         font-family: 'Georgia', serif;
#         color: var(--text-muted) !important;
#     }
#     /* Sidebar adjustments */
#     .css-1d391kg, .css-1d391kg * {
#         background-color: var(--card-bg) !important;
#         color: var(--text-color) !important;
#     }
#     </style>
#     """, unsafe_allow_html=True)

# # Sidebar Navigation
# chapters = [
#     "Foundation",
#     "ML Project Lifecycle",
#     "Core Algorithms",
#     "Model Evaluation",
#     "Data Handling",
#     "Computer Vision Basics",
#     "Natural Language Processing (NLP)",
#     "Deployment & Tools"
# ]
# selected_chapter = st.sidebar.radio("Select Chapter", chapters)

# # Nested page selection based on chapter
# if selected_chapter == "Foundation":
#     page = st.sidebar.radio("Select Page", [
#         "Home",
#         "Introduction to Data Science",
#         "Machine Learning vs Deep Learning"
#     ])
# elif selected_chapter == "ML Project Lifecycle":
#     section = st.sidebar.radio("Select Section", ["Life Cycle of ML Project"])
#     if section:
#         page = st.sidebar.radio("Select Subtopic", [
#             "Problem Statement",
#             "Data Collection",
#             "Data Preprocessing",
#             "Exploratory Data Analysis (EDA)",
#             "Feature Engineering",
#             "Model Selection",
#             "Model Training",
#             "Model Evaluation & Tuning",
#             "Model Deployment",
#             "Monitoring"
#         ])
# elif selected_chapter == "Core Algorithms":
#     page = st.sidebar.radio("Select Page", [
#         "Linear Regression",
#         "Logistic Regression",
#         "k-Nearest Neighbors (kNN)",
#         "Decision Trees",
#         "Support Vector Machines (SVM)",
#         "Ensemble Techniques"
#     ])
# elif selected_chapter == "Model Evaluation":
#     page = st.sidebar.radio("Select Page", ["Performance Metrics"])
#     if page == "Performance Metrics":
#         metric = st.sidebar.radio("Choose Metric", [
#             "Accuracy, Precision, Recall",
#             "Confusion Matrix",
#             "ROC-AUC"
#         ])
# elif selected_chapter == "Data Handling":
#     page = st.sidebar.radio("Select Page", [
#         "Data Types",
#         "Data Cleaning",
#         "Feature Engineering"
#     ])
#     if page == "Data Types":
#         dtype = st.sidebar.radio("Select Type", [
#             "Structured Data (SQL, Excel)",
#             "Semi-Structured Data (JSON, XML)",
#             "Unstructured Data (Images, Text)"
#         ])
# elif selected_chapter == "Computer Vision Basics":
#     page = st.sidebar.radio("Select Page", ["Image Processing", "OpenCV Basics"])
#     if page == "Image Processing":
#         iproc = st.sidebar.radio("Select Topic", [
#             "Color Spaces",
#             "Image Augmentation",
#             "Splitting/Merging Images"
#         ])
# elif selected_chapter == "Natural Language Processing (NLP)":
#     page = st.sidebar.radio("Select Page", [
#         "NLP Introduction",
#         "Text Preprocessing"
#     ])
# elif selected_chapter == "Deployment & Tools":
#     page = st.sidebar.radio("Select Page", [
#         "Model Deployment",
#         "Working with Excel/CSV",
#         "SQL for Data Science"
#     ])

# # Title and Tagline
# st.title("Mastering Machine Learning: From Basics To Brilliance πŸš€πŸ€–")
# st.markdown("## Your Gateway To Become Master In Data Science")

# # Display Lottie animation
# animation_url = "https://lottie.host/a45f4739-ef78-4193-b3f9-2ea435a190d5/PsTVRgXekn.json"
# lottie_animation = load_lottieurl(animation_url)
# if lottie_animation:
#     st_lottie(lottie_animation, height=200, key="animation")

# # About the App Section
# st.subheader("About This Application")
# st.markdown("""
# This platform serves as a **comprehensive guide to Machine Learning and Data Science**.  
# From grasping the fundamentals to deploying models, it offers insights into the entire lifecycle:
# - **Problem Definition**: Understand the business context and set clear objectives.  
# - **Data Handling**: Collect, clean, and explore datasets to uncover insights.  
# - **Model Development**: Build and optimize machine learning models.  
# - **Model Deployment**: Deliver real-world solutions and monitor performance.  
# Designed for both beginners and those looking to refine their skills, this app provides a structured learning path enriched with practical examples.
# """)

# # Key Takeaways Section
# st.subheader("What You'll Learn Here")
# st.markdown("""
# 1. **Step-by-Step Roadmaps**: Detailed guidance to help you navigate through data science challenges.  
# 2. **Hands-on Projects**: Real-world examples and code snippets for applied learning.  
# 3. **Visualizations**: Clear, intuitive graphs and plots to simplify complex concepts.  
# 4. **Insights from Experience**: Lessons from my personal journey to help you avoid common pitfalls.  
# """)

# # Author Section
# st.markdown("""
# <div class="about-author">
#     <h2>About the Author</h2>
#     <p>
#         Hello! I'm <strong>Yash Harish Gupta</strong>, an aspiring data scientist deeply passionate about machine learning.  
#         My journey began with curiosity about how data drives decisions and has evolved into a mission to create impactful solutions.  
#         Currently, I am learning and preparing to embark on my professional career in this exciting field.
#     </p>
# </div>
# """, unsafe_allow_html=True)

# # Social Links Section
# st.markdown("""
# <div class="social-icons">
#     <a href="https://www.linkedin.com/in/yash-harish-gupta-71b011189/" target="_blank">
#         <img src="https://upload.wikimedia.org/wikipedia/commons/c/ca/LinkedIn_logo_initials.png" alt="LinkedIn">
#     </a>
#     <a href="https://github.com/YashGupta018" target="_blank">
#         <img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub">
#     </a>
# </div>
# """, unsafe_allow_html=True)

# # Footer Section
# st.markdown("""
# <footer>
#     <p>Made with ❀️ by <strong>Yash Harish Gupta</strong> | © 2024</p>
# </footer>
# """, unsafe_allow_html=True)

# -----------------------------------------------------------------------------------------------------------------------------------------------------

# import streamlit as st
# from streamlit_lottie import st_lottie
# import requests

# # Function to load Lottie animation from a URL
# def load_lottieurl(url: str):
#     """Fetch Lottie animation JSON from a URL."""
#     try:
#         response = requests.get(url)
#         if response.status_code == 200:
#             return response.json()
#     except requests.exceptions.RequestException:
#         return None

# # CSS Styling for light and dark modes
# st.markdown("""
#     <style>
#     body {
#         margin: 0;
#         padding: 0;
#         font-family: 'Roboto', sans-serif;
#         background-color: var(--background-color, #f8f9fa);
#         color: var(--text-color, #212529);
#     }
#     h1 {
#         font-size: 3rem;
#         color: var(--primary-color, #007acc);
#         text-align: center;
#         margin-bottom: 15px;
#     }
#     h2, h3 {
#         font-size: 1.5rem;
#         color: var(--secondary-color, #005b96);
#         text-align: center;
#         margin-top: 20px;
#     }
#     p {
#         font-family: 'Georgia', serif;
#         color: var(--text-color, #212529);
#         line-height: 1.6;
#         text-align: justify;
#     }
#     .about-author {
#         background-color: var(--card-bg, #ffffff);
#         border-radius: 10px;
#         padding: 25px;
#         box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
#         margin: 20px auto;
#         max-width: 700px;
#         text-align: center;
#         color: var(--text-color, #212529);
#     }
#     .social-icons {
#         display: flex;
#         justify-content: center;
#         gap: 20px;
#         margin-top: 15px;
#     }
#     .social-icons a img {
#         width: 40px;
#         height: 40px;
#         transition: transform 0.3s ease-in-out;
#     }
#     .social-icons a img:hover {
#         transform: scale(1.2);
#     }
#     footer {
#         margin-top: 50px;
#         text-align: center;
#         font-family: 'Georgia', serif;
#         color: var(--text-muted, #6c757d);
#     }
#     </style>
#     """, unsafe_allow_html=True)

# # Sidebar Navigation
# chapters = [
#     "Foundation",
#     "ML Project Lifecycle",
#     "Core Algorithms",
#     "Model Evaluation",
#     "Data Handling",
#     "Computer Vision Basics",
#     "Natural Language Processing (NLP)",
#     "Deployment & Tools"
# ]
# selected_chapter = st.sidebar.radio("Select Chapter", chapters)

# # Nested page selection based on chapter
# if selected_chapter == "Foundation":
#     page = st.sidebar.radio("Select Page", [
#         "Home",
#         "Introduction to Data Science",
#         "Machine Learning vs Deep Learning"
#     ])
# elif selected_chapter == "ML Project Lifecycle":
#     section = st.sidebar.radio("Select Section", ["Life Cycle of ML Project"])
#     if section:
#         page = st.sidebar.radio("Select Subtopic", [
#             "Problem Statement",
#             "Data Collection",
#             "Data Preprocessing",
#             "Exploratory Data Analysis (EDA)",
#             "Feature Engineering",
#             "Model Selection",
#             "Model Training",
#             "Model Evaluation & Tuning",
#             "Model Deployment",
#             "Monitoring"
#         ])
# elif selected_chapter == "Core Algorithms":
#     page = st.sidebar.radio("Select Page", [
#         "Linear Regression",
#         "Logistic Regression",
#         "k-Nearest Neighbors (kNN)",
#         "Decision Trees",
#         "Support Vector Machines (SVM)",
#         "Ensemble Techniques"
#     ])
# elif selected_chapter == "Model Evaluation":
#     page = st.sidebar.radio("Select Page", ["Performance Metrics"])
#     if page == "Performance Metrics":
#         metric = st.sidebar.radio("Choose Metric", [
#             "Accuracy, Precision, Recall",
#             "Confusion Matrix",
#             "ROC-AUC"
#         ])
# elif selected_chapter == "Data Handling":
#     page = st.sidebar.radio("Select Page", [
#         "Data Types",
#         "Data Cleaning",
#         "Feature Engineering"
#     ])
#     if page == "Data Types":
#         dtype = st.sidebar.radio("Select Type", [
#             "Structured Data (SQL, Excel)",
#             "Semi-Structured Data (JSON, XML)",
#             "Unstructured Data (Images, Text)"
#         ])
# elif selected_chapter == "Computer Vision Basics":
#     page = st.sidebar.radio("Select Page", ["Image Processing", "OpenCV Basics"])
#     if page == "Image Processing":
#         iproc = st.sidebar.radio("Select Topic", [
#             "Color Spaces",
#             "Image Augmentation",
#             "Splitting/Merging Images"
#         ])
# elif selected_chapter == "Natural Language Processing (NLP)":
#     page = st.sidebar.radio("Select Page", [
#         "NLP Introduction",
#         "Text Preprocessing"
#     ])
# elif selected_chapter == "Deployment & Tools":
#     page = st.sidebar.radio("Select Page", [
#         "Model Deployment",
#         "Working with Excel/CSV",
#         "SQL for Data Science"
#     ])

# # Title and Tagline
# st.title("Mastering Machine Learning: From Basics To Brilliance πŸš€πŸ€–")
# st.markdown("## Your Gateway To Become Master In Data Science")

# # Display Lottie animation
# animation_url = "https://lottie.host/a45f4739-ef78-4193-b3f9-2ea435a190d5/PsTVRgXekn.json"
# lottie_animation = load_lottieurl(animation_url)
# if lottie_animation:
#     st_lottie(lottie_animation, height=200, key="animation")

# # About the App Section
# st.subheader("About This Application")
# st.markdown("""
# This platform serves as a **comprehensive guide to Machine Learning and Data Science**.  
# From grasping the fundamentals to deploying models, it offers insights into the entire lifecycle:
# - **Problem Definition**: Understand the business context and set clear objectives.  
# - **Data Handling**: Collect, clean, and explore datasets to uncover insights.  
# - **Model Development**: Build and optimize machine learning models.  
# - **Model Deployment**: Deliver real-world solutions and monitor performance.  
# Designed for both beginners and those looking to refine their skills, this app provides a structured learning path enriched with practical examples.
# """)

# # Key Takeaways Section
# st.subheader("What You'll Learn Here")
# st.markdown("""
# 1. **Step-by-Step Roadmaps**: Detailed guidance to help you navigate through data science challenges.  
# 2. **Hands-on Projects**: Real-world examples and code snippets for applied learning.  
# 3. **Visualizations**: Clear, intuitive graphs and plots to simplify complex concepts.  
# 4. **Insights from Experience**: Lessons from my personal journey to help you avoid common pitfalls.  
# """)

# # Author Section
# st.markdown("""
# <div class="about-author">
#     <h2>About the Author</h2>
#     <p>
#         Hello! I'm <strong>Yash Harish Gupta</strong>, an aspiring data scientist deeply passionate about machine learning.  
#         My journey began with curiosity about how data drives decisions and has evolved into a mission to create impactful solutions.  
#         Currently, I am learning and preparing to embark on my professional career in this exciting field.
#     </p>
# </div>
# """, unsafe_allow_html=True)

# # Social Links Section
# st.markdown("""
# <div class="social-icons">
#     <a href="https://www.linkedin.com/in/yash-harish-gupta-71b011189/" target="_blank">
#         <img src="https://upload.wikimedia.org/wikipedia/commons/c/ca/LinkedIn_logo_initials.png" alt="LinkedIn">
#     </a>
#     <a href="https://github.com/YashGupta018" target="_blank">
#         <img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub">
#     </a>
# </div>
# """, unsafe_allow_html=True)

# # Footer Section
# st.markdown("""
# <footer>
#     <p>Made with ❀️ by <strong>Yash Harish Gupta</strong> | © 2024</p>
# </footer>
# """, unsafe_allow_html=True)

# -------------------------------------------------------------------------------------------------------------------------------------------

# import streamlit as st
# from streamlit_lottie import st_lottie
# import requests

# # Function to load Lottie animation from a URL
# def load_lottieurl(url: str):
#     """Fetch Lottie animation JSON from a URL."""
#     try:
#         response = requests.get(url)
#         if response.status_code == 200:
#             return response.json()
#     except requests.exceptions.RequestException:
#         return None

# # CSS Styling for light and dark modes
# st.markdown("""
#     <style>
#     body {
#         margin: 0;
#         padding: 0;
#         font-family: 'Roboto', sans-serif;
#         background-color: var(--background-color, #f8f9fa);
#         color: var(--text-color, #212529);
#     }
#     h1 {
#         font-size: 3rem;
#         color: var(--primary-color, #007acc);
#         text-align: center;
#         margin-bottom: 15px;
#     }
#     h2, h3 {
#         font-size: 1.5rem;
#         color: var(--secondary-color, #005b96);
#         text-align: center;
#         margin-top: 20px;
#     }
#     p {
#         font-family: 'Georgia', serif;
#         color: var(--text-color, #212529);
#         line-height: 1.6;
#         text-align: justify;
#     }
#     .about-author {
#         background-color: var(--card-bg, #ffffff);
#         border-radius: 10px;
#         padding: 25px;
#         box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
#         margin: 20px auto;
#         max-width: 700px;
#         text-align: center;
#         color: var(--text-color, #212529);
#     }
#     .social-icons {
#         display: flex;
#         justify-content: center;
#         gap: 20px;
#         margin-top: 15px;
#     }
#     .social-icons a img {
#         width: 40px;
#         height: 40px;
#         transition: transform 0.3s ease-in-out;
#     }
#     .social-icons a img:hover {
#         transform: scale(1.2);
#     }
#     footer {
#         margin-top: 50px;
#         text-align: center;
#         font-family: 'Georgia', serif;
#         color: var(--text-muted, #6c757d);
#     }
#     </style>
#     """, unsafe_allow_html=True)

# # Navigation Bar (Sidebar) - Inserted with the exact list as requested
# st.sidebar.markdown(
#     """
#     # Navigation

#     1. **Foundation**

#         - Home  
#         - Introduction to Data Science  
#         - Machine Learning vs Deep Learning

#     2. **ML Project Lifecycle**

#         - Life Cycle of ML Project  
#             - Problem Statement  
#             - Data Collection  
#             - Data Preprocessing  
#             - Exploratory Data Analysis (EDA)  
#             - Feature Engineering  
#             - Model Selection  
#             - Model Training  
#             - Model Evaluation & Tuning  
#             - Model Deployment  
#             - Monitoring

#     3. **Core Algorithms**

#         - Linear Regression  
#         - Logistic Regression  
#         - k-Nearest Neighbors (kNN)  
#         - Decision Trees  
#         - Support Vector Machines (SVM)  
#         - Ensemble Techniques

#     4. **Model Evaluation**

#         - Performance Metrics  
#             - Accuracy, Precision, Recall  
#             - Confusion Matrix  
#             - ROC-AUC

#     5. **Data Handling**

#         - Data Types:  
#             - Structured Data (SQL, Excel)  
#             - Semi-Structured Data (JSON, XML)  
#             - Unstructured Data (Images, Text)  
#         - Data Cleaning  
#         - Feature Engineering

#     6. **Computer Vision Basics**

#         - Image Processing  
#             - Color Spaces  
#             - Image Augmentation  
#             - Splitting/Merging Images  
#         - OpenCV Basics

#     7. **Natural Language Processing (NLP)**

#         - NLP Introduction  
#         - Text Preprocessing

#     8. **Deployment & Tools**

#         - Model Deployment  
#         - Working with Excel/CSV  
#         - SQL for Data Science
#     """, unsafe_allow_html=True)

# # Title and Tagline
# st.title("Mastering Machine Learning: From Basics To Brilliance πŸš€πŸ€–")
# st.markdown("## Your Gateway To Become Master In Data Science")

# # Display Lottie animation
# animation_url = "https://lottie.host/a45f4739-ef78-4193-b3f9-2ea435a190d5/PsTVRgXekn.json"
# lottie_animation = load_lottieurl(animation_url)
# if lottie_animation:
#     st_lottie(lottie_animation, height=200, key="animation")

# # About the App Section
# st.subheader("About This Application")
# st.markdown("""
# This platform serves as a **comprehensive guide to Machine Learning and Data Science**.  
# From grasping the fundamentals to deploying models, it offers insights into the entire lifecycle:
# - **Problem Definition**: Understand the business context and set clear objectives.  
# - **Data Handling**: Collect, clean, and explore datasets to uncover insights.  
# - **Model Development**: Build and optimize machine learning models.  
# - **Model Deployment**: Deliver real-world solutions and monitor performance.  
# Designed for both beginners and those looking to refine their skills, this app provides a structured learning path enriched with practical examples.
# """)

# # Key Takeaways Section
# st.subheader("What You'll Learn Here")
# st.markdown("""
# 1. **Step-by-Step Roadmaps**: Detailed guidance to help you navigate through data science challenges.  
# 2. **Hands-on Projects**: Real-world examples and code snippets for applied learning.  
# 3. **Visualizations**: Clear, intuitive graphs and plots to simplify complex concepts.  
# 4. **Insights from Experience**: Lessons from my personal journey to help you avoid common pitfalls.  
# """)

# # Author Section
# st.markdown("""
# <div class="about-author">
#     <h2>About the Author</h2>
#     <p>
#         Hello! I'm <strong>Yash Harish Gupta</strong>, an aspiring data scientist deeply passionate about machine learning.  
#         My journey began with curiosity about how data drives decisions and has evolved into a mission to create impactful solutions.  
#         Currently, I am learning and preparing to embark on my professional career in this exciting field.
#     </p>
# </div>
# """, unsafe_allow_html=True)

# # Social Links Section
# st.markdown("""
# <div class="social-icons">
#     <a href="https://www.linkedin.com/in/yash-harish-gupta-71b011189/" target="_blank">
#         <img src="https://upload.wikimedia.org/wikipedia/commons/c/ca/LinkedIn_logo_initials.png" alt="LinkedIn">
#     </a>
#     <a href="https://github.com/YashGupta018" target="_blank">
#         <img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub">
#     </a>
# </div>
# """, unsafe_allow_html=True)

# # Footer Section
# st.markdown("""
# <footer>
#     <p>Made with ❀️ by <strong>Yash Harish Gupta</strong> | © 2024</p>
# </footer>
# """, unsafe_allow_html=True)

# -------------------------------------------------------------------------------------------------------------------------------------------------------

# import streamlit as st
# from streamlit_lottie import st_lottie
# import requests

# # Function to load Lottie animation from a URL
# def load_lottieurl(url: str):
#     """Fetch Lottie animation JSON from a URL."""
#     try:
#         response = requests.get(url)
#         if response.status_code == 200:
#             return response.json()
#     except requests.exceptions.RequestException:
#         return None

# # CSS Styling for light and dark modes
# st.markdown("""
#     <style>
#     body {
#         margin: 0;
#         padding: 0;
#         font-family: 'Roboto', sans-serif;
#         background-color: var(--background-color, #f8f9fa);
#         color: var(--text-color, #212529);
#     }
#     h1 {
#         font-size: 3rem;
#         color: var(--primary-color, #007acc);
#         text-align: center;
#         margin-bottom: 15px;
#     }
#     h2, h3 {
#         font-size: 1.5rem;
#         color: var(--secondary-color, #005b96);
#         text-align: center;
#         margin-top: 20px;
#     }
#     p {
#         font-family: 'Georgia', serif;
#         color: var(--text-color, #212529);
#         line-height: 1.6;
#         text-align: justify;
#     }
#     .about-author {
#         background-color: var(--card-bg, #ffffff);
#         border-radius: 10px;
#         padding: 25px;
#         box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
#         margin: 20px auto;
#         max-width: 700px;
#         text-align: center;
#         color: var(--text-color, #212529);
#     }
#     .social-icons {
#         display: flex;
#         justify-content: center;
#         gap: 20px;
#         margin-top: 15px;
#     }
#     .social-icons a img {
#         width: 40px;
#         height: 40px;
#         transition: transform 0.3s ease-in-out;
#     }
#     .social-icons a img:hover {
#         transform: scale(1.2);
#     }
#     footer {
#         margin-top: 50px;
#         text-align: center;
#         font-family: 'Georgia', serif;
#         color: var(--text-muted, #6c757d);
#     }
#     </style>
#     """, unsafe_allow_html=True)

# # Title and Tagline
# st.title("Mastering Machine Learning: From Basics To Brilliance πŸš€πŸ€–")
# st.markdown("## Your Gateway To Become Master In Data Science")

# # Display Lottie animation
# animation_url = "https://lottie.host/a45f4739-ef78-4193-b3f9-2ea435a190d5/PsTVRgXekn.json"
# lottie_animation = load_lottieurl(animation_url)
# if lottie_animation:
#     st_lottie(lottie_animation, height=200, key="animation")

# # About the App Section
# st.subheader("About This Application")
# st.markdown("""
# This platform serves as a **comprehensive guide to Machine Learning and Data Science**.  
# From grasping the fundamentals to deploying models, it offers insights into the entire lifecycle:
# - **Problem Definition**: Understand the business context and set clear objectives.  
# - **Data Handling**: Collect, clean, and explore datasets to uncover insights.  
# - **Model Development**: Build and optimize machine learning models.  
# - **Model Deployment**: Deliver real-world solutions and monitor performance.  

# Designed for both beginners and those looking to refine their skills, this app provides a structured learning path enriched with practical examples.
# """)

# # Key Takeaways Section
# st.subheader("What You'll Learn Here")
# st.markdown("""
# 1. **Step-by-Step Roadmaps**: Detailed guidance to help you navigate through data science challenges.  
# 2. **Hands-on Projects**: Real-world examples and code snippets for applied learning.  
# 3. **Visualizations**: Clear, intuitive graphs and plots to simplify complex concepts.  
# 4. **Insights from Experience**: Lessons from my personal journey to help you avoid common pitfalls.  
# """)

# # Author Section
# st.markdown("""
# <div class="about-author">
#     <h2>About the Author</h2>
#     <p>
#         Hello! I'm <strong>Yash Harish Gupta</strong>, an aspiring data scientist deeply passionate about machine learning.  
#         My journey began with curiosity about how data drives decisions and has evolved into a mission to create impactful solutions.  
#         Currently, I am learning and preparing to embark on my professional career in this exciting field.
#     </p>
# </div>
# """, unsafe_allow_html=True)

# # Social Links Section
# st.markdown("""
# <div class="social-icons">
#     <a href="https://www.linkedin.com/in/yash-harish-gupta-71b011189/" target="_blank">
#         <img src="https://upload.wikimedia.org/wikipedia/commons/c/ca/LinkedIn_logo_initials.png" alt="LinkedIn">
#     </a>
#     <a href="https://github.com/YashGupta018" target="_blank">
#         <img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub">
#     </a>
# </div>
# """, unsafe_allow_html=True)

# # Footer Section
# st.markdown("""
# <footer>
#     <p>Made with ❀️ by <strong>Yash Harish Gupta</strong> | © 2024</p>
# </footer>
# """, unsafe_allow_html=True)