import gradio as gr import torch from annotator.util import resize_image, HWC3 from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler from huggingface_hub import hf_hub_download # Initialize the model and other components # config = "./models/cldm_v21_512_latctrl_coltrans.yaml'" model = create_model('./models/cldm_v21_512_latctrl_coltrans.yaml').cpu() ckpt = hf_hub_download(repo_id="xywwww/scene_diffusion", filename="checkpoints/epoch=25-step=112553.ckpt") print(ckpt) model.load_state_dict(load_state_dict(ckpt), strict=False) # model = load_model_checkpoint(model, ckpt) ddim_sampler = DDIMSampler(model) def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold): with torch.no_grad(): img = resize_image(HWC3(input_image), image_resolution) H, W, C = img.shape # detected_map = apply_canny(img, low_threshold, high_threshold) # detected_map = HWC3(detected_map) # Add the rest of the processing logic here def create_demo(process): with gr.Blocks() as demo: with gr.Row(): with gr.Column(): input_image = gr.Image() prompt = gr.Textbox(label="Prompt", submit_btn=True) a_prompt = gr.Textbox(label="Additional Prompt") n_prompt = gr.Textbox(label="Negative Prompt") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider(label="Number of images", minimum=1, maximum=10, value=1, step=1) image_resolution = gr.Slider(label="Image resolution", minimum=256, maximum=1024, value=512, step=256) ddim_steps = gr.Slider(label="DDIM Steps", minimum=1, maximum=100, value=50, step=1) guess_mode = gr.Checkbox(label="Guess Mode") strength = gr.Slider(label="Strength", minimum=0.0, maximum=1.0, value=0.5, step=0.1) scale = gr.Slider(label="Scale", minimum=0.1, maximum=30.0, value=10.0, step=0.1) seed = gr.Slider(label="Seed", minimum=0, maximum=10000, value=42, step=1) eta = gr.Slider(label="ETA", minimum=0.0, maximum=1.0, value=0.0, step=0.1) low_threshold = gr.Slider(label="Canny Low Threshold", minimum=1, maximum=255, value=100, step=1) high_threshold = gr.Slider(label="Canny High Threshold", minimum=1, maximum=255, value=200, step=1) submit = gr.Button("Generate") with gr.Column(): output_image = gr.Image() submit.click(fn=process, inputs=[input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold], outputs=output_image) return demo demo = create_demo(process) demo.launch()