Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -1,63 +1,98 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 1 | 
         
             
            import torch
         
     | 
| 2 | 
         
            -
            import  
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
             
            import gradio as gr
         
     | 
| 5 | 
         
            -
            from  
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
            from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
         
     | 
| 8 | 
         | 
| 9 | 
         
            -
            #  
     | 
| 10 | 
         
            -
             
     | 
| 
         | 
|
| 11 | 
         | 
| 12 | 
         
            -
            #  
     | 
| 13 | 
         
            -
             
     | 
| 14 | 
         
            -
            # 
     | 
| 15 | 
         
            -
             
     | 
| 16 | 
         
            -
            #  
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
                 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 20 | 
         
             
            )
         
     | 
| 21 | 
         | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
             
     | 
| 24 | 
         
            -
                    img = resize_image(HWC3(input_image), image_resolution)
         
     | 
| 25 | 
         
            -
                    
         
     | 
| 26 | 
         
            -
                    if seed == -1:
         
     | 
| 27 | 
         
            -
                        seed = random.randint(0, 65535)
         
     | 
| 28 | 
         
            -
                    seed_everything(seed)
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
                    # Generate images using the pipeline
         
     | 
| 31 | 
         
            -
                    generator = torch.Generator("cuda").manual_seed(seed)
         
     | 
| 32 | 
         
            -
                    images = pipe(prompt=prompt + ', ' + a_prompt, num_inference_steps=ddim_steps, guidance_scale=scale, generator=generator, num_images_per_prompt=num_samples).images
         
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
            -
                    results = [np.array(image) for image in images]
         
     | 
| 35 | 
         
            -
                return results
         
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
            block = gr.Blocks().queue()
         
     | 
| 38 | 
         
            -
            with block:
         
     | 
| 39 | 
         
            -
                with gr.Row():
         
     | 
| 40 | 
         
            -
                    gr.Markdown("## Scene Diffusion with ControlNet")
         
     | 
| 41 | 
         
            -
                with gr.Row():
         
     | 
| 42 | 
         
            -
                    with gr.Column():
         
     | 
| 43 | 
         
            -
                        input_image = gr.Image(label="Image")
         
     | 
| 44 | 
         
            -
                        prompt = gr.Textbox(label="Prompt")
         
     | 
| 45 | 
         
            -
                        a_prompt = gr.Textbox(label="Additional Prompt")
         
     | 
| 46 | 
         
            -
                        n_prompt = gr.Textbox(label="Negative Prompt")
         
     | 
| 47 | 
         
            -
                        num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
         
     | 
| 48 | 
         
            -
                        image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
         
     | 
| 49 | 
         
            -
                        ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
         
     | 
| 50 | 
         
            -
                        guess_mode = gr.Checkbox(label='Guess Mode', value=False)
         
     | 
| 51 | 
         
            -
                        strength = gr.Slider(label="Strength", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
         
     | 
| 52 | 
         
            -
                        scale = gr.Slider(label="Scale", minimum=0.1, maximum=30.0, value=10.0, step=0.1)
         
     | 
| 53 | 
         
            -
                        seed = gr.Slider(label="Seed", minimum=0, maximum=10000, value=42, step=1)
         
     | 
| 54 | 
         
            -
                        eta = gr.Slider(label="ETA", minimum=0.0, maximum=1.0, value=0.0, step=0.1)
         
     | 
| 55 | 
         
            -
                        low_threshold = gr.Slider(label="Canny Low Threshold", minimum=1, maximum=255, value=100, step=1)
         
     | 
| 56 | 
         
            -
                        high_threshold = gr.Slider(label="Canny High Threshold", minimum=1, maximum=255, value=200, step=1)
         
     | 
| 57 | 
         
            -
                        submit = gr.Button("Generate")
         
     | 
| 58 | 
         
            -
                    with gr.Column():
         
     | 
| 59 | 
         
            -
                        output_image = gr.Gallery(label='Output', show_label=False, elem_id="gallery")
         
     | 
| 60 | 
         
            -
                submit.click(fn=process, inputs=[input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold], outputs=output_image)
         
     | 
| 61 | 
         
            -
             
     | 
| 62 | 
         
            -
            demo = block
         
     | 
| 63 | 
         
            -
            demo.launch()
         
     | 
| 
         | 
|
| 1 | 
         
            +
            # import torch
         
     | 
| 2 | 
         
            +
            # import random
         
     | 
| 3 | 
         
            +
            # import numpy as np
         
     | 
| 4 | 
         
            +
            # import gradio as gr
         
     | 
| 5 | 
         
            +
            # from pytorch_lightning import seed_everything
         
     | 
| 6 | 
         
            +
            # from annotator.util import resize_image, HWC3
         
     | 
| 7 | 
         
            +
            # from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            # # # Load the controlnet model
         
     | 
| 10 | 
         
            +
            # # controlnet = ControlNetModel.from_pretrained("CompVis/controlnet")
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            # # # Load the pipeline
         
     | 
| 13 | 
         
            +
            # # pipe = StableDiffusionControlNetPipeline.from_pretrained(
         
     | 
| 14 | 
         
            +
            # #     "CompVis/stable-diffusion-v1-4",
         
     | 
| 15 | 
         
            +
            # #     controlnet=controlnet
         
     | 
| 16 | 
         
            +
            # # ).to("cuda")
         
     | 
| 17 | 
         
            +
            # controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
         
     | 
| 18 | 
         
            +
            # pipe = StableDiffusionControlNetPipeline.from_pretrained(
         
     | 
| 19 | 
         
            +
            #     "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
         
     | 
| 20 | 
         
            +
            # )
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            # def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold):
         
     | 
| 23 | 
         
            +
            #     with torch.no_grad():
         
     | 
| 24 | 
         
            +
            #         img = resize_image(HWC3(input_image), image_resolution)
         
     | 
| 25 | 
         
            +
                    
         
     | 
| 26 | 
         
            +
            #         if seed == -1:
         
     | 
| 27 | 
         
            +
            #             seed = random.randint(0, 65535)
         
     | 
| 28 | 
         
            +
            #         seed_everything(seed)
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            #         # Generate images using the pipeline
         
     | 
| 31 | 
         
            +
            #         generator = torch.Generator("cuda").manual_seed(seed)
         
     | 
| 32 | 
         
            +
            #         images = pipe(prompt=prompt + ', ' + a_prompt, num_inference_steps=ddim_steps, guidance_scale=scale, generator=generator, num_images_per_prompt=num_samples).images
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            #         results = [np.array(image) for image in images]
         
     | 
| 35 | 
         
            +
            #     return results
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            # block = gr.Blocks().queue()
         
     | 
| 38 | 
         
            +
            # with block:
         
     | 
| 39 | 
         
            +
            #     with gr.Row():
         
     | 
| 40 | 
         
            +
            #         gr.Markdown("## Scene Diffusion with ControlNet")
         
     | 
| 41 | 
         
            +
            #     with gr.Row():
         
     | 
| 42 | 
         
            +
            #         with gr.Column():
         
     | 
| 43 | 
         
            +
            #             input_image = gr.Image(label="Image")
         
     | 
| 44 | 
         
            +
            #             prompt = gr.Textbox(label="Prompt")
         
     | 
| 45 | 
         
            +
            #             a_prompt = gr.Textbox(label="Additional Prompt")
         
     | 
| 46 | 
         
            +
            #             n_prompt = gr.Textbox(label="Negative Prompt")
         
     | 
| 47 | 
         
            +
            #             num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
         
     | 
| 48 | 
         
            +
            #             image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
         
     | 
| 49 | 
         
            +
            #             ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
         
     | 
| 50 | 
         
            +
            #             guess_mode = gr.Checkbox(label='Guess Mode', value=False)
         
     | 
| 51 | 
         
            +
            #             strength = gr.Slider(label="Strength", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
         
     | 
| 52 | 
         
            +
            #             scale = gr.Slider(label="Scale", minimum=0.1, maximum=30.0, value=10.0, step=0.1)
         
     | 
| 53 | 
         
            +
            #             seed = gr.Slider(label="Seed", minimum=0, maximum=10000, value=42, step=1)
         
     | 
| 54 | 
         
            +
            #             eta = gr.Slider(label="ETA", minimum=0.0, maximum=1.0, value=0.0, step=0.1)
         
     | 
| 55 | 
         
            +
            #             low_threshold = gr.Slider(label="Canny Low Threshold", minimum=1, maximum=255, value=100, step=1)
         
     | 
| 56 | 
         
            +
            #             high_threshold = gr.Slider(label="Canny High Threshold", minimum=1, maximum=255, value=200, step=1)
         
     | 
| 57 | 
         
            +
            #             submit = gr.Button("Generate")
         
     | 
| 58 | 
         
            +
            #         with gr.Column():
         
     | 
| 59 | 
         
            +
            #             output_image = gr.Gallery(label='Output', show_label=False, elem_id="gallery")
         
     | 
| 60 | 
         
            +
            #     submit.click(fn=process, inputs=[input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold], outputs=output_image)
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
            # demo = block
         
     | 
| 63 | 
         
            +
            # demo.launch()
         
     | 
| 64 | 
         
             
            import torch
         
     | 
| 65 | 
         
            +
            from diffusers import StableDiffusionControlNetPipeline
         
     | 
| 66 | 
         
            +
            from diffusers import ControlNetModel
         
     | 
| 67 | 
         
             
            import gradio as gr
         
     | 
| 68 | 
         
            +
            from PIL import Image
         
     | 
| 69 | 
         
            +
            import numpy as np
         
     | 
| 
         | 
|
| 70 | 
         | 
| 71 | 
         
            +
            # 初始化 ControlNet 模型和 Stable Diffusion Pipeline
         
     | 
| 72 | 
         
            +
            controlnet = ControlNetModel.from_pretrained("controlnet/checkpoints/ControlNetModel")
         
     | 
| 73 | 
         
            +
            pipeline = StableDiffusionControlNetPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", controlnet=controlnet).to("cuda")
         
     | 
| 74 | 
         | 
| 75 | 
         
            +
            # 定义图像生成函数
         
     | 
| 76 | 
         
            +
            def generate_image(prompt: str, input_image: Image.Image):
         
     | 
| 77 | 
         
            +
                # 可以在这里根据传入的图像做一些预处理(例如,使用控制网络或图像生成模型)
         
     | 
| 78 | 
         
            +
                
         
     | 
| 79 | 
         
            +
                # 将输入图像转换为合适的格式
         
     | 
| 80 | 
         
            +
                input_image = input_image.convert("RGB")
         
     | 
| 81 | 
         
            +
                
         
     | 
| 82 | 
         
            +
                # 生成图像
         
     | 
| 83 | 
         
            +
                result_image = pipeline(prompt=prompt, init_image=input_image, strength=0.75).images[0]
         
     | 
| 84 | 
         
            +
                return result_image
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
            # 创建 Gradio 界面
         
     | 
| 87 | 
         
            +
            iface = gr.Interface(
         
     | 
| 88 | 
         
            +
                fn=generate_image,
         
     | 
| 89 | 
         
            +
                inputs=[
         
     | 
| 90 | 
         
            +
                    gr.Textbox(label="Enter a prompt", placeholder="e.g. a futuristic city at sunset"),  # 提示框
         
     | 
| 91 | 
         
            +
                    gr.Image(label="Upload an Image", type="pil")  # 图像上传框
         
     | 
| 92 | 
         
            +
                ],
         
     | 
| 93 | 
         
            +
                outputs=gr.Image(label="Generated Image"),  # 输出生成的图像
         
     | 
| 94 | 
         
            +
                live=True
         
     | 
| 95 | 
         
             
            )
         
     | 
| 96 | 
         | 
| 97 | 
         
            +
            # 启动 Gradio 应用
         
     | 
| 98 | 
         
            +
            iface.launch()
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         |