yalrashed commited on
Commit
e8ed9ef
·
verified ·
1 Parent(s): 97aa888

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -46
app.py CHANGED
@@ -1,64 +1,108 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
  gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
  ),
59
  ],
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import os
3
+ import json
4
+ from openai import OpenAI
5
+ from dotenv import load_dotenv
6
 
7
+ # Load environment variables
8
+ load_dotenv()
 
 
9
 
10
+ # Initialize OpenAI client
11
+ openai_client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
12
+ ragie_api_key = os.getenv('RAGIE_API_KEY')
13
 
14
+ async def get_ragie_chunks(query):
15
+ """Retrieve chunks using Ragie's documented method"""
16
+ import aiohttp
17
+
18
+ async with aiohttp.ClientSession() as session:
19
+ async with session.post(
20
+ "https://api.ragie.ai/retrievals",
21
+ headers={
22
+ "Content-Type": "application/json",
23
+ "Authorization": f"Bearer {ragie_api_key}"
24
+ },
25
+ json={
26
+ "query": query,
27
+ "filter": {
28
+ "scope": "tutorial" # Adjust this to match your Ragie scope
29
+ }
30
+ }
31
+ ) as response:
32
+ if response.status != 200:
33
+ return []
34
+ data = await response.json()
35
+ return [chunk["text"] for chunk in data.get("scored_chunks", [])]
36
 
37
+ def create_system_prompt(chunks):
38
+ """Create system prompt following Ragie's format"""
39
+ return f"""These are very important to follow:
40
+ You are "Ragie AI", a professional but friendly AI chatbot working as an assistant.
41
+ Your current task is to help the user based on all of the information available to you.
42
+ Answer informally, directly, and concisely without a heading or greeting but include details.
43
+ Use richtext Markdown when appropriate including bold, italic, paragraphs, and lists.
44
+ If using LaTeX, use double $$ as delimiter instead of single $. Use $$....$$ instead of $..$$.
45
+ Organize information into multiple sections or points when appropriate.
46
+ Don't include raw item IDs or other raw fields from the source.
47
+ Don't use XML or other markup unless requested by the user.
48
 
49
+ Here is all of the information available to answer the user:
50
+ ===
51
+ {chr(10).join(chunks)}
52
+ ===
53
 
54
+ If the user asked for a search and there are no results, make sure to let the user know
55
+ and what they might be able to do to find the information they need."""
56
 
57
+ async def respond(message, history, temperature):
58
+ """Main response function following Ragie's integration approach"""
59
+ try:
60
+ # Get chunks from Ragie using their method
61
+ chunks = await get_ragie_chunks(message)
62
+
63
+ # Create messages array following their format
64
+ messages = [{"role": "system", "content": create_system_prompt(chunks)}]
65
+
66
+ # Add conversation history
67
+ for human, assistant in history:
68
+ messages.append({"role": "user", "content": human})
69
+ messages.append({"role": "assistant", "content": assistant})
70
+
71
+ # Add current message
72
+ messages.append({"role": "user", "content": message})
73
+
74
+ # Get streaming response from OpenAI
75
+ response = ""
76
+ stream = openai_client.chat.completions.create(
77
+ model="gpt-3.5-turbo",
78
+ messages=messages,
79
+ temperature=temperature,
80
+ stream=True
81
+ )
82
+
83
+ for chunk in stream:
84
+ if chunk.choices[0].delta.content is not None:
85
+ response += chunk.choices[0].delta.content
86
+ yield response
87
+
88
+ except Exception as e:
89
+ yield f"I apologize, but I encountered an error: {str(e)}"
90
 
91
+ # Create the Gradio interface
 
 
 
 
 
 
92
  demo = gr.ChatInterface(
93
  respond,
94
  additional_inputs=[
 
 
 
95
  gr.Slider(
96
+ minimum=0.0,
97
+ maximum=2.0,
98
+ value=0.7,
99
+ step=0.1,
100
+ label="Temperature"
101
  ),
102
  ],
103
+ title="Ragie-Powered Chatbot",
104
+ description="A chatbot that combines Ragie's retrieval system with OpenAI's language capabilities."
105
  )
106
 
 
107
  if __name__ == "__main__":
108
+ demo.launch()