yanboding's picture
Upload 32 files
30a0a93 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from typing import Any, Dict, Optional, Tuple, Union
from diffusers.models.attention import Attention
class AttnProcessor:
r"""Processor for implementing scaled dot-product attention for the
CogVideoX model.
It applies a rotary embedding on query and key vectors, but does not include spatial normalization.
"""
def __init__(self):
if not hasattr(F, 'scaled_dot_product_attention'):
raise ImportError('AttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.')
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
motion_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
import pdb; pdb.set_trace()
batch_size, sequence_length, _ = hidden_states.shape
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # [batch_size, heads, seq_len, dim]
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
sp_group = get_sequence_parallel_group()
if sp_group is not None:
sp_size = dist.get_world_size(sp_group)
query = _all_in_all_with_text(query, text_seq_length, sp_group, sp_size, mode=1)
key = _all_in_all_with_text(key, text_seq_length, sp_group, sp_size, mode=1)
value = _all_in_all_with_text(value, text_seq_length, sp_group, sp_size, mode=1)
text_seq_length *= sp_size
# Apply RoPE if needed
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
image_seq_length = image_rotary_emb[0].shape[0]
query[:, :, :image_seq_length] = apply_rotary_emb(query[:, :, :image_seq_length], image_rotary_emb)
if motion_rotary_emb is not None:
query[:, :, image_seq_length:] = apply_rotary_emb(query[:, :, image_seq_length:], motion_rotary_emb)
if not attn.is_cross_attention:
key[:, :, :image_seq_length] = apply_rotary_emb(key[:, :, :image_seq_length], image_rotary_emb)
if motion_rotary_emb is not None:
key[:, :, image_seq_length:] = apply_rotary_emb(key[:, :, image_seq_length:], motion_rotary_emb)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
if sp_group is not None:
hidden_states = _all_in_all_with_text(hidden_states, text_seq_length, sp_group, sp_size, mode=2)
text_seq_length = text_seq_length // sp_size
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class Encoder(nn.Module):
def __init__(
self,
in_channels=3,
mid_channels=[128, 512],
out_channels=3072,
downsample_time=[1, 1],
downsample_joint=[1, 1],
num_attention_heads=8,
attention_head_dim=64,
dim=3072,
):
super(Encoder, self).__init__()
self.conv_in = nn.Conv2d(in_channels, mid_channels[0], kernel_size=3, stride=1, padding=1)
self.resnet1 = nn.ModuleList([ResBlock(mid_channels[0], mid_channels[0]) for _ in range(3)])
self.downsample1 = Downsample(mid_channels[0], mid_channels[0], downsample_time[0], downsample_joint[0])
self.resnet2 = ResBlock(mid_channels[0], mid_channels[1])
self.resnet3 = nn.ModuleList([ResBlock(mid_channels[1], mid_channels[1]) for _ in range(3)])
self.downsample2 = Downsample(mid_channels[1], mid_channels[1], downsample_time[1], downsample_joint[1])
# self.attn = Attention(
# query_dim=dim,
# dim_head=attention_head_dim,
# heads=num_attention_heads,
# qk_norm='layer_norm',
# eps=1e-6,
# bias=True,
# out_bias=True,
# processor=AttnProcessor(),
# )
self.conv_out = nn.Conv2d(mid_channels[-1], out_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = self.conv_in(x)
for resnet in self.resnet1:
x = resnet(x)
x = self.downsample1(x)
x = self.resnet2(x)
for resnet in self.resnet3:
x = resnet(x)
x = self.downsample2(x)
# x = x + self.attn(x)
x = self.conv_out(x)
return x
class VectorQuantizer(nn.Module):
def __init__(self, nb_code, code_dim, is_train=True):
super().__init__()
self.nb_code = nb_code
self.code_dim = code_dim
self.mu = 0.99
self.reset_codebook()
self.reset_count = 0
self.usage = torch.zeros((self.nb_code, 1))
self.is_train = is_train
def reset_codebook(self):
self.init = False
self.code_sum = None
self.code_count = None
self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim).cuda())
def _tile(self, x):
nb_code_x, code_dim = x.shape
if nb_code_x < self.nb_code:
n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
std = 0.01 / np.sqrt(code_dim)
out = x.repeat(n_repeats, 1)
out = out + torch.randn_like(out) * std
else:
out = x
return out
def init_codebook(self, x):
if torch.all(self.codebook == 0):
out = self._tile(x)
self.codebook = out[:self.nb_code]
self.code_sum = self.codebook.clone()
self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
if self.is_train:
self.init = True
@torch.no_grad()
def update_codebook(self, x, code_idx):
code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device)
code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
code_sum = torch.matmul(code_onehot, x) # [nb_code, code_dim]
code_count = code_onehot.sum(dim=-1) # nb_code
out = self._tile(x)
code_rand = out[torch.randperm(out.shape[0])[:self.nb_code]]
# Update centres
self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum
self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count
usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
self.usage = self.usage.to(usage.device)
if self.reset_count >= 20: # reset codebook every 20 steps for stability
self.reset_count = 0
usage = (usage + self.usage >= 1.0).float()
else:
self.reset_count += 1
self.usage = (usage + self.usage >= 1.0).float()
usage = torch.ones_like(self.usage, device=x.device)
code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
self.codebook = usage * code_update + (1 - usage) * code_rand
prob = code_count / torch.sum(code_count)
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
return perplexity
def preprocess(self, x):
# [bs, c, f, j] -> [bs * f * j, c]
x = x.permute(0, 2, 3, 1).contiguous()
x = x.view(-1, x.shape[-1])
return x
def quantize(self, x):
# [bs * f * j, dim=3072]
# Calculate latent code x_l
k_w = self.codebook.t()
distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0, keepdim=True)
_, code_idx = torch.min(distance, dim=-1)
return code_idx
def dequantize(self, code_idx):
x = F.embedding(code_idx, self.codebook) # indexing: [bs * f * j, 32]
return x
def forward(self, x, return_vq=False):
# import pdb; pdb.set_trace()
bs, c, f, j = x.shape # SMPL data frames: [bs, 3072, f, j]
# Preprocess
x = self.preprocess(x)
# return x.view(bs, f*j, c).contiguous(), None
assert x.shape[-1] == self.code_dim
# Init codebook if not inited
if not self.init and self.is_train:
self.init_codebook(x)
# quantize and dequantize through bottleneck
code_idx = self.quantize(x)
x_d = self.dequantize(code_idx)
# Update embeddings
if self.is_train:
perplexity = self.update_codebook(x, code_idx)
# Loss
commit_loss = F.mse_loss(x, x_d.detach())
# Passthrough
x_d = x + (x_d - x).detach()
if return_vq:
return x_d.view(bs, f*j, c).contiguous(), commit_loss
# return (x_d, x_d.view(bs, f, j, c).permute(0, 3, 1, 2).contiguous()), commit_loss, perplexity
# Postprocess
x_d = x_d.view(bs, f, j, c).permute(0, 3, 1, 2).contiguous()
if self.is_train:
return x_d, commit_loss, perplexity
else:
return x_d, commit_loss
class Decoder(nn.Module):
def __init__(
self,
in_channels=3072,
mid_channels=[512, 128],
out_channels=3,
upsample_rate=None,
frame_upsample_rate=[1.0, 1.0],
joint_upsample_rate=[1.0, 1.0],
dim=128,
attention_head_dim=64,
num_attention_heads=8,
):
super(Decoder, self).__init__()
self.conv_in = nn.Conv2d(in_channels, mid_channels[0], kernel_size=3, stride=1, padding=1)
self.resnet1 = nn.ModuleList([ResBlock(mid_channels[0], mid_channels[0]) for _ in range(3)])
self.upsample1 = Upsample(mid_channels[0], mid_channels[0], frame_upsample_rate=frame_upsample_rate[0], joint_upsample_rate=joint_upsample_rate[0])
self.resnet2 = ResBlock(mid_channels[0], mid_channels[1])
self.resnet3 = nn.ModuleList([ResBlock(mid_channels[1], mid_channels[1]) for _ in range(3)])
self.upsample2 = Upsample(mid_channels[1], mid_channels[1], frame_upsample_rate=frame_upsample_rate[1], joint_upsample_rate=joint_upsample_rate[1])
# self.attn = Attention(
# query_dim=dim,
# dim_head=attention_head_dim,
# heads=num_attention_heads,
# qk_norm='layer_norm',
# eps=1e-6,
# bias=True,
# out_bias=True,
# processor=AttnProcessor(),
# )
self.conv_out = nn.Conv2d(mid_channels[-1], out_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = self.conv_in(x)
for resnet in self.resnet1:
x = resnet(x)
x = self.upsample1(x)
x = self.resnet2(x)
for resnet in self.resnet3:
x = resnet(x)
x = self.upsample2(x)
# x = x + self.attn(x)
x = self.conv_out(x)
return x
class Upsample(nn.Module):
def __init__(
self,
in_channels,
out_channels,
upsample_rate=None,
frame_upsample_rate=None,
joint_upsample_rate=None,
):
super(Upsample, self).__init__()
self.upsampler = nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.upsample_rate = upsample_rate
self.frame_upsample_rate = frame_upsample_rate
self.joint_upsample_rate = joint_upsample_rate
self.upsample_rate = upsample_rate
def forward(self, inputs):
if inputs.shape[2] > 1 and inputs.shape[2] % 2 == 1:
# split first frame
x_first, x_rest = inputs[:, :, 0], inputs[:, :, 1:]
if self.upsample_rate is not None:
# import pdb; pdb.set_trace()
x_first = F.interpolate(x_first, scale_factor=self.upsample_rate)
x_rest = F.interpolate(x_rest, scale_factor=self.upsample_rate)
else:
# import pdb; pdb.set_trace()
# x_first = F.interpolate(x_first, scale_factor=(self.frame_upsample_rate, self.joint_upsample_rate), mode="bilinear", align_corners=True)
x_rest = F.interpolate(x_rest, scale_factor=(self.frame_upsample_rate, self.joint_upsample_rate), mode="bilinear", align_corners=True)
x_first = x_first[:, :, None, :]
inputs = torch.cat([x_first, x_rest], dim=2)
elif inputs.shape[2] > 1:
if self.upsample_rate is not None:
inputs = F.interpolate(inputs, scale_factor=self.upsample_rate)
else:
inputs = F.interpolate(inputs, scale_factor=(self.frame_upsample_rate, self.joint_upsample_rate), mode="bilinear", align_corners=True)
else:
inputs = inputs.squeeze(2)
if self.upsample_rate is not None:
inputs = F.interpolate(inputs, scale_factor=self.upsample_rate)
else:
inputs = F.interpolate(inputs, scale_factor=(self.frame_upsample_rate, self.joint_upsample_rate), mode="linear", align_corners=True)
inputs = inputs[:, :, None, :, :]
b, c, t, j = inputs.shape
inputs = inputs.permute(0, 2, 1, 3).reshape(b * t, c, j)
inputs = self.upsampler(inputs)
inputs = inputs.reshape(b, t, *inputs.shape[1:]).permute(0, 2, 1, 3)
return inputs
class Downsample(nn.Module):
def __init__(
self,
in_channels,
out_channels,
frame_downsample_rate,
joint_downsample_rate
):
super(Downsample, self).__init__()
self.frame_downsample_rate = frame_downsample_rate
self.joint_downsample_rate = joint_downsample_rate
self.joint_downsample = nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=self.joint_downsample_rate, padding=1)
def forward(self, x):
# (batch_size, channels, frames, joints) -> (batch_size * joints, channels, frames)
if self.frame_downsample_rate > 1:
batch_size, channels, frames, joints = x.shape
x = x.permute(0, 3, 1, 2).reshape(batch_size * joints, channels, frames)
if x.shape[-1] % 2 == 1:
x_first, x_rest = x[..., 0], x[..., 1:]
if x_rest.shape[-1] > 0:
# (batch_size * height * width, channels, frames - 1) -> (batch_size * height * width, channels, (frames - 1) // 2)
x_rest = F.avg_pool1d(x_rest, kernel_size=self.frame_downsample_rate, stride=self.frame_downsample_rate)
x = torch.cat([x_first[..., None], x_rest], dim=-1)
# (batch_size * joints, channels, (frames // 2) + 1) -> (batch_size, channels, (frames // 2) + 1, joints)
x = x.reshape(batch_size, joints, channels, x.shape[-1]).permute(0, 2, 3, 1)
else:
# (batch_size * joints, channels, frames) -> (batch_size * joints, channels, frames // 2)
x = F.avg_pool1d(x, kernel_size=2, stride=2)
# (batch_size * joints, channels, frames // 2) -> (batch_size, height, width, channels, frames // 2) -> (batch_size, channels, frames // 2, height, width)
x = x.reshape(batch_size, joints, channels, x.shape[-1]).permute(0, 2, 3, 1)
# Pad the tensor
# pad = (0, 1)
# x = F.pad(x, pad, mode="constant", value=0)
batch_size, channels, frames, joints = x.shape
# (batch_size, channels, frames, joints) -> (batch_size * frames, channels, joints)
x = x.permute(0, 2, 1, 3).reshape(batch_size * frames, channels, joints)
x = self.joint_downsample(x)
# (batch_size * frames, channels, joints) -> (batch_size, channels, frames, joints)
x = x.reshape(batch_size, frames, x.shape[1], x.shape[2]).permute(0, 2, 1, 3)
return x
class ResBlock(nn.Module):
def __init__(self,
in_channels,
out_channels,
group_num=32,
max_channels=512):
super(ResBlock, self).__init__()
skip = max(1, max_channels // out_channels - 1)
self.block = nn.Sequential(
nn.GroupNorm(group_num, in_channels, eps=1e-06, affine=True),
nn.SiLU(),
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=skip, dilation=skip),
nn.GroupNorm(group_num, out_channels, eps=1e-06, affine=True),
nn.SiLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, padding=0),
)
self.conv_short = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) if in_channels != out_channels else nn.Identity()
def forward(self, x):
hidden_states = self.block(x)
if hidden_states.shape != x.shape:
x = self.conv_short(x)
x = x + hidden_states
return x
class SMPL_VQVAE(nn.Module):
def __init__(self, encoder, decoder, vq):
super(SMPL_VQVAE, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.vq = vq
def to(self, device):
self.encoder = self.encoder.to(device)
self.decoder = self.decoder.to(device)
self.vq = self.vq.to(device)
self.device = device
return self
def encdec_slice_frames(self, x, frame_batch_size, encdec, return_vq):
num_frames = x.shape[2]
remaining_frames = num_frames % frame_batch_size
x_output = []
loss_output = []
perplexity_output = []
for i in range(num_frames // frame_batch_size):
remaining_frames = num_frames % frame_batch_size
start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames)
end_frame = frame_batch_size * (i + 1) + remaining_frames
x_intermediate = x[:, :, start_frame:end_frame]
x_intermediate = encdec(x_intermediate)
# if encdec == self.encoder and self.vq is not None:
# x_intermediate, loss, perplexity = self.vq(x_intermediate)
# x_output.append(x_intermediate)
# loss_output.append(loss)
# perplexity_output.append(perplexity)
# else:
# x_output.append(x_intermediate)
x_output.append(x_intermediate)
if encdec == self.encoder and self.vq is not None and not self.vq.is_train:
x_output, loss = self.vq(torch.cat(x_output, dim=2), return_vq=return_vq)
return x_output, loss
elif encdec == self.encoder and self.vq is not None and self.vq.is_train:
x_output, loss, preplexity = self.vq(torch.cat(x_output, dim=2))
return x_output, loss, preplexity
else:
return torch.cat(x_output, dim=2), None, None
def forward(self, x, return_vq=False):
x = x.permute(0, 3, 1, 2)
if not self.vq.is_train:
x, loss = self.encdec_slice_frames(x, frame_batch_size=8, encdec=self.encoder, return_vq=return_vq)
else:
x, loss, perplexity = self.encdec_slice_frames(x, frame_batch_size=8, encdec=self.encoder, return_vq=return_vq)
if return_vq:
return x, loss
x, _, _ = self.encdec_slice_frames(x, frame_batch_size=2, encdec=self.decoder, return_vq=return_vq)
x = x.permute(0, 2, 3, 1)
if self.vq.is_train:
return x, loss, perplexity
return x, loss