File size: 4,714 Bytes
ac23899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import streamlit as st
from streamlit_lottie import st_lottie
import requests

# Function to load Lottie animation from a URL
def load_lottieurl(url: str):
    """Fetch Lottie animation JSON from a URL."""
    try:
        response = requests.get(url)
        if response.status_code == 200:
            return response.json()
    except requests.exceptions.RequestException:
        return None

# CSS Styling for light and dark modes
st.markdown("""
    <style>
    body {
        margin: 0;
        padding: 0;
        font-family: 'Roboto', sans-serif;
        background-color: var(--background-color, #f8f9fa);
        color: var(--text-color, #212529);
    }
    h1 {
        font-size: 3rem;
        color: var(--primary-color, #007acc);
        text-align: center;
        margin-bottom: 15px;
    }
    h2, h3 {
        font-size: 1.5rem;
        color: var(--secondary-color, #005b96);
        text-align: center;
        margin-top: 20px;
    }
    p {
        font-family: 'Georgia', serif;
        color: var(--text-color, #212529);
        line-height: 1.6;
        text-align: justify;
    }
    .about-author {
        background-color: var(--card-bg, #ffffff);
        border-radius: 10px;
        padding: 25px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        margin: 20px auto;
        max-width: 700px;
        text-align: center;
        color: var(--text-color, #212529);
    }
    .social-icons {
        display: flex;
        justify-content: center;
        gap: 20px;
        margin-top: 15px;
    }
    .social-icons a img {
        width: 40px;
        height: 40px;
        transition: transform 0.3s ease-in-out;
    }
    .social-icons a img:hover {
        transform: scale(1.2);
    }
    footer {
        margin-top: 50px;
        text-align: center;
        font-family: 'Georgia', serif;
        color: var(--text-muted, #6c757d);
    }
    </style>
    """, unsafe_allow_html=True)

# Title and Tagline
st.title("Mastering Machine Learning: From Basics To Brilliance 🚀🤖")
st.markdown("## Your Gateway To Become Master In Data Science")

# Display Lottie animation
animation_url = "https://lottie.host/a45f4739-ef78-4193-b3f9-2ea435a190d5/PsTVRgXekn.json"
lottie_animation = load_lottieurl(animation_url)
if lottie_animation:
    st_lottie(lottie_animation, height=200, key="animation")

# About the App Section
st.subheader("About This Application")
st.markdown("""
This platform serves as a **comprehensive guide to Machine Learning and Data Science**.  
From grasping the fundamentals to deploying models, it offers insights into the entire lifecycle:
- **Problem Definition**: Understand the business context and set clear objectives.  
- **Data Handling**: Collect, clean, and explore datasets to uncover insights.  
- **Model Development**: Build and optimize machine learning models.  
- **Model Deployment**: Deliver real-world solutions and monitor performance.  

Designed for both beginners and those looking to refine their skills, this app provides a structured learning path enriched with practical examples.
""")

# Key Takeaways Section
st.subheader("What You'll Learn Here")
st.markdown("""
1. **Step-by-Step Roadmaps**: Detailed guidance to help you navigate through data science challenges.  
2. **Hands-on Projects**: Real-world examples and code snippets for applied learning.  
3. **Visualizations**: Clear, intuitive graphs and plots to simplify complex concepts.  
4. **Insights from Experience**: Lessons from my personal journey to help you avoid common pitfalls.  
""")

# Author Section
st.markdown("""
<div class="about-author">
    <h2>About the Author</h2>
    <p>
        Hello! I'm <strong>Yash Harish Gupta</strong>, an aspiring data scientist deeply passionate about machine learning.  
        My journey began with curiosity about how data drives decisions and has evolved into a mission to create impactful solutions.  
        Currently, I am learning and preparing to embark on my professional career in this exciting field.
    </p>
</div>
""", unsafe_allow_html=True)

# Social Links Section
st.markdown("""
<div class="social-icons">
    <a href="https://www.linkedin.com/in/yash-harish-gupta-71b011189/" target="_blank">
        <img src="https://upload.wikimedia.org/wikipedia/commons/c/ca/LinkedIn_logo_initials.png" alt="LinkedIn">
    </a>
    <a href="https://github.com/YashGupta018" target="_blank">
        <img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub">
    </a>
</div>
""", unsafe_allow_html=True)

# Footer Section
st.markdown("""
<footer>
    <p>Made with ❤️ by <strong>Yash Harish Gupta</strong> | © 2024</p>
</footer>
""", unsafe_allow_html=True)