import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from typing import Any, Dict, Optional, Tuple, Union from diffusers.models.attention import Attention class AttnProcessor: r"""Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on query and key vectors, but does not include spatial normalization. """ def __init__(self): if not hasattr(F, 'scaled_dot_product_attention'): raise ImportError('AttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, motion_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: import pdb; pdb.set_trace() batch_size, sequence_length, _ = hidden_states.shape if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # [batch_size, heads, seq_len, dim] key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) sp_group = get_sequence_parallel_group() if sp_group is not None: sp_size = dist.get_world_size(sp_group) query = _all_in_all_with_text(query, text_seq_length, sp_group, sp_size, mode=1) key = _all_in_all_with_text(key, text_seq_length, sp_group, sp_size, mode=1) value = _all_in_all_with_text(value, text_seq_length, sp_group, sp_size, mode=1) text_seq_length *= sp_size # Apply RoPE if needed if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb image_seq_length = image_rotary_emb[0].shape[0] query[:, :, :image_seq_length] = apply_rotary_emb(query[:, :, :image_seq_length], image_rotary_emb) if motion_rotary_emb is not None: query[:, :, image_seq_length:] = apply_rotary_emb(query[:, :, image_seq_length:], motion_rotary_emb) if not attn.is_cross_attention: key[:, :, :image_seq_length] = apply_rotary_emb(key[:, :, :image_seq_length], image_rotary_emb) if motion_rotary_emb is not None: key[:, :, image_seq_length:] = apply_rotary_emb(key[:, :, image_seq_length:], motion_rotary_emb) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) if sp_group is not None: hidden_states = _all_in_all_with_text(hidden_states, text_seq_length, sp_group, sp_size, mode=2) text_seq_length = text_seq_length // sp_size hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states class Encoder(nn.Module): def __init__( self, in_channels=3, mid_channels=[128, 512], out_channels=3072, downsample_time=[1, 1], downsample_joint=[1, 1], num_attention_heads=8, attention_head_dim=64, dim=3072, ): super(Encoder, self).__init__() self.conv_in = nn.Conv2d(in_channels, mid_channels[0], kernel_size=3, stride=1, padding=1) self.resnet1 = nn.ModuleList([ResBlock(mid_channels[0], mid_channels[0]) for _ in range(3)]) self.downsample1 = Downsample(mid_channels[0], mid_channels[0], downsample_time[0], downsample_joint[0]) self.resnet2 = ResBlock(mid_channels[0], mid_channels[1]) self.resnet3 = nn.ModuleList([ResBlock(mid_channels[1], mid_channels[1]) for _ in range(3)]) self.downsample2 = Downsample(mid_channels[1], mid_channels[1], downsample_time[1], downsample_joint[1]) # self.attn = Attention( # query_dim=dim, # dim_head=attention_head_dim, # heads=num_attention_heads, # qk_norm='layer_norm', # eps=1e-6, # bias=True, # out_bias=True, # processor=AttnProcessor(), # ) self.conv_out = nn.Conv2d(mid_channels[-1], out_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.conv_in(x) for resnet in self.resnet1: x = resnet(x) x = self.downsample1(x) x = self.resnet2(x) for resnet in self.resnet3: x = resnet(x) x = self.downsample2(x) # x = x + self.attn(x) x = self.conv_out(x) return x class VectorQuantizer(nn.Module): def __init__(self, nb_code, code_dim, is_train=True): super().__init__() self.nb_code = nb_code self.code_dim = code_dim self.mu = 0.99 self.reset_codebook() self.reset_count = 0 self.usage = torch.zeros((self.nb_code, 1)) self.is_train = is_train def reset_codebook(self): self.init = False self.code_sum = None self.code_count = None self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim).cuda()) def _tile(self, x): nb_code_x, code_dim = x.shape if nb_code_x < self.nb_code: n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x std = 0.01 / np.sqrt(code_dim) out = x.repeat(n_repeats, 1) out = out + torch.randn_like(out) * std else: out = x return out def init_codebook(self, x): if torch.all(self.codebook == 0): out = self._tile(x) self.codebook = out[:self.nb_code] self.code_sum = self.codebook.clone() self.code_count = torch.ones(self.nb_code, device=self.codebook.device) if self.is_train: self.init = True @torch.no_grad() def update_codebook(self, x, code_idx): code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1) code_sum = torch.matmul(code_onehot, x) # [nb_code, code_dim] code_count = code_onehot.sum(dim=-1) # nb_code out = self._tile(x) code_rand = out[torch.randperm(out.shape[0])[:self.nb_code]] # Update centres self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float() self.usage = self.usage.to(usage.device) if self.reset_count >= 20: # reset codebook every 20 steps for stability self.reset_count = 0 usage = (usage + self.usage >= 1.0).float() else: self.reset_count += 1 self.usage = (usage + self.usage >= 1.0).float() usage = torch.ones_like(self.usage, device=x.device) code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1) self.codebook = usage * code_update + (1 - usage) * code_rand prob = code_count / torch.sum(code_count) perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7))) return perplexity def preprocess(self, x): # [bs, c, f, j] -> [bs * f * j, c] x = x.permute(0, 2, 3, 1).contiguous() x = x.view(-1, x.shape[-1]) return x def quantize(self, x): # [bs * f * j, dim=3072] # Calculate latent code x_l k_w = self.codebook.t() distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0, keepdim=True) _, code_idx = torch.min(distance, dim=-1) return code_idx def dequantize(self, code_idx): x = F.embedding(code_idx, self.codebook) # indexing: [bs * f * j, 32] return x def forward(self, x, return_vq=False): # import pdb; pdb.set_trace() bs, c, f, j = x.shape # SMPL data frames: [bs, 3072, f, j] # Preprocess x = self.preprocess(x) # return x.view(bs, f*j, c).contiguous(), None assert x.shape[-1] == self.code_dim # Init codebook if not inited if not self.init and self.is_train: self.init_codebook(x) # quantize and dequantize through bottleneck code_idx = self.quantize(x) x_d = self.dequantize(code_idx) # Update embeddings if self.is_train: perplexity = self.update_codebook(x, code_idx) # Loss commit_loss = F.mse_loss(x, x_d.detach()) # Passthrough x_d = x + (x_d - x).detach() if return_vq: return x_d.view(bs, f*j, c).contiguous(), commit_loss # return (x_d, x_d.view(bs, f, j, c).permute(0, 3, 1, 2).contiguous()), commit_loss, perplexity # Postprocess x_d = x_d.view(bs, f, j, c).permute(0, 3, 1, 2).contiguous() if self.is_train: return x_d, commit_loss, perplexity else: return x_d, commit_loss class Decoder(nn.Module): def __init__( self, in_channels=3072, mid_channels=[512, 128], out_channels=3, upsample_rate=None, frame_upsample_rate=[1.0, 1.0], joint_upsample_rate=[1.0, 1.0], dim=128, attention_head_dim=64, num_attention_heads=8, ): super(Decoder, self).__init__() self.conv_in = nn.Conv2d(in_channels, mid_channels[0], kernel_size=3, stride=1, padding=1) self.resnet1 = nn.ModuleList([ResBlock(mid_channels[0], mid_channels[0]) for _ in range(3)]) self.upsample1 = Upsample(mid_channels[0], mid_channels[0], frame_upsample_rate=frame_upsample_rate[0], joint_upsample_rate=joint_upsample_rate[0]) self.resnet2 = ResBlock(mid_channels[0], mid_channels[1]) self.resnet3 = nn.ModuleList([ResBlock(mid_channels[1], mid_channels[1]) for _ in range(3)]) self.upsample2 = Upsample(mid_channels[1], mid_channels[1], frame_upsample_rate=frame_upsample_rate[1], joint_upsample_rate=joint_upsample_rate[1]) # self.attn = Attention( # query_dim=dim, # dim_head=attention_head_dim, # heads=num_attention_heads, # qk_norm='layer_norm', # eps=1e-6, # bias=True, # out_bias=True, # processor=AttnProcessor(), # ) self.conv_out = nn.Conv2d(mid_channels[-1], out_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.conv_in(x) for resnet in self.resnet1: x = resnet(x) x = self.upsample1(x) x = self.resnet2(x) for resnet in self.resnet3: x = resnet(x) x = self.upsample2(x) # x = x + self.attn(x) x = self.conv_out(x) return x class Upsample(nn.Module): def __init__( self, in_channels, out_channels, upsample_rate=None, frame_upsample_rate=None, joint_upsample_rate=None, ): super(Upsample, self).__init__() self.upsampler = nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) self.upsample_rate = upsample_rate self.frame_upsample_rate = frame_upsample_rate self.joint_upsample_rate = joint_upsample_rate self.upsample_rate = upsample_rate def forward(self, inputs): if inputs.shape[2] > 1 and inputs.shape[2] % 2 == 1: # split first frame x_first, x_rest = inputs[:, :, 0], inputs[:, :, 1:] if self.upsample_rate is not None: # import pdb; pdb.set_trace() x_first = F.interpolate(x_first, scale_factor=self.upsample_rate) x_rest = F.interpolate(x_rest, scale_factor=self.upsample_rate) else: # import pdb; pdb.set_trace() # x_first = F.interpolate(x_first, scale_factor=(self.frame_upsample_rate, self.joint_upsample_rate), mode="bilinear", align_corners=True) x_rest = F.interpolate(x_rest, scale_factor=(self.frame_upsample_rate, self.joint_upsample_rate), mode="bilinear", align_corners=True) x_first = x_first[:, :, None, :] inputs = torch.cat([x_first, x_rest], dim=2) elif inputs.shape[2] > 1: if self.upsample_rate is not None: inputs = F.interpolate(inputs, scale_factor=self.upsample_rate) else: inputs = F.interpolate(inputs, scale_factor=(self.frame_upsample_rate, self.joint_upsample_rate), mode="bilinear", align_corners=True) else: inputs = inputs.squeeze(2) if self.upsample_rate is not None: inputs = F.interpolate(inputs, scale_factor=self.upsample_rate) else: inputs = F.interpolate(inputs, scale_factor=(self.frame_upsample_rate, self.joint_upsample_rate), mode="linear", align_corners=True) inputs = inputs[:, :, None, :, :] b, c, t, j = inputs.shape inputs = inputs.permute(0, 2, 1, 3).reshape(b * t, c, j) inputs = self.upsampler(inputs) inputs = inputs.reshape(b, t, *inputs.shape[1:]).permute(0, 2, 1, 3) return inputs class Downsample(nn.Module): def __init__( self, in_channels, out_channels, frame_downsample_rate, joint_downsample_rate ): super(Downsample, self).__init__() self.frame_downsample_rate = frame_downsample_rate self.joint_downsample_rate = joint_downsample_rate self.joint_downsample = nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=self.joint_downsample_rate, padding=1) def forward(self, x): # (batch_size, channels, frames, joints) -> (batch_size * joints, channels, frames) if self.frame_downsample_rate > 1: batch_size, channels, frames, joints = x.shape x = x.permute(0, 3, 1, 2).reshape(batch_size * joints, channels, frames) if x.shape[-1] % 2 == 1: x_first, x_rest = x[..., 0], x[..., 1:] if x_rest.shape[-1] > 0: # (batch_size * height * width, channels, frames - 1) -> (batch_size * height * width, channels, (frames - 1) // 2) x_rest = F.avg_pool1d(x_rest, kernel_size=self.frame_downsample_rate, stride=self.frame_downsample_rate) x = torch.cat([x_first[..., None], x_rest], dim=-1) # (batch_size * joints, channels, (frames // 2) + 1) -> (batch_size, channels, (frames // 2) + 1, joints) x = x.reshape(batch_size, joints, channels, x.shape[-1]).permute(0, 2, 3, 1) else: # (batch_size * joints, channels, frames) -> (batch_size * joints, channels, frames // 2) x = F.avg_pool1d(x, kernel_size=2, stride=2) # (batch_size * joints, channels, frames // 2) -> (batch_size, height, width, channels, frames // 2) -> (batch_size, channels, frames // 2, height, width) x = x.reshape(batch_size, joints, channels, x.shape[-1]).permute(0, 2, 3, 1) # Pad the tensor # pad = (0, 1) # x = F.pad(x, pad, mode="constant", value=0) batch_size, channels, frames, joints = x.shape # (batch_size, channels, frames, joints) -> (batch_size * frames, channels, joints) x = x.permute(0, 2, 1, 3).reshape(batch_size * frames, channels, joints) x = self.joint_downsample(x) # (batch_size * frames, channels, joints) -> (batch_size, channels, frames, joints) x = x.reshape(batch_size, frames, x.shape[1], x.shape[2]).permute(0, 2, 1, 3) return x class ResBlock(nn.Module): def __init__(self, in_channels, out_channels, group_num=32, max_channels=512): super(ResBlock, self).__init__() skip = max(1, max_channels // out_channels - 1) self.block = nn.Sequential( nn.GroupNorm(group_num, in_channels, eps=1e-06, affine=True), nn.SiLU(), nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=skip, dilation=skip), nn.GroupNorm(group_num, out_channels, eps=1e-06, affine=True), nn.SiLU(), nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, padding=0), ) self.conv_short = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) if in_channels != out_channels else nn.Identity() def forward(self, x): hidden_states = self.block(x) if hidden_states.shape != x.shape: x = self.conv_short(x) x = x + hidden_states return x class SMPL_VQVAE(nn.Module): def __init__(self, encoder, decoder, vq): super(SMPL_VQVAE, self).__init__() self.encoder = encoder self.decoder = decoder self.vq = vq def to(self, device): self.encoder = self.encoder.to(device) self.decoder = self.decoder.to(device) self.vq = self.vq.to(device) self.device = device return self def encdec_slice_frames(self, x, frame_batch_size, encdec, return_vq): num_frames = x.shape[2] remaining_frames = num_frames % frame_batch_size x_output = [] loss_output = [] perplexity_output = [] for i in range(num_frames // frame_batch_size): remaining_frames = num_frames % frame_batch_size start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) end_frame = frame_batch_size * (i + 1) + remaining_frames x_intermediate = x[:, :, start_frame:end_frame] x_intermediate = encdec(x_intermediate) # if encdec == self.encoder and self.vq is not None: # x_intermediate, loss, perplexity = self.vq(x_intermediate) # x_output.append(x_intermediate) # loss_output.append(loss) # perplexity_output.append(perplexity) # else: # x_output.append(x_intermediate) x_output.append(x_intermediate) if encdec == self.encoder and self.vq is not None and not self.vq.is_train: x_output, loss = self.vq(torch.cat(x_output, dim=2), return_vq=return_vq) return x_output, loss elif encdec == self.encoder and self.vq is not None and self.vq.is_train: x_output, loss, preplexity = self.vq(torch.cat(x_output, dim=2)) return x_output, loss, preplexity else: return torch.cat(x_output, dim=2), None, None def forward(self, x, return_vq=False): x = x.permute(0, 3, 1, 2) if not self.vq.is_train: x, loss = self.encdec_slice_frames(x, frame_batch_size=8, encdec=self.encoder, return_vq=return_vq) else: x, loss, perplexity = self.encdec_slice_frames(x, frame_batch_size=8, encdec=self.encoder, return_vq=return_vq) if return_vq: return x, loss x, _, _ = self.encdec_slice_frames(x, frame_batch_size=2, encdec=self.decoder, return_vq=return_vq) x = x.permute(0, 2, 3, 1) if self.vq.is_train: return x, loss, perplexity return x, loss