Spaces:
Runtime error
Runtime error
import torch | |
import random | |
import gradio as gr | |
from diffusers import StableDiffusionControlNetPipeline | |
from annotator.util import resize_image, HWC3 | |
# Load the pipeline | |
pipe = StableDiffusionControlNetPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to("cuda") | |
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold): | |
with torch.no_grad(): | |
img = resize_image(HWC3(input_image), image_resolution) | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
generator = torch.manual_seed(seed) | |
# Generate images using the pipeline | |
images = pipe(prompt=prompt + ', ' + a_prompt, num_inference_steps=ddim_steps, guidance_scale=scale, generator=generator, num_images_per_prompt=num_samples).images | |
results = [np.array(image) for image in images] | |
return results | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Row(): | |
gr.Markdown("## Scene Diffusion with ControlNet") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
a_prompt = gr.Textbox(label="Additional Prompt") | |
n_prompt = gr.Textbox(label="Negative Prompt") | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
strength = gr.Slider(label="Strength", minimum=0.0, maximum=1.0, value=0.5, step=0.1) | |
scale = gr.Slider(label="Scale", minimum=0.1, maximum=30.0, value=10.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=0, maximum=10000, value=42, step=1) | |
eta = gr.Slider(label="ETA", minimum=0.0, maximum=1.0, value=0.0, step=0.1) | |
low_threshold = gr.Slider(label="Canny Low Threshold", minimum=1, maximum=255, value=100, step=1) | |
high_threshold = gr.Slider(label="Canny High Threshold", minimum=1, maximum=255, value=200, step=1) | |
submit = gr.Button("Generate") | |
with gr.Column(): | |
output_image = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') | |
submit.click(fn=process, inputs=[input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold], outputs=output_image) | |
demo = block | |
demo.launch(share=True) |