Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
-
import
|
3 |
-
|
4 |
import gradio as gr
|
5 |
-
from
|
6 |
-
|
7 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
#
|
15 |
-
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
)
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
img = resize_image(HWC3(input_image), image_resolution)
|
25 |
-
|
26 |
-
if seed == -1:
|
27 |
-
seed = random.randint(0, 65535)
|
28 |
-
seed_everything(seed)
|
29 |
-
|
30 |
-
# Generate images using the pipeline
|
31 |
-
generator = torch.Generator("cuda").manual_seed(seed)
|
32 |
-
images = pipe(prompt=prompt + ', ' + a_prompt, num_inference_steps=ddim_steps, guidance_scale=scale, generator=generator, num_images_per_prompt=num_samples).images
|
33 |
-
|
34 |
-
results = [np.array(image) for image in images]
|
35 |
-
return results
|
36 |
-
|
37 |
-
block = gr.Blocks().queue()
|
38 |
-
with block:
|
39 |
-
with gr.Row():
|
40 |
-
gr.Markdown("## Scene Diffusion with ControlNet")
|
41 |
-
with gr.Row():
|
42 |
-
with gr.Column():
|
43 |
-
input_image = gr.Image(label="Image")
|
44 |
-
prompt = gr.Textbox(label="Prompt")
|
45 |
-
a_prompt = gr.Textbox(label="Additional Prompt")
|
46 |
-
n_prompt = gr.Textbox(label="Negative Prompt")
|
47 |
-
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
48 |
-
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
|
49 |
-
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
50 |
-
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
51 |
-
strength = gr.Slider(label="Strength", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
|
52 |
-
scale = gr.Slider(label="Scale", minimum=0.1, maximum=30.0, value=10.0, step=0.1)
|
53 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=10000, value=42, step=1)
|
54 |
-
eta = gr.Slider(label="ETA", minimum=0.0, maximum=1.0, value=0.0, step=0.1)
|
55 |
-
low_threshold = gr.Slider(label="Canny Low Threshold", minimum=1, maximum=255, value=100, step=1)
|
56 |
-
high_threshold = gr.Slider(label="Canny High Threshold", minimum=1, maximum=255, value=200, step=1)
|
57 |
-
submit = gr.Button("Generate")
|
58 |
-
with gr.Column():
|
59 |
-
output_image = gr.Gallery(label='Output', show_label=False, elem_id="gallery")
|
60 |
-
submit.click(fn=process, inputs=[input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold], outputs=output_image)
|
61 |
-
|
62 |
-
demo = block
|
63 |
-
demo.launch()
|
|
|
1 |
+
# import torch
|
2 |
+
# import random
|
3 |
+
# import numpy as np
|
4 |
+
# import gradio as gr
|
5 |
+
# from pytorch_lightning import seed_everything
|
6 |
+
# from annotator.util import resize_image, HWC3
|
7 |
+
# from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
8 |
+
|
9 |
+
# # # Load the controlnet model
|
10 |
+
# # controlnet = ControlNetModel.from_pretrained("CompVis/controlnet")
|
11 |
+
|
12 |
+
# # # Load the pipeline
|
13 |
+
# # pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
14 |
+
# # "CompVis/stable-diffusion-v1-4",
|
15 |
+
# # controlnet=controlnet
|
16 |
+
# # ).to("cuda")
|
17 |
+
# controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
|
18 |
+
# pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
19 |
+
# "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
20 |
+
# )
|
21 |
+
|
22 |
+
# def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold):
|
23 |
+
# with torch.no_grad():
|
24 |
+
# img = resize_image(HWC3(input_image), image_resolution)
|
25 |
+
|
26 |
+
# if seed == -1:
|
27 |
+
# seed = random.randint(0, 65535)
|
28 |
+
# seed_everything(seed)
|
29 |
+
|
30 |
+
# # Generate images using the pipeline
|
31 |
+
# generator = torch.Generator("cuda").manual_seed(seed)
|
32 |
+
# images = pipe(prompt=prompt + ', ' + a_prompt, num_inference_steps=ddim_steps, guidance_scale=scale, generator=generator, num_images_per_prompt=num_samples).images
|
33 |
+
|
34 |
+
# results = [np.array(image) for image in images]
|
35 |
+
# return results
|
36 |
+
|
37 |
+
# block = gr.Blocks().queue()
|
38 |
+
# with block:
|
39 |
+
# with gr.Row():
|
40 |
+
# gr.Markdown("## Scene Diffusion with ControlNet")
|
41 |
+
# with gr.Row():
|
42 |
+
# with gr.Column():
|
43 |
+
# input_image = gr.Image(label="Image")
|
44 |
+
# prompt = gr.Textbox(label="Prompt")
|
45 |
+
# a_prompt = gr.Textbox(label="Additional Prompt")
|
46 |
+
# n_prompt = gr.Textbox(label="Negative Prompt")
|
47 |
+
# num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
48 |
+
# image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
|
49 |
+
# ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
50 |
+
# guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
51 |
+
# strength = gr.Slider(label="Strength", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
|
52 |
+
# scale = gr.Slider(label="Scale", minimum=0.1, maximum=30.0, value=10.0, step=0.1)
|
53 |
+
# seed = gr.Slider(label="Seed", minimum=0, maximum=10000, value=42, step=1)
|
54 |
+
# eta = gr.Slider(label="ETA", minimum=0.0, maximum=1.0, value=0.0, step=0.1)
|
55 |
+
# low_threshold = gr.Slider(label="Canny Low Threshold", minimum=1, maximum=255, value=100, step=1)
|
56 |
+
# high_threshold = gr.Slider(label="Canny High Threshold", minimum=1, maximum=255, value=200, step=1)
|
57 |
+
# submit = gr.Button("Generate")
|
58 |
+
# with gr.Column():
|
59 |
+
# output_image = gr.Gallery(label='Output', show_label=False, elem_id="gallery")
|
60 |
+
# submit.click(fn=process, inputs=[input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold], outputs=output_image)
|
61 |
+
|
62 |
+
# demo = block
|
63 |
+
# demo.launch()
|
64 |
import torch
|
65 |
+
from diffusers import StableDiffusionControlNetPipeline
|
66 |
+
from diffusers import ControlNetModel
|
67 |
import gradio as gr
|
68 |
+
from PIL import Image
|
69 |
+
import numpy as np
|
|
|
70 |
|
71 |
+
# 初始化 ControlNet 模型和 Stable Diffusion Pipeline
|
72 |
+
controlnet = ControlNetModel.from_pretrained("controlnet/checkpoints/ControlNetModel")
|
73 |
+
pipeline = StableDiffusionControlNetPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", controlnet=controlnet).to("cuda")
|
74 |
|
75 |
+
# 定义图像生成函数
|
76 |
+
def generate_image(prompt: str, input_image: Image.Image):
|
77 |
+
# 可以在这里根据传入的图像做一些预处理(例如,使用控制网络或图像生成模型)
|
78 |
+
|
79 |
+
# 将输入图像转换为合适的格式
|
80 |
+
input_image = input_image.convert("RGB")
|
81 |
+
|
82 |
+
# 生成图像
|
83 |
+
result_image = pipeline(prompt=prompt, init_image=input_image, strength=0.75).images[0]
|
84 |
+
return result_image
|
85 |
+
|
86 |
+
# 创建 Gradio 界面
|
87 |
+
iface = gr.Interface(
|
88 |
+
fn=generate_image,
|
89 |
+
inputs=[
|
90 |
+
gr.Textbox(label="Enter a prompt", placeholder="e.g. a futuristic city at sunset"), # 提示框
|
91 |
+
gr.Image(label="Upload an Image", type="pil") # 图像上传框
|
92 |
+
],
|
93 |
+
outputs=gr.Image(label="Generated Image"), # 输出生成的图像
|
94 |
+
live=True
|
95 |
)
|
96 |
|
97 |
+
# 启动 Gradio 应用
|
98 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|